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INTRODUCTION

Rupture of an intracranial aneurysm is a major cause of nontrau-
matic subarachnoid hemorrhage, with an annual rupture risk 
of approximately 1%, and is associated with a high risk of mor-
bidity and mortality.1,2 Therefore, identification and risk strati-

fication of intracranial aneurysms before rupture are clinically 
crucial and represent an active field of investigation.3,4 

Time-of-flight (TOF) magnetic resonance angiography (MRA) 
is the preferred modality for identifying unruptured intracranial 
aneurysms in asymptomatic patients; this is not only because 
there is no risk of exposure to ionizing radiation or contrast agents, 
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but also because it shows high diagnostic performance for intra-
cranial aneurysm detection.5,6 However, a dramatic increase in 
the number of radiologic examinations, coupled with a relative 
shortage of experienced neuroradiologists and the resultant ex-
cess workload, is a valid concern as it might lead to the missing 
of unruptured intracranial aneurysms.7,8

In this context, computer-aided diagnostic (CAD) systems, 
which help improve the interpretation accuracy of radiologists 
by providing a second opinion, are considered to be one of the 
possible options.9 Moreover, along with recent advances in the 
field of deep learning, several studies have evaluated deep learn-
ing algorithms in terms of their applicability as a CAD algorithm 
for intracranial aneurysm detection on TOF MRA.10-14 These stud-
ies achieved high detection sensitivities and proved that deep 
learning algorithms were useful as a supportive and comple-
mentary tool for reducing the number of missed aneurysms. 
However, to achieve such a high sensitivity, these algorithms 
showed substantially high rates of false-positive detection. The 
high rate of false-positive detection may potentially hinder ra-
diologists from using CAD systems; they may not use these sys-
tems if distinguishing true-positive aneurysms from false-posi-
tive aneurysms requires additional meticulous care.9

Previously, we investigated a deep learning model for auto-
mated detection and localization of intracranial aneurysms on 
TOF MRA and validated its high sensitivity and specificity in in-
ternal and external test sets.15 However, similar to other previous 
studies, the study was also suboptimal for the systematic eval-
uation of the performance of the algorithm, as it used an arbi-
trarily chosen number of test data. 

Therefore, the primary endpoint of this study was to investi-
gate whether a deep learning model for automated detection of 
unruptured intracranial aneurysms on TOF MRA can achieve 
a target diagnostic performance comparable to that of human 
radiologists for approval from the Korean Ministry of Food and 
Drug Safety (MFDS) as an artificial intelligence-applied soft-
ware. For this purpose, we performed a clinical trial designed 
according to the guidance of the Korean MFDS. 

MATERIALS AND METHODS

This single-center, retrospective, confirmatory clinical trial was 
approved by the Institutional Review Board of Severance Hos-
pital, Yonsei University Health System (1-2019-0053). The re-
quirement for informed consent was waived.

Target performance and sample size estimation
The evaluation of target performance and sample size estima-
tion were performed by a statistical expert, who is one of the au-
thors of this study. The MFDS suggested that the target perfor-
mance for approval should be set higher than that in recently 
published articles. The inclusion criteria for the reference arti-
cles were as follows: 1) reports regarding sensitivity and speci-

ficity of clinicians for intracranial aneurysm detection, 2) results 
of TOF MRA, and 3) results of patient-wise analysis.6,16-19 Five 
published articles met the criteria for the references for deter-
mination of target performance. Based on the list of references, 
the mean sensitivity was 88.1%, and the mean specificity was 
93.7%. In addition, half of the 95% confidence intervals (CIs) of 
the sensitivities and specificities were 1.4%–18.0% and 3.6%–
26.5%, respectively (Supplementary Table 1, only online). There-
fore, the target sensitivity and target specificity were set as 87% 
and 92%, respectively. Also, the marginal error for sensitivity and 
specificity were set as 6% and 4%, respectively.

Taking the target performance and a 10% dropout rate into 
account, the required number of examinations was calculated 
as 135 for aneurysm-containing examinations and 197 for an-
eurysm-free examinations by using a sample size calculation 
formula.20

Training set
Six hundred TOF MRA examinations of unruptured intracrani-
al aneurysms in patients without a history of surgical clipping, 
coil embolization, or stent insertion were randomly extracted 
from our hospital database based on radiologic reports from 
January 2014 to December 2016. Twelve examinations were ex-
cluded due to pronounced artifacts or poor image quality (n=5), 
fusiform aneurysm (n=3), and junctional dilatation (n=4). Of 
the final 588 examinations, 468 examinations were randomly 
assigned as the training set, which were also randomly assigned 
to training data and validation data for hyperparameter tun-
ing with a ratio of 9:1. These TOF MRA examinations had been 
performed using both 1.5-T (Achieva, Philips Medical Systems, 
Best, The Netherlands) and various 3-T scanners (Achieva and 
Ingenia, Philips Medical Systems; Trio Tim, Siemens, Erlangen, 
Germany; Discovery MR750, GE Healthcare, Waukesha, WI, 
USA). The details of the training set have been reported in our 
previous research (Fig. 1).15

Test set
For the test set of this study, intracranial TOF MRA examina-
tions that were performed after January 2018 were extracted 
from our institution in consecutive order, which were tempo-
rally separate from the training data set. The inclusion criteria 
for aneurysm-containing examinations were as follows: 1) >18 
years of age; 2) TOF MRA performed using 1.5-T or 3-T scan-
ners; and 3) untreated unruptured intracranial aneurysms on 
radiologic report. The exclusion criteria for aneurysm-contain-
ing examinations were as follows: 1) non-saccular aneurysm, 
such as mycotic aneurysm, dissecting aneurysm, or pseudoa-
neurysm (n=8); 2) giant aneurysm, which is larger than 25 mm 
in diameter (n=0); 3) ruptured aneurysm (n=0); 4) significant 
displacement of the intracranial vascular structure due to in-
tracranial hemorrhage or tumor (n=1); 5) pronounced artifacts 
(n=4); 6) equivocal aneurysm cases in which consensus among 
three neuroradiologists (JBO, CJH, and CHS with 2, 11, and 15 
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years of experience in neuroradiology, respectively) on the num-
ber and location of aneurysms was not reached (n=28). Finally, 
135 aneurysm-containing examinations were eligible for in-
clusion in the test set. 

For the aneurysm-free examinations in the test set, 197 an-
eurysm-free TOF MRA examinations, which were taken from 
January 2018 to June 2019, were randomly extracted based on 
radiologic reports from our institution. The three neuroradiol-
ogists reviewed the recruited examinations and reached a con-
sensus that these examinations did not display any discernible 
aneurysm, significant vascular steno-occlusion, any significant 
structural abnormalities, such as intracranial hemorrhages and 
tumors, or pronounced artifacts. Finally, the test set consisted 
of 135 aneurysm-containing examinations and 197 aneurysm-
free examinations. All data were made anonymous (Fig. 1).

TOF MRA data acquisition
All examinations were performed using both 1.5-T (Achieva) 
and 3-T scanners (Achieva and Ingenia; Trio Tim; Discovery 
MR750). The number of examinations according to the differ-
ent scanners in both the training set and test set is shown in 
Supplementary Table 2 (only online).

The following parameters were used for the 3D TOF MRA. 
For 3-T scanners: repetition time (TR), 20–24 ms; echo time 
(TE), 3.4 ms; flip angle, 18–20°; field of view (FOV), 200–250 mm; 
section thickness, 0.5–0.7 mm; and matrix, 384×310–880×637. 
For 1.5-T scanners: TR, 24 ms; TE, 6.9 ms; flip angle, 20°; FOV, 
220 mm; section thickness, 0.6 mm; matrix, 576×440. 

Model development
After our previous research was reported,15 we developed a new 
model that hierarchically reduces the search space by leverag-
ing prior knowledge of the cerebral vessel morphology using the 

same training set. For the training set, manual segmentation for 
each aneurysm was performed by two radiologists (JBO, SBS) 
in a voxel-wise manner using in-house software (DEEP:PHI, 
DEEPNOID) and validated by another radiologist (SSA, 15 years 
of experience in neuroradiology). Model training was performed 
using the aneurysm segmentation as the ground truth mask.

Our model consisted of three stages. First, TOF MRA images 
were preprocessed by following steps: resampled to a fixed vox-
el size of 0.5×0.5×0.5 mm3, cropped around the center of the 
brain to a size of (320, 320, 140), and performed the Z-score nor-
malization. Automated vessel segmentation was conducted to 
the preprocessed MRA images using both the region growing 
method and Otsu thresholding method.21 By applying the 3D 
skeletonization algorithm to the segmented vessel, volume of 
interests (VOIs) were extracted around each skeleton point with 
a patch size of (32, 32, 32) and a voxel size of 0.5×0.5×0.5 mm3. 
Approximately 2000 VOIs were extracted for each TOF MRA ex-
amination. Next, we selectively suppressed aneurysm-free VOIs 
by determining whether each VOI contains intracranial aneu-
rysms. We used a deep learning algorithm of 3D ResNet that 
maps from the VOIs to binary values.22 If the intersection over 
union (IOU) between an aneurysm mask and a VOI was 80% or 
greater, the VOI was annotated as positive for intracranial an-
eurysms. In contrast, if the IOU was 20% or less, the VOI was an-
notated as negative. The other cases were excluded. To train the 
3D ResNet, we used the following parameters: 200 epochs, batch 
size of 32, without dropout, RMSProp optimizer, learning rate 
of 0.001, and loss of binary cross entropy. Finally, another deep 
learning algorithm of 3D Unet was trained to locate intracranial 
aneurysms in the aneurysm-containing VOIs.23 For the 3D Unet, 
we used the following parameters: 150 epochs, batch size of 64, 
without dropout, RMSProp optimizer, learning rate of 0.001, and 
loss of binary cross entropy. Model training was performed us-

Fig. 1. Flowchart of datasets. TOF, time-of-flight; MRA, magnetic resonance angiography.
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ing Tensorflow r1.15 on a single GPU server with 512 GB RAM 
memory, Xeon E5–2640 v4 CPU (Intel), and TITAN Xp (NVID-
IA). Based on this patch-wise segmentation algorithm, we ob-
tained the 3D locations of intracranial aneurysms on TOF MRA 
images. We reduced false-positive detection by discarding an-
eurysms that had a probability value lower than the cutoff val-
ue of 0.5. The model finally presented a 1.6×1.6×1.6 cm3-sized 
bounding box that was expected to contain an aneurysm on 
TOF MRA images. If the algorithm predicted that there was no 
aneurysm on the examination, no bounding box was presented. 
Flow charts of the model pipeline are shown in Fig. 2. The struc-
ture of the modified 3D ResNet and 3D Unet algorithms used 
in this study is shown in Supplementary Table 3 (only online).

Model evaluation
For the test set, manual segmentation for each aneurysm was 
performed by two neuroradiologists (JBO, CJH) and validated 
by another neuroradiologist (CHS). These segmentation masks 
were used as the ground truth for the evaluation of model per-
formance.

Two authors (WSY, KHY) who had not been involved in the 

ground truth annotation evaluated model performance in the 
test set that was randomly shuffled. The sensitivity and speci-
ficity were evaluated using a patient-wise method. For a case to 
be classified as a true-positive, the model had to present bound-
ing boxes including all aneurysms in an aneurysm-containing 
examination. If the model missed any aneurysm in an aneu-
rysm-containing examination, the case was classified as a false-
negative. Conversely, if the model presented any bounding box 
in an aneurysm-free examination, the case was classified as a 
false-positive. If the model identified all presenting aneurysms 
but showed additional bounding boxes where there was no 
aneurysm, the case was still classified as a true-positive, but the 
false-positive detection was separately recorded. A true-nega-
tive was defined as a case in which the model presented no 
bounding box in an aneurysm-free examination.

Statistical analysis
The patient-wise sensitivity and specificity of the model were 
analyzed to determine if the model achieved the target sensi-
tivity and specificity. The lesion-wise sensitivity and false-pos-
itive detection rate per case were also analyzed. A subgroup 

VOI proposal

3D-TOF MRA

Positive VOI

Aneurysm segmentation

VOI

Vessel segmentation

Aneurysm-free suppression

Negative VOI
(aneurysm-free)

Positive VOI
(aneurysm-containing)3D ResNet

3D Unet CNN
Prediction Detected aneurysms

VOI extraction
A

B

C

Fig. 2. Pipeline of the model. (A) After automated vessel segmentation and 3D skeletonization, approximately 2000 VOIs were extracted around each skel-
eton point for each TOF MRA examination. (B) For each VOI, a deep learning algorithm of 3D ResNet determined whether each VOI contains intracranial 
aneurysms or not. (C) Another deep learning algorithm of 3D Unet was applied to the resultant VOIs which were expected to contain intracranial aneu-
rysms to predict the location of intracranial aneurysms. The model finally presents a 1.6×1.6×1.6 cm3 sized bounding box expected to contain an aneu-
rysm on TOF MRA images. VOI, volume of interest; TOF, time-of-flight; MRA, magnetic resonance angiography.
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analysis was additionally performed in relation to the location 
and size of aneurysms. The median size difference between the 
detected and missed aneurysms was compared using the Mann–
Whitney U test. Statistical analyses were performed using Med-
Calc (version 9.3.6.0; MedCalc Software, Ostend, Belgium).

RESULTS

Dataset
The 135 aneurysm-containing examinations in the test set in-
cluded 168 aneurysms. The mean size of the aneurysms was 
3.24±1.12 mm (range: 1.40–7.50 mm). The sizes of 168 aneu-
rysms in the test set were as follows: 3 mm or less, 82; larger than 
3 mm and up to 5 mm, 74; and larger than 5 mm, 12. Among the 
aneurysm-containing examinations, 107 examinations with one 
aneurysm, 24 examinations with two aneurysms, three exam-
inations with three aneurysms, and one examination with four 
aneurysms were identified. The locations of the ground truth 
aneurysms were as follows: 12 aneurysms in the cavernous seg-
ment of the internal carotid artery, 106 in the paraclinoid inter-
nal carotid artery, 19 in the supraclinoid internal carotid artery, 
three in the bifurcation of the internal carotid artery, four in the 
M1 segment of the middle cerebral artery, 14 in the bifurcation 
of the middle cerebral artery, one in the M2 segment of the mid-
dle cerebral artery, four in the anterior communicating artery, 
one in the A2 segment of the anterior cerebral artery, and four 
in the basilar artery (Table 1). 

Diagnostic performance of the model
Of the 135 aneurysm-containing examinations, the numbers of 
true-positive and false-negative cases were 123 and 12, respec-
tively. In contrast, of the 197 aneurysm-free examinations, the 
numbers of true-negative and false-positive cases were 185 and 
12, respectively. Therefore, the sensitivity and specificity of the 
model were 91.11% (95% CI: 84.99, 95.32) and 93.91% (95% CI: 
89.60, 96.81), respectively. These values exceeded the target sen-
sitivity of 87% and target specificity of 92%, respectively. Also, 
the half width of the 95% CI of sensitivity and specificity were 
5.17 and 3.61, respectively, which were lower than the predeter-
mined marginal error of 6% and 4% for sensitivity and specific-
ity, respectively (Table 1). 

On lesion-wise analysis, the model correctly detected 155 out 
of 168 aneurysms, resulting in a lesion-wise sensitivity of 92.26%. 
The detection sensitivity was low for aneurysms 3 mm or smaller 
(84.15%, 69/82). On the other hand, the model showed a sensi-
tivity of 100% for aneurysms larger than 3 mm. Of the 168 an-
eurysms, 13 aneurysms from 12 examinations were missed by 
the model: seven aneurysms in the paraclinoid internal carotid 
artery, two in the cavernous segment of the internal carotid ar-
tery, two in the anterior communicating artery, one in the mid-
dle cerebral artery, and one in the basilar artery. The median 
size of the missed aneurysms was 1.92 mm (range: 1.40–2.56 

mm), which was significantly lower than that of the detected 
aneurysms (1.92 mm vs. 3.11 mm, p<0.0001). The model made 
41 false-positive detections: 14 detections from 12 aneurysm-
free examinations, and 27 detections from 22 aneurysm-con-
taining examinations. Hence, the overall false-positive detec-
tion rate per case was 0.123. The aneurysm locations in these 
false-positive detections were as follows: 11 aneurysms in the 
paraclinoid internal carotid artery, eight in the cavernous seg-
ment of the internal carotid artery, five in the bifurcation of the 
internal carotid artery, four in the anterior communicating ar-
tery, four in the internal carotid artery-posterior communicat-
ing artery, three in the basilar artery, 3 in the bifurcation of the 
middle cerebral artery, 2 in the M1 segment of the middle cere-
bral artery, and one in the posterior cerebral artery. One of the 
false-positive detections in the basilar artery turned out to be a 
persistent primitive trigeminal artery orifice, and another false-
positive detection in the anterior communicating artery was a 
fenestration rather than a true aneurysm. Examples of true-
positive, false-negative, and false-positive cases are shown in 
Figs. 3–5.

Table 1. Characteristics and Diagnostic Performance of the Model and 
Target Performance

Number of examinations
135 aneurysm-containing and 

197 aneurysm-free 

Number of aneurysms 168

Size of aneurysm, mm 3.24±1.12

Patient-wise sensitivity and specificity

Value
Target value

(marginal error)

Sensitivity
91.11 (123/135)

(95% CI: 84.99, 95.32)
87% (6%)

Specificity 
93.91 (185/197)

(95% CI: 89.60, 96.81)
92% (4%)

Lesion-wise sensitivity
Overall 92.26 (155/168)
According to the aneurysm size
≤3 mm 84.15 (69/82)
3–5 mm 100 (74/74)
>5 mm 100 (12/12)

According to the aneurysm location
Internal carotid artery 93.57 (131/140)
Middle cerebral artery 94.74 (18/19)
Anterior cerebral artery 100 (1/1)
Anterior communicating artery 50 (2/4)
Basilar artery 75 (3/4)

False-positive detection rate per  
  case

0.123 (41/332)

CI, confidence interval.
Data are presented as mean±standard deviation or %.
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DISCUSSION

In this confirmatory clinical trial, the results demonstrated that 

the primary endpoint was met: the deep learning model for de-
tecting saccular unruptured intracranial aneurysms on TOF 
MRA exceeded the target sensitivity of 87% and the target speci-

Fig. 3. True-positive case. Three aneurysms (arrow) at the left paraclinoid internal carotid artery, the bifurcation of the left internal carotid artery, and the 
bifurcation of the right internal carotid artery were noted on TOF MRA (A, D, G) and MIP image (C, F, I), respectively. The model correctly presented all the 
aneurysms (red box in B, E, H). A left persistent trigeminal artery was accidentally noted (arrowheads in I). TOF, time-of-flight; MRA, magnetic resonance 
angiography.

B

E

H

C

F

I

A

D

G
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ficity of 92%, by achieving a sensitivity of 91.11% and a specific-
ity of 93.91%. Also, the half width of the 95% CI of sensitivity and 
specificity were within the predetermined marginal error.

In this study, we proposed a hierarchical deep learning mod-

el that integrated 3D Unet and 3D ResNet, by leveraging prior 
knowledge of the intracranial vessel morphology. We reduced 
the search space by extracting only VOIs from near the vessels 
and applied 3D Unet to effectively detect intracranial aneu-

B

E

C

F

A

D

Fig. 4. False-negative case. A small aneurysm (arrow) at left paraclinoid internal carotid artery was noted on TOF MRA (A) and MIP image (C). Another 
small aneurysm (arrow) at the tip of the basilar artery was also noted on TOF MRA (D) and MIP image (F). The model correctly detected the left paracli-
noid aneurysm (red box in B). However, the model failed to detect the small aneurysm at the basilar artery (E). The bounding box shown on (E) was for the 
left paraclinoid aneurysm, which was clearly seen on other slices (B). Since the model failed to detect all of the aneurysms in this examination, this case 
was considered as false-negative. TOF, time-of-flight; MRA, magnetic resonance angiography; MIP, maximum intensity projection.

A B C

Fig. 5. False-positive case. A bulging contour at the right paraclinoid internal carotid artery was noted on TOF MRA (A). The lesion was not an aneurysm 
but the orifice of the ophthalmic artery (arrow), and it was clearly seen on MIP image (C). The model falsely presented the bulging contour at the orifice of 
the right ophthalmic artery as an aneurysm (red box in B). TOF, time-of-flight; MRA, magnetic resonance angiography; MIP, maximum intensity projection.
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rysms. Since this approach allowed us to drastically reduce the 
search space, it was possible to reduce the processing time to less 
than 1 minute. In addition, false-positive detection rate could 
be significantly reduced by suppressing aneurysm-free VOIs by 
using 3D ResNet. Furthermore, unexplainable factors, known 
as the “black box problems” of deep learning models, were min-
imized by making decisions only on the extracted VOIs instead 
of entire images and by representing bounding boxes where 
the model predicted intracranial aneurysms are located. This 
efficient and accurate model with 3D approach was in contrast 
with previous studies for automated detection of intracranial 
aneurysm on TOF MRA or CTA. Nakao, et al.10 used a 2.5D ap-
proach in which 9-direction of maximum intensity projection 
(MIP) images were applied to CNNs, resulting in the sensitivity 
of 94.2% with 2.9 false-positive detections per case. Ueda, et al.11 
reported at least four false-positive detections per case to ob-
tain the sensitivity of 90% and reported the sensitivity of 61.1%–
66.2% when the number of false-positive detections per case 
was reduced to one. Stember, et al.13 applied Unet to 2D MIP 
image to automatically determine the size of basilar tip aneu-
rysms. Recently, several studies have been reported to overcome 
the limitations of the 2D approach.12,24 For example, Sichter-
mann, et al.12 established deep learning systems that applied 
3D patches on TOF MRA at multiple scales. Although they dem-
onstrated a potential of 3D approach, however, the model took 
over 5 minutes for preprocessing and showed more than two 
false-positive detections per case to achieve the sensitivity of 
approximately 90%. 

The main purpose of using a CAD system is to avoid missing 
pathologic lesions and eventually reduce the workload of the 
radiologist.25 However, if the CAD system presents too many 
false-positive detections to achieve a certain level of sensitivi-
ty, checking those false-positive detections would increase the 
workload. Therefore, in order for a CAD system to be clinically 
useful, the standalone performance of the CAD system should 
be comparable to that of expert radiologists.26 In this context, 
we defined a true-positive detection as one in which the model 
correctly detected all presenting aneurysms on an aneurysm-
containing examination without missing any aneurysms. In 
addition, true-negative detection was defined as no presenta-
tion of bounding boxes on an aneurysm-free examination. Even 
though the definitions were strict, this model achieved high lev-
els of both sensitivity and specificity, which were comparable 
to those of human radiologists, while achieving a false-positive 
detection rate per case of 0.123. The high diagnostic performance 
with a low level of false-positive detection and the short process-
ing time of this model may facilitate an accurate and prompt 
diagnosis of intracranial aneurysms.

What makes this study more distinguishable is that a priori 
sample size calculation was conducted to obtain valid results. 
To date, the present study is the first to apply sample size esti-
mation in developing deep learning models for the detection of 
intracranial aneurysms on TOF MRA, ensuring the diagnostic 

performance in clinical settings.10-15 Based on the high diagnos-
tic performance in this confirmatory clinical trial, the present 
model obtained MFDS approval in South Korea.

The median size of the missed aneurysms by the model was 
significantly smaller than that of the detected aneurysms, which 
is in line with previous studies where deep learning models were 
applied for intracranial aneurysm detection.12,15 This tendency 
might be attributed to insufficient training data on these small 
aneurysms or a lack of consistency in differentiating aneurysm 
versus non-aneurysmal bulging contours in equivocal sizes. Of 
note, regarding the detection sensitivity according to the an-
eurysm location, the present model showed lower detection 
sensitivities for aneurysms in the anterior communicating ar-
tery and basilar artery, which were shown to be 50% (2/4) and 
75% (3/4), respectively. These low sensitivities in these areas 
might have proceeded from the small size of the missed aneu-
rysms, which were measured 1.40 mm and 1.92 mm in the an-
terior communicating artery and 1.91 mm in the basilar artery, 
as well as the small number of cases included in both training 
and test sets. Further investigation with more cases of small 
aneurysms and various aneurysm locations may be needed to 
improve the accuracy of the model.

During the determination of target sensitivity and specificity 
and the preparation of the test set, the aneurysm size was not 
primarily considered, except for giant aneurysms, which can 
hardly be missed by radiologists. On the other hand, TOF MRA 
data were included in consecutive order, without being select-
ed using size criteria, in order to reflect the real clinical settings. 
The resultant mean size of the aneurysms in the test set was not 
significantly different from the mean size of unruptured and 
untreated intracranial aneurysms from a previous study that an-
alyzed the natural course of unruptured intracranial aneurysms 
in South Korea.27 Nevertheless, given that the natural course 
and features might vary among different populations, further 
studies with various populations may be required.2,28

In addition to the retrospective study design, this study had 
several limitations. First, this study was conducted based on 
single-center data. Altough we included images from various 
scanners in this study, further study with external validation may 
be warranted. Despite recent advances in deep learning algo-
rithms, however, a fully generalized multi-center data-based 
algorithm does not exist. As one of the realistic approaches, this 
institution-specific model can be used under the supervision of 
radiologists. This institution-specific model has been integrat-
ed into the PACS system of our institution and is being partial-
ly used for further investigation. Second, giant aneurysms that 
were 25 mm or larger in size were excluded from the test set, 
even though there were no cases of giant aneurysms among 
candidates for the test set in this study. We thought that the in-
clusion of giant aneurysms would result in bias in model per-
formance due to their substantial rarity.29 Therefore, the per-
formance of this model for intracranial giant aneurysms is not 
guaranteed. Third, the model was validated only for saccular, 
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unruptured, and untreated intracranial aneurysms. Also, there 
were no cases of significant steno-occlusive lesions in both an-
eurysm-containing and aneurysm-free examinations of the test 
set. The performance of the model might be different in those 
conditions. Therefore, further studies are warranted to investi-
gate the model performance with inclusion of not only the afore-
mentioned conditions but also other vascular conditions such 
as ruptured aneurysm, vasculitis, vascular malformation, or dis-
section. Since these conditions are usually symptomatic, radi-
ologists can be informed in advance. However, this study was 
designed primarily for the surveillance of non-symptomatic an-
eurysms. Fourth, the ground truth annotation of aneurysms was 
conducted by a consensus of three neuroradiologists based not 
only on TOF MRA data but also on data from other examina-
tions (as additional references), such as CT angiography or DSA, 
only when they were available. DSA is currently considered to 
be the reference standard for the imaging of intracranial an-
eurysms. However, in real clinical practice, DSA is not always 
performed, except when a confirmatory diagnosis is needed or 
an endovascular treatment is considered, due to its invasive-
ness and procedure-related risks.30 Therefore, the inclusion of 
only intracranial aneurysms that were confirmed on DSA would 
have caused higher bias in this study. Fifth, this model used a 
patch-wise approach rather than original images, which may 
require a large amount of computation. Several approaches, 
such as parallel computing, sparse coding, or image compres-
sion, would be beneficial to deal with the computation efficient-
ly. Finally, a comparison of diagnostic performance between the 
model and human radiologists was not conducted in this study. 
We are planning to conduct a further study regarding this issue.

In conclusion, the present deep learning model for automat-
ed detection of unruptured intracranial aneurysms on TOF 
MRA met the primary endpoint by achieving the target diag-
nostic performance comparable to that of human radiologists. 
With the high standalone performance and the short process-
ing time, this model may be useful for making a correct diagno-
sis of intracranial aneurysms and for the eventual reduction of 
clinician workload.
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