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INTRODUCTION

Air pollution poses tremendous threats to human health.1,2 In 
2015, global deaths and disability-adjusted life-years attribut-
able to air pollution were 6.485 million and 167.3 million, re-
spectively.1 Recently, an increasing number of studies have 
documented the adverse impacts of environmental exposures 
on human health.2 These investigations have furthered the un-

derstanding of associations between environmental conditions 
and human health. Although global efforts toward climate 
change have improved air pollution in some regions, there is 
still a need for strategies to minimize its adverse effects and 
protect people from the same.3 Many recent studies have fo-
cused on incorporating the precision medical approach into ef-
forts to reduce the effects of environmental exposure on human 
health using digital healthcare technology.

Major environmental health issues are chronic airway dis-
eases, especially asthma and chronic obstructive pulmonary 
disease (COPD), as the lungs are the first bodily destinations for 
any inhaled environmental particulates. These particulates di-
rectly induce pulmonary inflammation, increase susceptibility 
to respiratory tract infections, and narrow the airways.4 Acute 
exacerbation of chronic airway diseases accelerates disease 
progression, worsens quality of life, and increases mortality 
risk. Environmental exposure and response analyses have sug-
gested that air pollution increases the risk of acute exacerba-
tion of chronic airway diseases.5 Several studies have attempt-
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ed to develop prediction models for acute exacerbation. 
However, their integrated environmental exposure data have 
been obtained from open public sources; as a result, the im-
mediate consequences of environmental exposure have not 
been adequately evaluated. This limitation has made it difficult 
to apply real-time prediction models to patients. Real-time pre-
diction models can provide patients with early self-detection 
and allow immediate self-management of acute exacerbation 
of chronic airway diseases. In order to develop a real-time preci-
sion medical approach toward human health in response to en-
vironmental exposure, particulate measurements and physio-
logical signs should be collected individually and in real-time.

In light of these motivations, we have first discussed the appli-
cation of digital health technologies in general environmental 
healthcare and chronic airway disease management. Moreover, 
we have reviewed and suggested how digital health technolo-
gies can be applied to reduce the adverse effects of environmen-
tal exposure in chronic airway diseases, based on personal ex-
posure-response modeling.

SECTION 1: AIR POLLUTION AND DIGITAL 
HEALTH TECHNOLOGIES

Scientific research on air pollution exposure can be divided into 
two categories: modeling exposures in large populations, and 
measuring exposures in individuals.6 Large scale approaches 

include measuring air pollution level with new sources and 
high-tech/low cost sensors, and predicting ambient pollution 
with new models to provide higher resolution. Elaborating per-
sonal exposure to air pollution include tracking individual 
chronological position and matching it with air pollution map, 
measuring personal exposure itself with portable sensors, or 
both. With recent advances in computational modeling and per-
sonal mobile devices, researchers have been enabled to com-
bine all technologies and begin to estimate personal, chrono-
logical exposures to air pollution. This section focuses on how 
new technologies are developing the personal exposome re-
search field (Table 1).

Ambient air pollution prediction
Conventional measurements from government or central-site 
monitors lack the spatiotemporal resolution to assess com-
plex personal air pollution exposure data. Stationary monitor-
ing sensors are known to represent concentrations of their im-
mediate surroundings.7 However, recently developed models 
(e.g., Stochastic Human Exposure and Dose Simulation, SHEDS; 
American Meteorological Society/Environmental Protection 
Agency Regulatory Model, AERMOD; Research-LINE, RLINE) 
incorporate other variables, including pollution emissions data, 
topography, meteorological data, satellite data, and micro-en-
vironmental characteristics, and offer higher resolution in am-
bient concentrations.6,8 Nowadays, efforts are being introduced 
to further enhance the accuracy and resolution of estimated 

Table 1. Recent Advances in Estimating Air Pollution Exposure

Method Example Advances
Modelling ambient pollution

Deterministic  mixed-effect model SHEDS
AERMOD
RLINE

- ‌�Incorporate new variables: pollution emissions data, topography, meteorological data, 
satellite data, personal behavior/time activity, and micro-environmental characteristics

- Offer higher resolution

ML-based prediction Di, et al., 201911

Huang, et al., 20219

- ‌�Provide 100× higher resolution from satellite-based measurements by applying mixed-
effect models with ML algorithms

Air pollution measurement

Satellite-based sensors Özkaynak, et al., 20138

van Donkelaar, et al., 201510

- ‌�Measure aerosol optical depth in global scale with 1×1 km resolution and 10-year 
timelines

World Air Quality Index project Rodriguez-Urrego, et al., 
202013

- Combine global air pollution station measurement and produce real-time data

Citizen science initiatives iSPEX14

xAire15 
CuriezeNeuzen16,17

- ‌�Produce air pollution measurement data from citizen volunteers with very high 
spatio-temporal resolution

Low cost sensors Barkjohn, et al., 202127

Feinberg, et al., 201928

- Increase resolution and accuracy of government measurement stations

Portable sensors PAM31-33

AirBeam34

- Gold standard for personal air pollution exposure assessment

Personal time-activity tracking

mHealth based GPS records Arku, et al., 201822 - ‌�Differentiate personal exposures by combining high-resolution air quality prediction 
model with individual time-matched travel records

SHEDS, Stochastic Human Exposure and Dose Simulation; AERMOD, American Meteorological Society/Environmental Protection Agency Regulatory Model; 
RLINE, Research-LINE; ML, machine learning; PAM, personal air monitor; mHealth, mobile health; GPS, global positioning system.
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concentrations with new data sources discussed below.
Remote sensing by satellite-based sensors is one of the most 

valuable data sources in estimating global air pollution.8-11 Mea-
suring aerosol optical depth (AOD), the amount of light extinc-
tion in the given atmospheric column due to aerosols, gives es-
timates of particulate matter (PM)2.5 at a 1×1 km resolution all 
over the Earth. These records can span timelines as long as a de-
cade.10 Sentinel-5 and Sentinel-5P, which were launched in 2017 
by the European Space Agency, are expected to further enhance 
this technology with their own high-resolution capacities.

Another novel approach is densifying air monitoring data at 
the ground level to calibrate remote-sensed air pollution data. 
Real-time air quality index data is now available for more than 
30000 stations in 2000 major cities from 133 countries, provid-
ed by a non-profit project known as the World Air Quality In-
dex project.12 This approach enabled the collection of global-
level data and comparison between capital cities of different 
countries.13 Citizen science initiatives, such as iSPEX,14 xAire,15 
CurieuzeNeuzen (Curious Noses) in Flanders16 and many oth-
ers have also contributed to new monitoring data from new 
sources. Citizens involved with CurieuzeNeuzen numbered 
2000 in Antwerp17 and 20000 in Flanders,16 with each individ-
ual representing one nitrogen dioxide (NO2) measurement 
location, compared to only 67 official reference stations in Flan-
ders. De Craemer, et al.16 normalized each short-term measure-
ment of NO2 into annual average concentrations at each loca-
tion, resulting in very densely positioned NO2 measure data. On 
the other hand, iSPEX is a newer citizen-based approach using 
mass-producible air sensors. Using a smartphone add-on for 
iPhones, Snik, et al.14 produced AOD data with a 2-km spatial 
resolution, and improved temporal resolution as compared to 
satellite data. These new approaches are creating a paradigm 
shift and tremendously improving spatiotemporal resolution of 
pollution models.

Personalized mobile sensors and wearables have emerged 
as new data sources with innumerous variables and immea-
surable measurements, and their advances are discussed later 
in this review. With these new-generation data, models com-
bining machine learning (ML) algorithms have increased the 
spatial resolution of daily ambient PM2.5 concentration to 100× 
100 m in the US11 and China.9 The more “big data” is generated, 
the more model resolutions can be increased and improved.

Mobile health (mHealth) technologies
The global spread of smartphone usage has allowed mHealth 
to expand worldwide. As of 2021, more than 6 billion smart-
phone subscriptions are operating across the planet.18 With the 
maturity of information and communication technology, the 
use of digital technologies for healthcare offers unique oppor-
tunities for product and service accessibility and affordabili-
ty.19 Furthermore, mHealth products–mostly smartphones and 
wearable devices–also have the capacity to collect time-activi-
ty patterns, easily recruit participants based on mobile appli-

cations (apps), and record external and internal biomarkers of 
air pollution exposure.

Time-activity patterns, which link stationary air pollution 
concentration data to dynamic real-world personal exposure, 
are recorded in high spatiotemporal resolution using the smart-
phones’ global positioning system (GPS). Smartphone GPS can 
distinguish distances less than 10 meters and record every 5 to 
10 minutes.20 Based on spatiotemporal regularity in time-activ-
ity patterns,21 it has been suggested that seasonal measurements 
of several days may be sufficient to capture individual variation 
in pollution exposure.6 Studies are now utilizing such GPS data 
in estimating individual air pollution exposure. For example, in 
the Prospective Urban and Rural Epidemiological (PURE) Air 
study,22 researchers were able to differentiate personal expo-
sures with high spatiotemporal resolution by combining their 
time-matched travel records, even within the same city.

The mHealth apps are a novel primary platform to conduct 
air pollution epidemiologic studies and design interventions to 
encourage health-positive behaviors. One of the most popular 
mHealth platforms for research is ResearchKit, provided by Ap-
ple. It is an open source framework that provides codes from es-
tablished apps to recruit and survey participants, obtain digital 
consent, collect biometric data, provide notifications (“push 
interventions”), and secure data transmission and storage.23 In 
the Asthma Mobile Health Study (AMHS),24 this app was down-
loaded 49963 times during the first 6 months after its launch, 
recruiting 7593 participants across the United States. The re-
searchers were able to link asthma exacerbation to increased 
heat, pollen, and air pollution, caused by wildfires in the U.S. 
state of Washington. This study publicly made available data 
from 6346 consenting participants as well.25 The very nature of 
mHealth app allows rapid enrollment, poses minimal risks, and 
facilitates frequent data collection with high temporal resolution 
in real-world settings. These qualities are best suited for pollu-
tion exposure epidemiology studies.24,25 However, selection bias, 
reporting bias, and privacy issues are major concerns that need 
to be addressed.

Air sensors–outdoor, indoor, portable, and wearable
Recent inventions of air sensors have made air pollution moni-
toring more affordable, accessible, and accurate. According to 
the Joint Research Centre (JRC) of the European Union, PA-II 
by PurpleAir (PM1), AirNut by Moji China (PM2.5), Egg (2018) 
by Air Quality Egg (PM1), PATS+ by Berkley Air (PM2.5), S-500 by 
Aeroqual (NO2, O3) showed R2 more than 0.85 with their pric-
es lower than 500 EUR.26 Researchers in the U.S. Environmen-
tal Protection Agency (EPA) recently reported that nationwide 
PM2.5 measurements can be corrected using PurpleAir data all 
over the U.S. by reducing the root mean square error of the raw 
data from 8 to 3 μg/m3.27 In the CitySpace project28 conducted 
by the EPA, 17 Alphasense OPC-N2 PM sensors were deployed 
as a network. Although only six sensors passed the quality con-
trol tests, 1-minute data from them were able to locate an emis-
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sion source responsible of 20% of local PM2.5 emissions. Ad-
vances in indoor low-cost sensor technologies have also 
emerged in research, due to the expansion of digital products, 
termed the “Internet of Things.”29 However, out of 35 research 
studies which developed unique devices from 2012 to now, 
only 16 studies focused on calibration and validation, and even 
fewer conducted tests with references.30 Therefore, further stud-
ies in calibration and validation, with appropriate reference 
measures, are required.

Personal measurement is the gold standard for air pollution 
exposure assessment.6 To derive long-term exposure effects, 
data should be collected over sufficiently long periods of time, 
with highly validated accuracy. “Personal air monitor” (PAM) 
is one of the most recent and useful portable air sensors, de-
veloped at the University of Cambridge. This sensor can mea-
sure concentrations of particulate matters (PM1, PM2.5, PM10) 
and gaseous pollutants (CO, NO, NO2, O3) every 20 seconds 
while recording personal activity and meteorological variables 
simultaneously. This cube-shaped small device is sized 13×9×10 
cm, and weighs only around 400 grams. It is now being used in 
many studies.31-33 For instance, the Effects of AIR pollution on 
cardiopuLmonary disEaSe in urban and peri-urban reSidents 
in Beijing (AIRLESS) study33 was conducted as a part of a joint 
UK-China program named Air Pollution and Human Health in 
a Developing Megacity (APHH-Beijing). In consecutive groups, 
251 participants carried 60 PAMs for several times a week to 
measure personal exposure to ambient and indoor air pollu-
tion. Preliminary data of this study showed considerable differ-
ence between personal exposure and ambient air pollution 
measures, especially in winter when participants were often ex-
posed to strong emission sources at home. The PAM device was 
also used in the “characterisation of COPD exacerbations using 
environmental exposure modelling (COPE)” study in UK.32 Pre-
liminary study results emphasized the impacts of gaseous pol-
lutants.31 Ma, et al.34 used the AirBeam (HabitatMap) portable 
sensor with Android-based GPS trajectory data, which are re-
corded every second and uploaded to the AirCasting website. 
This study was also able to detect considerable differences be-
tween real-time personal exposure data and measurement sta-
tion data, even when the participants were outside.

Wearable sensors are expected to accelerate new method-
ologies that can provide not only human biomarkers, such as 
pulse rate, respiratory rate, oxygen saturation, physical activity, 
sleep patterns, and stress levels, but also personal pollution ex-
posure data with the highest spatiotemporal resolution.35,36 
However, currently affordable, minimally-sized sensors still 
lack accuracy, and their data are confounded by various factors 
including the weather, location of sensor on the body, or urban 
structures.35 Until now, portable sensors with reliable function-
ing are at least as large as palm-sized (AirBeam, Atmotube PRO, 
etc.). Nevertheless, future science will make truly “wearable” 
sensors possible.

SECTION 2: CURRENT STATUS OF 
DIGITAL HEALTHCARE TECHNOLOGIES 
FOR AIRWAY DISEASES

Digital healthcare technologies, characterized by high com-
puting power and mobile connectivity, are changing the mode 
and quality of patient care and clinical research. The current 
research on digital healthcare in airway diseases differs across 
various fields, but is an active line of enquiry.

Modeling for exacerbation prediction
Chronic airway diseases, such as asthma and COPD, are major 
causes of chronic morbidity and mortality in global health.37 
Acute exacerbation of these diseases often results in hospital-
ization, declined lung function, impaired quality of life, and 
high mortality.38,39 Therefore, accurate detection of exacerbation 
would support early disease management and reduce mor-
bidity and mortality.40

Several studies have developed prognostic tools to enable 
personalized prediction of exacerbation (Table 2). Guerra, et 
al.41 evaluated 27 models for acute exacerbation of COPD (AE-
COPD), which used traditional statistical methods such as lo-
gistic regression analysis and Cox regression analysis. The au-
thors stated that most models were at high risk of bias due to 
improper statistical methodology. Systematic reviews of predic-
tion models for asthma exacerbation also found that the models 
were primarily grounded in epidemiological studies and popu-
lation-based risks; consequently, their predictive powers were 
suboptimal.42,43

The evolution of computer science offered the capacity to 
integrate multiple data sources, increasing the accuracy of pre-
dictive models. Approaches with ML showed promise in im-
proving prediction ability; therefore, many studies have used 
ML algorithms for the acute exacerbation of airway diseases. 
Zein, et al.44 developed a ML-based model to predict asthma ex-
acerbation using real-world data from ambulatory patients. Its 
prediction performance in utilization of healthcare resources, 
such as asthma-related emergency department (ED) visits and 
hospitalization, was superior as compared to those using clas-
sic logistic regression. Moreover, the authors gathered data di-
rectly from electronic health records from healthcare systems 
instead of clinical trials, reflecting the variety of real-world sit-
uations. Wu, et al.45 also developed a ML-based model to pre-
dict AECOPD. Lifestyle and environment data of patients with 
COPD were integrated into the model, which improved its pre-
diction power as compared to previous models using clinical 
questionnaires.

The ML-based approach was extended to severity assess-
ment tools for acute exacerbation of airway diseases after ED 
visits and hospital admission.46,47 ML markedly improved the 
ability to predict clinical courses, in comparison to conven-
tional approaches. Through the real-world implementation of 
ML, ED management and healthcare resources utilization could 
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be optimized, and early intervention could be applied. 
Although ML-based models have the strength of accuracy, 

they cannot define causality. Therefore, well-designed random-
ized clinical trials are still required. In addition, most of the cur-
rent models use internal validation. Therefore, external valida-
tion in different populations would be necessary to establish 
these models. 

 

Smartphone apps
Digital healthcare for patients with airway diseases has been 
extended from acute management in hospitals to daily self-
management within communities. Telemedicine and telemon-
itoring have been widely studied in chronic airway diseases, but 
mHealth technologies, particularly smartphone apps, have 
emerged to improve patient health in an easily accessible and 
patient engaging manner.48 In 2020, approximately 47140 
mHealth apps were available for download; their global market 
value was estimated at $40 billion, and this is expected to grow 
annually by 17.7% between 2021 and 2028.49

Smoking cessation is mandatory for chronic airway disease. 
Most smoking cessation apps are not only aimed at cognitive 
behavioral therapy as well as acceptance and commitment 
therapy, but they also provide access to community resources 
and connections to social network. A systematic review in 2019 
found that automated text messaging interventions were effec-
tive at motivating people to quit smoking, and improved quit-
ting rates by 50%–60%.50 However, the reviewers also stated that 
there was insufficient evidence for mobile app-based interven-
tions. Nowadays, studies on app-based smoking cessation are 
ongoing.51 A Japanese group validated the feasibility and useful-

ness of smartphone apps to help long-term, continuous absti-
nence from smoking (Table 3).52 Danaher, et al.53 also found 
that mobile apps and text messaging were more effective in en-
couraging smoking cessation, as compared to the conventional 
internet approach designed for use on non-mobile devices.

Optimized disease assessment and regular inhalation of ther-
apeutic drugs contribute to controlling asthma and COPD.54 Al-
though geographical barriers or global pandemic circumstanc-
es hinder the face-to-face relationship between doctors and 
patients, mHealth technologies empower patients to maintain 
self-management at home.55,56 A systematic review in 2021 
found that mHealth apps paired with inhaler-based sensors 
improved inhaler adherence and reduced rescue inhaler use, 
but did not affect Asthma Control Test scores.57 The reviewers 
found that the quality of current evidence is moderate, and the 
availability of relevant products is limited. Mosnaim, et al.58 re-
cently reported a randomized controlled trial of a digital plat-
form-based asthma self-monitoring system. The intervention 
group, who received audiovisual reminders for inhaler medi-
cations and had access to their usage data on the app, main-
tained high inhaler adherence and decreased rescue medica-
tion use. Future studies in mHealth-based self-management 
systems would help patients make healthy decisions at home.

Smartphone apps to support pulmonary rehabilitation and 
long-term care for patients with chronic airway diseases have 
been designed, but evidence of their effectiveness remains in-
conclusive. Vorrink, et al.59 conducted a randomized clinical trial 
of 157 patients with COPD after they had completed a pulmo-
nary rehabilitation program in the Netherlands. The interven-
tion group using the smartphone app did not improve or main-

Table 2. Modeling for Acute Exacerbation of Chronic Airway Disease

Studies Statistical method Measured outcomes Findings
Guerra, et al., 201741

COPD (SR for 27 models)
Classic statistical methods (correlation analysis, 

logistic regression, Cox regression, Poisson 
regression, negative binomial regression, 
random forest)

- Outpatient-treated exacerbation
- Hospitalization

- High risk of bias 
- Lack of validation 
- Heterogeneity of statistical methods

Loymans, et al., 201843

Asthma (SR for 24 models)
Classic statistical methods (classification and 

regression tree, Cox regression, 
Poisson regression)

- Systemic steroid use
- ED visit
- Hospitalization
- Lung function decline

- Poor model calibration 
- Limited external validation

Zein, et al., 202144

Asthma
Classic statistical methods (logistic regression, 

random forests) vs. ML-based methods 
(light gradient boosting decision tree)

- Systemic steroid use
- ED visit
- Hospitalization

- Real-world data used 
 -Better performance in ML-based models 
- Internal validation

Wu, et al., 202145

COPD
ML-based classification (random forest, decision 

trees, k-nearest neighbor clustering, 
linear discriminant analysis, adaptive boosting, 
deep neural network model)

- mMRC dyspnea scale
- COPD assessment test

- ‌�High predictive power when lifestyle 
and environmental data are integrated

- Internal validation

Sills, et al., 202146

Asthma
Classic statistical methods (random forest, logistic 

regression) vs. automated ML algorithm
- Hospitalization during ED visit - Better performance in ML-based model 

- Internal validation

Peng, et al., 202047

COPD
ML-based classification (novel C5.0 decision tree 

classifier)
- Exacerbation during hospitalization  -Early detection of aggravation 

- Internal validation

COPD, chronic obstructive pulmonary disease; ED, emergency department; mMRC, modified medical research council; ML, machine learning; SR, systematic re-
view.
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tain physical activity levels compared to the standard care group. 
The authors stated that actual physical activity levels should be 
measured more accurately, and that the smartphone interface 
to provide immediate feedback should be optimized to moti-
vate participants to adhere to their physical activity goals. An-
other systematic review of systematic reviews by Marcolino, et 
al.60 also stated that evidence for the efficacy of mHealth in 
chronic airway diseases is limited.

Recently, a novel mHealth research platform, ResearchKit, 
demonstrated its value and validity in an asthma study.24 The 
platform enabled a prospective multidimensional study across 
the U.S., in which the authors found that self-reported asthma 
symptoms increased in regions affected by known environmen-
tal triggers of asthma, such as heat, pollen, and wildfires. Further 
large-scale studies are also expected to be conducted using Re-
searchKit.

However, mHealth studies need to address significant con-
cerns, including selection bias, low retention rates, reporting 
bias, as well as data security and privacy. To date, most studies 
have been conducted on younger, wealthier, and more edu-
cated Caucasians in high-income countries. Therefore, future 
studies in low-income countries with different demographics 
are required. Financial support may facilitate access to mHealth 
and produce more evidence from the most vulnerable popula-
tions.61 In addition, proper regulation of mHealth apps by the 
Food and Drug Administration should be called for.19,62

Wearable devices
The COVID-19 pandemic has increased the need for remote 
health monitoring systems. Technology-enabled biomedical 
sensors and wearable devices, combined with artificial intelli-
gence, telemedicine, and telemonitoring, have been widely 
applied in the management of chronic diseases.36,63 Recording 
individual long and short-term events, and segregation of phys-
iological data from multiple sources, have allowed physicians 
and patients to monitor patient parameters in any environment.

Oxygen saturation and respiratory rates are proxies of AE-
COPD. Mehdipour, et al.64 conducted a systematic review of the 
reliability, validity, and responsiveness of wearable devices that 
monitor oxygen saturation and respiratory rates in patients 
with COPD (Table 4). After reviewing seven studies represent-
ing 11 devices, the authors stated that remote monitoring de-
vices demonstrate validity in detecting hypoxemia and tachy-
pnea, although their accuracy needs improvement. Effective 
remote monitoring could facilitate early management and pre-
vention of AECOPD, which would stabilize patients and reduce 
their medical expenditures.65

Digital stethoscopes and home-based spirometry tests have 
enabled physicians to monitor more diverse parameters, lead-
ing to precise evaluation of the patients’ health status. Digital 
stethoscopes transform acoustic sounds, refine digital signals, 
and convey information at optimal sound levels; however, in-
terrater disagreements still exist.66 With artificial intelligence, 
pathologic breathing sounds can be detected more accurately.67 

Table 3. Smartphone Apps for Chronic Airway Disease Management

Types
Subject 

characteristics
mHealth interventions Findings

Smoking cessation

Masaki, et al., 201952 n=55 Usual smoking cessation therapies plus CureApp 
Smoking Cessation app (single arm)

- High continuous abstinence rate
- High patient retention rates
- Improvement of cessation-related symptoms

Danaher, et al., 201953 n=1271 MobileQuit (for mobile devices) vs. Quit Online 
(for non-mobile desktop or tablets)

- MobileQuit more effective

Inhaler usage

Nguyen, et al., 202157 n=7 (SR) 
Asthma 

mHealth apps integrating an inhaler-based sensor - Small number of available products
- ‌�Positive effects on rescue inhaler use, inhaler 

adherence, and patient satisfaction
- ACT scores not affected

Mosnaim, et al., 
202158

n=100 
Asthma

Intervention: real-time tracking and audiovisual 
feedback of inhaler usage via mHealth app

Control: real-time tracking without feedback

- ‌�Intervention group improved baseline ICS adherence 
and decreased SABA usage

Pulmonary rehabilitation

Vorrink, et al., 201659 n=157 
COPD

Intervention: mHealth app for physical activity
Control: usual care

- ‌�mHealth intervention did not improve or maintain 
physical activity in patients with COPD after pulmo-
nary rehabilitation

Self-reported symptom acquisition

Chan, et al., 201724 n=6470 
Asthma

Acquisition of asthma symptoms via mHealth app - ‌�Demonstrated feasibility of the mHealth app 
in a broad-scale asthma study

ACT, asthma control test; COPD, chronic obstructive pulmonary disease; ICS, inhaled corticosteroid; SABA, short-acting beta-agonist; SR, systematic review.
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Recently, a non-diaphragm wearable stethoscope has been de-
signed as well.68 Altogether, AI-based remote auscultation have 
the potential to be widely implicated. Furthermore, mobile spi-
rometry tests have demonstrated both feasibility and validi-
ty.69,70 They are expected to be widely utilized during the COV-
ID-19 pandemic and other resource-limited circumstances.71

When combined with mHealth apps, telemonitoring with 
wearable devices can support the patients’ self-management. 
For instance, Khusial, et al.72 remotely monitored the physio-
logical parameters, inhaler usage, and environmental data in 
patients with asthma. They found that their mHealth system, 
myAirCoach, reduced severe asthma exacerbation. 

Wearable monitoring devices could be expanded to target 
other respiratory diseases. Patients with non-severe COVID-19 
may be allowed to stay home under close observation and re-
ceive timely management, minimizing the risk of viral transmis-
sion.73 Therefore, future studies applying these technologies to 
various pulmonary diseases are expected.

SECTION 3: EFFECTS AND 
MANAGEMENT OF ENVIRONMENTAL 
EXPOSURE

Previous studies suggest that environment exposures, espe-
cially air pollution, play an important role in increasing newly 
developed chronic airway diseases or triggering exacerbation 
of previously diagnosed airway diseases. Therefore, it is an ur-
gent need to develop interventions to minimize environmen-
tal harm using integrated digital health technologies through 
smartphones, air-sensors, wearable devices, and prediction 

models.

Effects of environmental exposure on asthma
Poorly controlled asthma is related to fatal exacerbation, caus-
ing high disease burden. Evidence suggests that environmen-
tal exposure not only triggers the aggravation of respiratory 
symptoms, but also leads to the development of asthma. In six 
European cohorts, moderately significant positive associa-
tions were observed between asthma incidence and exposure 
to NO and NO2.74 Khreis, et al.75 systematically reviewed and 
meta-analyzed the association between traffic-related air pol-
lution (TRAP) and childhood asthma development in 41 stud-
ies. Asthma development was significantly associated with 
black carbon, NO2, PM2.5, and PM10 exposures, indicating that 
childhood exposure to TRAP contributes to the development 
of asthma. 

Long-term exposure to PM10 and O3 is associated with un-
controlled asthma in adults, defined by severe symptoms, exac-
erbation, and decreased lung function.76 Rage, et al.3 assessed 
the relationship between the participants’ asthma severity dur-
ing the past 12 months and concentrations of air pollution 
outside their homes. Higher asthma severity scores were sig-
nificantly related to high 8-hour averages of ozone, and higher 
number of days with 8-hour ozone averages, above 110 ug/m3 
[odds ratio (OR) 2.22 for one class difference in score].

Air pollutants may aggravate airways inflammation in both 
allergic and non-allergic asthma. Air pollutants enhance aero-
allergen sensitization by increasing the production of the spe-
cific Immunoglobulin E (IgE). The 2005–2006 National Health 
and Nutrition Survey reported that increased levels of NO2 were 
associated with increased IgE in response to inhalant and out-

Table 4. Wearable Devices for Chronic Airway Disease

Types Devices Monitoring Findings
Tele-monitoring63 - Pulse oximeter (smartphone, Bluetooth) Oxygen saturation - Devices are generally valid 

- Improvement during exercise required

- Chest-mounted electrode array
- Finger-mounted photoplethysmography
- Camera-mounted distance photoplethysmography
- Upper-abdomen-mounted triaxial accelerometer
- Chest-worn pressure-sensor pad

RR - Devices are generally valid
- May underestimate the RR
- Further test for reliability required

Digital stethoscope with AI67 - ClinicloudTM digital stethoscope
- LittmanTM 3200 electronic stethoscope
- Neural network-based AI algorithm

Lung sounds - ‌�Performance and generalizability of AI 
algorithm demonstrated

- Device-dependent differences may exist
- More digital stethoscopes are now available

Non-diaphragm stethoscope68 - Diaphragm-less acoustoelectric transducer Lung sounds - Clinical application study required

Home-based spirometry69,70 - ‌�Mobile spirometry system (AioCare®, 
MIR Spirobank Smart)

FVC, FEV1 - Safety, feasibility and validity demonstrated

Integrated solution72 - Inhaler adapter
- Indoor air quality monitor
- Portable spirometer
- Fitbit Charge HR
- myAirCoach app

Inhaler technique
Indoor air quality
FEV1

Physical activity
Integrated data

- Self-management of asthma achieved 
- Limited number of participants

AI, artificial intelligence; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; HR, heart rate; PEF, peak expiratory flow; RR respiratory rate.
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door allergens, while PM2.5 levels were positively associated 
with indoor allergens.77 Vimercati, et al.78 investigated allergic 
diseases among traffic wardens as compared to a control group 
of administrative employees. The study found that 60% of traffic 
wardens were positive to clinical allergological tests, and half of 
them were diagnosed with allergic diseases. 

In nonallergic asthma, Th2 inflammation is often observed 
in lungs with eosinophilia and nasal polyps, while neutrophilic 
inflammation is also observed in severe asthma or steroid-re-
sistant asthma with increased IL-17 in airway epithelial cells.79 
Mice exposed to diesel exhaust particles (DEP) and house dust 
mites showed markedly enhanced airway hyper-responsive-
ness, with mixed Th2 and Th17 responses. Children with asth-
ma exposed to high DEP had higher serum IL-17 levels com-
pared to those exposed to low DEP.80

Effects of environmental exposure on COPD
Outdoor air pollution may increase airway inflammation and 
deteriorate lung functioning for the long term, leading to the 
development of COPD in the general population. The hazard-
ous effects are more prominent in COPD patients who already 
experience chronic airway inflammation and air flow limita-
tion. A meta-analysis reported an 11% increased pooled preva-
lence risk of COPD due to exposure to high levels of PM.81 
Long-term exposure to air pollution, from industrial sources 
and traffic, has been demonstrated to worsen lung function 
and respiratory health in middle-aged women. The OR for the 
association of COPD and living close to busy roads has been 
reported to be significantly high (OR=1.79).82

Higher outdoor pollution increases the mortality of COPD 
patients. Another meta-analysis reported a 3% higher risk for 
COPD deaths due to outdoor air pollution.81 Hospital and 
pharmaceutical data indicated that the mortality associated 
with PM10 was five times higher in COPD patients compared to 
non-COPD patients. Moreover, elevated PM2.5 and NO2 also in-
creased mortality among COPD patients.83 

Even indoor pollutants have been linked with AECOPD. A 
longitudinal study by Hansel, et al.84 reported that indoor pol-
lutant exposure, including PM2.5 and NO2, was associated with 
increased respiratory symptoms and risk of exacerbation among 
moderate to severe COPD patients in the Baltimore area. A fur-
ther meta-analysis reported that a 10 mcg/m3 increase in PM10 
could be associated with a 2.7% increase in COPD hospitaliza-
tions, with an OR of 1.03, and a 1.1% increase in COPD mortal-
ity, with an OR of 1.01.85

In 16 cities across Canada, high hourly ozone concentrations 
were found to be positively associated with hospital admissions 
for respiratory issues, including COPD, in the following days. 
As ozone increases by 30 ppb, the relative risk for hospitaliza-
tion varied from 1.024 to 1.043.86 This consistent relationship 
between environmental exposure and COPD suggests that the 
prediction of AECOPD and management of environment expo-
sures may play an important role in respiratory healthcare for 

COPD patients.

Personal environmental exposure and 
digital technology
The concept of the exposome was developed to draw attention 
to the critical need for more complete assessment of environ-
mental exposure in epidemiological studies.87 Individuals are 
simultaneously exposed to multiple environmental stressors 
during their daily lives.88 Personalized risk stratification of en-
vironmental exposure is important to predict the adverse ef-
fects of pollutants on health, according to the exposome con-
cept. However, most studies have depended on small numbers 
of fixed air-quality monitoring sites, while people spend most 
of their time indoors. Therefore, developing a wearable device 
that tracks personal microenvironments is important. Although 
various types of sensors have been introduced, few combined 
technologies or systems using exposure-measurement sen-
sors and other detectors have been developed.

For long-term, continuous monitoring of wellness status and 
relevant environmental factors of those with respiratory prob-
lems, Dieffenderfer, et al.89 presented a system that consists of a 
wristband, a chest patch, and a handheld spirometer. The am-
bient ozone concentration, temperature, and relative humidity 
were measured. The heart rate was assessed via photoplethys-
mography and electrocardiography; the respiratory rate via 
photoplethysmography, skin impedance, three-axis accelera-
tion, and expiratory airflow; and wheezing via a microphone. 
The data from each sensor were continually streamed to a pe-
ripheral data-aggregation device and were subsequently trans-
ferred to a dedicated server for cloud storage.89

Wearable camera technology has recently been used in health 
studies to assess physical activity, nutrition, and the environ-
ment.90-92 Since previous studies have usually depended on par-
ticipants’ motivation and memory to acquire information, they 
are potentially biased. Salmon, et al.90 reported on wearable 
cameras in combination with a personal PM2.5 monitor. Micro-
environmental data derived from wearable cameras provided 
locations and activities that influenced personal PM2.5 exposure. 
This technology is also valuable to track and measure personal 
exposure to urban greenery both scientifically and efficiently. A 
wearable camera can automatically and passively record abun-
dant imagery of an individual’s exposure to greenery, which to-
gether with the technology of image detection helps clarify the 
role of greenery during individual lifelogging.91

Mallires, et al.93 developed a commercial wrist-worn device 
that monitors ozone, total volatile organic compounds (VOC), 
temperature, humidity, and the activity level of users at 1-min-
ute intervals. The data can be either stored locally or trans-
ferred via its Bluetooth module to a centralized database. The 
device provides a research tool for epidemiologists to study how 
asthma triggers and their combinations exacerbate respiratory 
symptoms. An eventual goal is to provide real-time feedback 
and warnings to the user.93
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To collect personal exposure data, wearable sensors to gath-
er local and personal concentrations of environmental stress-
ors are essential. Despite the advantages of wearable devices 
compared to static devices, data accuracy is a major issue to 
be assessed before their utilization in applied research proj-
ects.94,95 However, easily usable devices can improve wearing 
compliance, operator satisfaction with the participants, and the 
overall success of an exposure study.95 Smartphone software 
can fully integrate sensor data processing, storage, and visual-
ization. 

Current status for environmental exposure and digital 
health management in airway disease
Acute exacerbation is directly linked with higher disease bur-
den, increased medical expenses, and mortality in chronic 
airway diseases. Therefore, lowering the severity and cases of 
exacerbation are the main goals of relevant treatments. In or-
der to prevent exacerbation and detect it early, predicting it is 
necessary. 

As previously described, several studies have developed 
prognostic and predicting models for exacerbation of chronic 
airway diseases, but they can only predict upcoming exacerba-
tion within short and long-term follow-up periods.44,45 These 
prediction models do not reflect patients’ real-time health sta-
tus, and they can only guide physicians toward future treat-
ment and healthcare. Moreover, physicians can only assist pa-
tients after the patients utilize healthcare and medical services. 

Therefore, self-management at home is required to assure 
real-time and consistent symptom monitoring and manage-
ment, and it is important to educate patients on the same and 
provide them with action plans.96,97 However, self-management 
may result in inconsistent quality of management, and limit 
medication changes and modifications. Therefore, objective 
and systematic guidance, including lifestyle and behavioral 

modifications, should be provided by evaluating and collecting 
real-time health and environmental exposure data. These med-
ical approaches can be established by combining recent tech-
nologies from mHealth, personal measurements of environmen-
tal exposure, wearable devices, and ML prediction models.

Hurst, et al.98 reported that composite heart rates and oxy-
gen saturation scores distinguished exacerbation onset from 
symptom variations, potentially facilitating prompt therapy for 
ambulatory patients with stable, moderate, and severe COPD. 
However, day-to-day variations of heart rate and oxygen satura-
tion were recorded by patients only at certain daily times. Wu, 
et al.45 recently developed an early AECOPD prediction system 
using wearable devices and smartphone apps, in order to study 
the patients’ lifestyle factors, environmental factors, and medi-
cal questionnaires. For 7-day AECOPD prediction, the devel-
oped predictive model achieved an accuracy of 92.1%. They also 
found that physiological and environmental data were more 
powerful predictors than questionnaire data. However, in this 
prediction model, environmental data collection was spatially 
restricted to the participants’ bedrooms. To overcome this lim-
itation, tracing the patients by GPS functions and linking with 
environmental open public data, or measuring personal expo-
sure using personal air-sensors, would be the next steps.

Future directions for personal air pollution 
exposure-response assessment and airway disease 
management
To facilitate early detection and prompt treatment of acute ex-
acerbation of chronic airway diseases in response to environ-
mental exposures, real-time data collection of environmental 
exposure, personal position tracking, and physiological and 
symptomatic changes in patients is required. Fig. 1 illustrates 
the conceptual architecture of how combining air sensors for 
measuring personal exposure, wearable devices for detection 

Air sensor

User

Warning

Wearable 
device

Smartphone

Modeling

Prediction of 
exacerbation

Action plan on smartphone app

• Self-management  
• Life-style modification

• Personal exposure

• Vital signs

• Physical activity

• GPS tracking

• Health status questionnaires

Fig. 1. Concept of exacerbation prediction in airway diseases using air sensors, wearable devices, and smartphone applications. GPS, global positioning 
system.
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of change in vital signs, smartphone apps for GPS tracing and 
medical questionnaires, and prediction algorithms can improve 
real-time prediction simultaneously with personal air pollution 
exposure. 

Although the data collected in each domain is distinct from 
other domains, interactions between the different domains are 
expected in the development of prediction models. For exam-
ple, personal air pollution exposure is not just measured by air 
sensors, but it also depends on changes in vital signs such as 
heart rates or respiratory rates collected by wearable devices. 
As patients inhale more frequently, the effects of air pollution 
may increase. Current health status data collected by question-
naires on smartphone apps may also influence the effects of 
personal exposure. The effects of air pollution exposure may 
differ in patients with different severities of airflow limitation, 
or different experiences of previous exacerbations.

The PURE-AIR is a representative study for integrating smart-
phones, air sensors, and air models to investigate associations 
between air pollution and cardiopulmonary diseases.22 An ul-
trasonic personal air sampler was used to measure personal 
exposure, and GPS data were collected through a smartphone 
app.99 However, this study primarily built exposure models for 
cardiopulmonary disease events in a large general population. 
Das, et al.100 developed a smartphone-based real-time VOC 
sensor using fluorescence spectroscopy. However, only a range 
can be reported in the case of unknown VOC mixtures, and only 
VOC concentrations above 50 ppm can be detected. 

Once the exacerbation of chronic airway diseases can be 
predicted by prediction models using health status question-
naires and real-time personal exposure and health data, self-
management and lifestyle modification action plans can be 
suggested for patients through a variety of resources, including 
smartphone apps.

As we reviewed in this study, the impact of air pollution on 
health is closely related with the integration of pollution-peo-
ple-place-time. The Center for Digital Biomarkers Research in 
Korea is developing a personalized service model for manag-
ing the exposure to environmental risk factors among vulner-
able individuals, in which patients with chronic airway diseas-
es are also included. This research center is supported by the 
Korea Environment Industry and Technology Institute (KEITI) 
and funded by the Korean Ministry of Environment. They plan 
to develop a real-time prediction model for airway disease exac-
erbations, integrating the previously introduced four domains, 
in order to suggest the aforementioned personalized self-man-
agement plans. 

CONCLUSIONS

Extensive research has demonstrated that air pollution expo-
sure is associated with adverse health outcomes. In particular, 
symptoms of chronic airway diseases are heavily affected by 

environmental exposure; hence, patients experiencing these 
diseases are categorized as populations vulnerable to environ-
mental exposure. Therefore, their health management should 
not be limited to the utilization of medical services, but should 
be extended to encourage self-management at any time and at 
any place. Currently, highly developed technologies that are 
available provide the possibility of approaching individualized 
management of chronic airway diseases in real time by com-
bining the capacities of air sensors, wearable devices, smart-
phone apps, and prediction models. However, as environmen-
tal research continues to advance technologically, there is also 
a growing need for establishing policies for personal informa-
tion protection.
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