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ABSTRACT

Recently, there have been impressive advancements in understanding of the immune 
mechanisms underlying cutaneous inflammatory diseases. To understand these diseases on a 
deeper level and clarify the therapeutic targets more precisely, numerous studies including in 
vitro experiments, animal models, and clinical trials have been conducted. This has resulted 
in a paradigm shift from non-specific suppression of the immune system to selective, 
targeted immunotherapies. These approaches target the molecular pathways and cytokines 
responsible for generating inflammatory conditions and reinforcing feedback mechanisms 
to aggravate inflammation. Among the numerous types of skin inflammation, psoriasis and 
atopic dermatitis (AD) are common chronic cutaneous inflammatory diseases. Psoriasis 
is a IL-17–mediated disease driven by IL-23, while AD is predominantly mediated by Th2 
immunity. Autoimmune bullous diseases are autoantibody-mediated blistering disorders, 
including pemphigus and bullous pemphigoid. Alopecia areata is an organ-specific 
autoimmune disease mediated by CD8+ T-cells that targets hair follicles. This review will give 
an updated, comprehensive summary of the pathophysiology and immune mechanisms of 
inflammatory skin diseases. Moreover, the therapeutic potential of current and upcoming 
immunotherapies will be discussed.
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INTRODUCTION

Inflammatory skin diseases, including psoriasis, atopic dermatitis (AD), autoimmune 
bullous diseases (AIBDs) and alopecia areata (AA), cause major health burdens, deterioration 
of quality of life, and are associated with various comorbidities. Conventionally, treatment 
of such skin conditions has focused on controlling symptoms with topical and systemic 
corticosteroids and other systemic immunosuppressants, which can not only cause 
dissatisfactory effects, but also occasionally cause serious adverse events.

Dysregulation of the cutaneous immune system leads to various pathogenic outcomes 
involving inflammatory immune cells and structural tissue cells. Further understanding of 
the molecular mechanisms and immune biology of cutaneous inflammatory conditions has 
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led to identification of the pathways and cytokines involved. These then become molecular 
targets for the development of immunotherapies including biologic agents that target 
specific cell-surface molecules or extracellular molecules. Furthermore, small molecule 
inhibitors can affect intracellular signaling by targeting receptor-associated kinases.

Herein, we present an overview of the molecular immune pathogenesis of inflammatory skin 
diseases, followed by discussion of approved immunotherapeutic agents and treatments 
currently under development.

PSORIASIS

Psoriasis is a chronic inflammatory skin disease that appears as demarcated erythematous 
plaques and silvery-scaled patches. The prevalence of psoriasis ranges between 0.1% and 
1.5% across countries (1). Skin lesions vary in size and can occur anywhere on the body, 
although they are usually located on buttocks, scalp, and extensor areas of knees and elbows. 
While these clinical features are observed in plaque psoriasis, the most common clinical 
type, other subtypes also exist, including guttate, erythrodermic, flexural, palmoplantar, 
nail, and pustular forms. Psoriasis can be associated with other diseases such as psoriatic 
arthritis, cardiovascular diseases, metabolic syndrome, inflammatory bowel diseases, and 
psychological disorders. Psoriatic arthritis occurs in approximately 20% of patients with 
psoriasis and presents as seronegative inflammatory arthritis in distal interphalangeal joints, 
dactylitis, and enthesitis (2).

Histologic findings of psoriasis typically include dermal infiltration of immune cells, 
including T cells and myeloid cells, under epidermal hyperplasia with neutrophil 
condensation. In addition, skin lesions in psoriasis patients improve after treatment with 
immunosuppressive drugs such as cyclosporine and methotrexate. These histologic and 
clinical findings provide insight into the pathogenic role of immune cells in this disease (3). 
Numerous immunologic, genetic, and clinical studies have highlighted the involvement of 
the IL-23/IL-17 axis and IL-17+ T cells, such as Th17 and Tc17 cells, in the central mechanisms 
of psoriasis (Fig. 1) (4-6). The importance of Ag recognition in function of the adaptive 
immune system is supported by the genetic susceptibility of HLA-C*06:02 in PSORS1 locus (7) 
and the presence of autoreactive and PD-1+ T cells in psoriatic skin (8-10). However, IL-23, a 
p19 and p40 heterodimer, is the most important stimulator of IL-17+ T cells in psoriasis. After 
the stimulation of IL-17+ T cells with IL-23, STAT3 is phosphorylated by JAK2 and Tyrosine 
kinase 2 (TYK2) and then induces the transcription factor RORγt. pSTAT3 and RORγt bind 
to IL17A and IL17F promoters and induce the expression of IL-17 (6). A recent study revealed 
that CD1c+CD14+ classical dendritic cell type 3 (cDC3) is the major source of IL-23 in psoriatic 
skin (11). Homodimers or heterodimers of IL-17A and IL-17F secreted by T cells primarily 
target keratinocytes in psoriatic skin, signaling through the IL-17RA-IL-17RC complex (12). 
IL-17-activated keratinocytes secrete chemokines (e.g., CCL20, CXCL1, and CXCL8) that 
attract CCR6+IL-17+ T cells, DCs, and neutrophils (13). This feedforward mechanism amplifies 
disease activity in psoriasis.

Current immunotherapies for psoriasis
For the evaluation of treatment efficacy in psoriasis, disease severity is measured using the 
Psoriasis Area and Severity Index (PASI), with 75%, 90%, and 100% reductions in PASI scores 
are referred to as PASI-75, PASI-90, and PASI-100, respectively.
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Although TNF inhibitors were initially approved as biologics for psoriasis (14), they show 
better therapeutic efficacy in psoriatic arthritis than psoriasis. Ustekinumab, an inhibitor 
of the p40 subunit shared by IL-23 and IL-12, was approved for the treatment of moderate 
to severe psoriasis (15). Since ustekinumab targets both Th1 and Th17 immunity, specific 
IL-23 inhibitors targeting the p19 subunit have subsequently been developed. Among p19 
inhibitors, guselkumab (70%–73% of PASI-90 at week 16) and risankizumab (75% of PASI-
90 at week 16) are superior to ustekinumab and are well tolerated (16-18). In parallel, IL-17 
inhibitors have also been developed for the treatment of psoriasis. Secukinumab (54%–59% 
of PASI-90 at week 12) and ixekizumab (68%–71% of PASI-90 at week 12) target IL-17A and 
have shown higher therapeutic efficacy than ustekinumab (18-20). Further, brodalumab, an 
anti-IL-17RA monoclonal Ab, showed 69%–70% PASI-90 at week 12, which is also superior to 
ustekinumab (18,21). IL-23 inhibitors are commonly used in severe psoriasis with or without 
mild psoriatic arthritis because of the convenient dosing interval, whereas IL-17 inhibitors 
are generally selected when patients have pronounced psoriatic arthritis or require rapid 
improvement (6).

https://doi.org//10.4110/in.2022.22.e7
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Figure 1. Pathophysiology of and immunotherapeutic agents for psoriasis. External environmental stress and trauma is a possible trigger of psoriasis, especially 
in individuals with genetic susceptibilities (e.g., PSORS1). This leads to the release of CCL20, CXCL8, and CXCL1, stimulating CCR6+IL-17+ lymphocytes, 
neutrophils, and IL-23+CD14+ DCs, respectively. Release of IL-17A and IL-17F via IL-17-producing cells (Th17, Tc17, and ILC3) results in the activation of the IL-17RA/
IL-17RC complex in keratinocytes, further feeding the inflammatory response. Production of IL-22 by ILC3 accelerates hyperproliferation of keratinocytes. DCs 
induce cytokines like IL-1β, TNF-α, and IL-23. IL-17-producing cells are stimulated by IL-23 through the JAK2/TYK2-STAT3 pathway. Ustekinumab targets the 
p40 subunit shared by IL-12 and IL-23, and guselkumab and risankizumab inhibit the p19 subunit of IL-23. Secukinumab and ixekizumab are inhibitors of IL-17A. 
Bimekizumab is a monoclonal antibody targeting IL-17A and IL-17F. Brodalumab is an inhibitor of IL-17RA. With respect to JAK signaling, deucravacitinib acts to 
inhibit TYK2, and brepocitinib inhibits TYK2 and JAK1 simultaneously.
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New immunotherapies for psoriasis
Bimekizumab, a monoclonal Ab targeting IL-17A and IL-17F, is a promising candidate for the 
treatment of psoriasis. In a phase 3 trial, bimekizumab was superior to secukinumab, showing 
86% PASI-90 at week 16 (22). In addition, several oral drug candidates target intracellular signal 
pathways in IL-17+ T cells. Binding of IL-23 to the IL-23 receptor in T cells induces IL-17 through 
the JAK-STAT signaling pathway and thus, JAK inhibitors have been developed for clinical use. 
Deucravacitinib, a TYK2 inhibitor, showed 75% PASI-75 and 43% PASI-90 at week 12 in a phase 
2 trial (23). Brepocitinib, a JAK1 and TYK2 inhibitor, was found to provide clinical efficacy in a 
phase 2 trial with 86% PASI-75 and 52% PASI-90 at week 12 (24). Although the clinical efficacy 
of JAK inhibitors is well established, the US Food and Drug Administration (FDA) recently 
expressed concern about an increased risk of serious heart-related events, thromboembolism, 
cancer, and death with these therapeutics (25). Thus, more clinical studies are warranted.

ATOPIC DERMATITIS

AD is a chronic, recurrent inflammatory skin disease characterized by recurrent eczema and 
severe itching (26). The prevalence of AD is increasing worldwide and in developed countries, 
it affects up to 20% of children and 2.1%–4.9% of adults (26). AD can arise at any time in 
a person’s life, but frequently occurs during early childhood. In recent years, its increasing 
incidence in the adult population has become a serious problem (27,28). Although genetic 
predisposition is significant in AD, environmental factors are also increasingly known to be 
of importance (29). AD patients have dry and sensitive skin, and suffer from severe itching 
arising from eczematous lesions in localized or diffuse areas of the body (30). In cases 
during infancy, edematous erythema and excoriations are widespread on the face and trunk, 
and the lesions become localized to flexural areas of dry skin and chronic lichenification in 
childhood. Adolescents and adult patients often present with focal eczema on eyelids, hands, 
and flexural areas (26). AD is also considered part of the atopic march that includes food 
allergy, asthma, and allergic rhinoconjunctivitis (31).

Although the exact pathogenesis of AD remains to be elucidated, it is thought to involve 
the interaction of three major mechanisms (Fig. 2): skin barrier defects, alterations in the 
skin microbiome, and Th2-biased immune dysregulation (26). Genetic predispositions 
such as filaggrin mutations and environmental factors disturb physiologic epidermal 
barrier function, and these dysfunctions contribute to the changes in the skin microbiome 
and immune system (26). In healthy individuals, Propionibacterium acnes and Staphylococcus 
epidermidis are abundant in the skin microbiome (32), and the skin commensal Staphylococcus 
spp. inhibits the growth of Staphylococcus aureus (33). In conditions of AD, however, 
colonization of S. aureus increases in the skin microbiome, promoting dysregulation of the 
skin barrier and immunity (34). In this review, we mainly focus on the skin immune system in 
the pathophysiology of AD.

Th2-mediated skin inflammation is considered a central pathway in AD. Ag uptake by 
Ag-presenting cells is increased through loose tight junctions in the AD epidermis (35). 
These Ags are derived from a variety of sources, including air allergens (e.g., house dust 
mite), food, and microorganisms (26). Keratinocytes also secrete TSLP, IL-25, and IL-33 
due to disruption of the epidermal barrier (36). Increased Ag exposure and signaling from 
keratinocytes activates Th2 cells to release IL-4, IL-5, and IL-13 and induce IgE production in 
B cells. IL-4 signals through the type I receptor IL-4Rα/CD132 and type II receptor IL-4Rα/IL-
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13Rα1. IL-13 shares the type II receptor with IL-4 and can bind to the IL-13Rα2 decoy receptor 
(37). Binding of cytokines to type I and type II receptors activates the JAK1/STAT6 pathway 
in hematopoietic and non-hematopoietic cells (37). These type 2 cytokines also cause skin 
barrier damage and increase the colonization of S. aureus (38). Barrier defects also induce 
keratinocyte production of IL-23, which leads to the activation of IL-23R expressing DCs 
triggering the Th22 immune response. In addition, CCR6+ Th22 cells promote epidermal 
hyperplasia and lichenification via the IL-22/IL-22R axis in chronic atopy (39).

Neuronal itch can be induced by the receptors for TSLP, IL-4, IL-13, IL-31, and IL-33 expressed 
on sensory neurons (40,41). Allergen-induced crosslinking of IgE activates granulocytes, 
including mast cells and basophils, via Fcε receptor I (FcεRI). Basophils recognize allergen-
specific IgE through FcεRI and then release leukotriene C4, which activates CysLTR2 in 
sensory neurons causing acute atopic pruritus (42,43).

https://doi.org//10.4110/in.2022.22.e7
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Figure 2. Pathophysiology of and immunotherapeutic agents for atopic dermatitis. Genetic predisposition and environmental factors induce barrier dysfunction. 
Further, change of surface microbiome diversity, especially decrease of S. epidermidis and increase of S. aureus, enhances barrier dysfunction and increases 
vulnerability of skin epidermis to external allergens. TSLP, IL-25, and IL-33 released from keratinocytes promote a type 2 response through ILC2, Th2 cells, and 
Tfh2 cells, which are induced from activated skin LCs and IDECs. IL-4, IL-13, and IL-5 are released from these lymphocytes. IL-4 and IL-13 activate type I (IL-4Rα/
CD132) and type II (IL-4Rα/IL-13Rα1) receptors on B cells, keratinocytes, and sensory neurons, resulting in activation of JAK-STAT pathways. Tfh2 cells induce IgE+ 
B cells, stimulating mast cells and basophils via FcεRI. AMPs (e.g., human β-defensin 3) are decreased in keratinocytes in response to IL-4 and IL-13. Neuronal 
itch is induced by IL-4, IL-13, IL-31, IL-33 and TSLP, and the itch-scratch cycle is intensified through the process. Type 2 cytokines also aggravate the imbalance of 
skin surface microbiota, and IL-5 recruits eosinophils, continuing the vicious circle. Dupilumab inhibits type I and II receptors by blocking IL-4Rα. Tralokinumab 
neutralizes IL-13 and nemolizumab inhibits IL-31R. Upadacitinib and abrocitinib are oral, selective JAK1 inhibitors, and baricitinib is an oral JAK1 and JAK2 
inhibitor. Topical agents ruxolitinib (a JAK1 and JAK2 inhibitor) and delgocitinib (a pan-JAK inhibitor) are approved treatments for atopic dermatitis.
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Current immunotherapies for AD
Conventional systemic management of AD consists of corticosteroids and 
immunosuppressants such as cyclosporine A and methotrexate (44). Topical treatment of AD 
includes corticosteroids and calcineurin inhibitors (26). However, patients with refractory 
AD respond poorly to conventional treatments, and long-term usage of systemic drugs 
carries a risk of side effects.

Recent discoveries in the pathogenesis of AD have enabled the development of biologics 
and small molecule therapies to target refractory cases. The Eczema Area and Severity Index 
(EASI) is used to measure disease severity in AD. EASI-75, EASI-90 and EASI-100 indicate 
reductions of 75%, 90%, and 100% in EASI scores, respectively (45). Currently, dupilumab, 
a human IgG4 monoclonal Ab blocking IL-4Rα, is the only systemic biologic approved by 
both the FDA and European Medicines Agency (EMA) (46). Various studies have shown that 
dupilumab (300 mg every 2 weeks, with a loading dose of 600 mg) is effective in relieving 
both pruritus and inflammation (47). There are no life-threatening safety concerns with 
dupilumab, while mild conjunctivitis occurred in 6.5% of patients (48). More than half 
of AD patients reached EASI-75 at week 16, and 36% of patients achieved EASI-90 at week 
16 with dupilumab (45). Tralokinumab, an EMA-approved human IL-13 neutralizing Ab, 
exhibited 33.2% of EASI-75 in a phase 3 study (11.4% of EASI-75 in the placebo group) (49). 
Upadacitinib is an EMA-approved oral JAK1 selective inhibitor. A phase 3 study showed that 
30 mg/d of upadacitinib is a safe and effective treatment option, with 80% of AD patients 
reaching PASI-75 at week 16 (50,51). In a randomized clinical trial comparing the efficacy and 
safety of upadacitinib and dupilumab, 71% of patients achieved EASI-75 with upadacitinib 
at week 16, whereas 61.1% of patients achieved EASI-75 with dupilumab at week 16 (52). 
Baricitinib, an oral JAK inhibitor that blocks JAK1/JAK2, is also approved by the EMA for 
patients with severe adult AD. EASI-75 was achieved in 24.8% of patients taking 4 mg/d of 
baricitinib for 16 weeks compared to 8.8% of patients in placebo group (53). The topical JAK1/
JAK2 inhibitor ruxolitinib is approved by the FDA for patients with mild to moderate AD, 
and 62% of patients (1.5% ruxolitinib cream, twice daily) achieved EASI-75 at week 8 (54). 
Delgocitinib is a topical pan-JAK inhibitor approved in Japan. In a phase 3 study, the change 
in EASI score was −44.3% in the delgocitinib group (0.5% delgocitinib ointment, twice daily) 
after 4 weeks of treatment, compared with a 1.7% increase in the vehicle group (55).

New immunotherapies for AD
Various biologics and small molecule therapies have shown promise for modulating clinical 
symptoms of AD. Nemolizumab is a monoclonal Ab that blocks IL-31RA and is known to 
alleviate itching and the severity of eczema. In a phase 3 study, the visual analogue scale 
score decreased by 42.8% in the nemolizumab group (60 mg every 4 weeks) compared 
to a decrease of 21.4% in the placebo group, and EASI score dropped by 45.9% in the 
nemolizumab group and 33.2% in the placebo group (56). Treatment with abrocitinib, a 
selective JAK1 inhibitor, resulted in 63% of patients reaching EASI-75 at week 12 with a daily 
dose of 200 mg (57), and is currently awaiting FDA approval.

AUTOIMMUNE BULLOUS DISEASES

AIBDs are a group of rare, life-threatening blistering diseases mediated by autoantibodies 
targeting proteins in desmosomes or hemidesmosomes of keratinocytes in epidermis. 
According to the location of blisters, AIBDs are divided into intraepidermal and 
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subepidermal types. Intraepidermal AIBD is called pemphigus, and bullous pemphigoid is 
the most common subepidermal AIBD.

Pemphigus
Pemphigus is characterized by suprabasal acantholytic blisters on skin and/or mucosa. 
Autoantibodies in pemphigus are directed against desmoglein 1 (Dsg1) and/or Dsg3, the 
cell-cell adhesion proteins of desmosomes (58). Pemphigus usually occurs between the ages 
of 50 and 60 years and is mainly classified as pemphigus vulgaris and pemphigus foliaceus in 
accordance with the major target Ags and clinical phenotypes. Pemphigus vulgaris caused by 
anti-Dsg3 autoantibody predominantly affects the oral mucosa, whereas pemphigus foliaceus 
induced by anti-Dsg1 autoantibody presents with superficial blisters on the skin but not the 
mucosa. These clinical differences between the two types of pemphigus are thought to be 
caused by the different expression patterns of Dsg1 and 3 in the oral mucosa and the skin (59). 
Moreover, the clinical features are similar to those of Dsg1- and 3-deficient patients (60,61).

Titers of anti-Dsg IgG autoantibodies positively correlate with disease activity (62) and 
pathogenic monoclonal antibodies from pemphigus patients are necessary and sufficient 
to cause acantholytic blisters (63). These autoantibodies mechanically interfere with the 
adhesion of Dsg and internalize Dsgs from the cell surface through various cellular signaling 
mechanisms (Fig. 3A) (64). Pathogenic autoreactive B cells are known to undergo somatic 
hypermutation in patients with pemphigus vulgaris despite the ability of some germline-
reverted monoclonal antibodies to bind Dsg3 (65,66). Affinity maturation and isotype 
switching in B cells requires help from T follicular helper (Tfh) cells. In the mouse model of 
pemphigus vulgaris, inducible costimulator-positive (ICOS+) Tfh cells are required for disease 
induction, and Dsg3-specific ICOS+ Tfh cells are associated with anti-Dsg3 Ab production 
(67). Furthermore, specific subtypes of circulating Tfh cells are associated with anti-Dsg3 
autoantibody production in peripheral blood of pemphigus vulgaris patients (67,68).

Current immunotherapies for pemphigus
Systemic corticosteroids and steroid-sparing immunosuppressive drugs such as 
mycophenolate mofetil are the main treatments for pemphigus; however, achieving clinical 
remission with these drugs alone takes a long time (69). Intravenous immunoglobulin 
can reduce pathogenic IgG autoantibody by various mechanisms, including activation of 
Fcγ receptor IIb (FcγRIIb) inhibitory receptor in B cells and saturation of the neonatal Fc 
receptor (FcRn), which prolongs the half-life of IgG. Intravenous immunoglobulin was 
found to significantly, but not dramatically, reduce disease activity and autoantibody titers 
in a randomized trial for pemphigus (70). Rituximab, a monoclonal Ab against the CD20 
Ag of B cells, depletes B cells and has been used to treat pemphigus since the 2000s (71,72). 
Rituximab was found to strikingly shorten the time to clinical remission and reduce the 
use of systemic corticosteroid significantly compared to mycophenolate mofetil (71,73). In 
a meta-analysis, clinical remission was found to be achieved 3 to 6 months after rituximab 
therapy in 75% of pemphigus patients (74). First-line treatment of rituximab (1,000 mg 
on days 0 and 14 and 500 mg at months 12 and 18) also showed favorable results (89% of 
complete remission and 24% of relapse) in a randomized trial (75).

New immunotherapies for pemphigus
Despite the fact that rituximab notably improves clinical outcome in terms of time to 
remission and use of systemic corticosteroids, the depletion of non-pathogenic B-cells 
increases the risk of serious infections (75,76). To overcome this problem, T cells expressing 
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Autoimmune bullous diseases
A BPemphigus Bullous  pemphigoid

Figure 3. Pathophysiology and immunotherapeutic agents of autoimmune bullous diseases. (A) In pemphigus, Tfh cells activate autoreactive B cells, which 
differentiate into antibody-producing cells generating pathogenic anti-Dsg1/3 autoantibodies. Autoantibodies circulate through vessels and relocate to the 
epidermal intercellular space. FcRn expressed on endothelial cells lengthens the half-life of IgG autoantibodies. Binding of autoantibodies to Dsg1/3 induces 
steric hindrance and enhances endocytosis, leading to loss of cell-to-cell adhesion of keratinocytes. Rituximab depletes autoreactive B cells by targeting 
cell surface antigen CD20. Rilzabrutinib and tirabrutinib are small molecule drugs that bind BTK in B cells and inhibit aberrant B-cell receptor signaling. Dsg3 
CAAR T cells specifically target and destroy Dsg3-specific B cells. ALXN1830 and efgartigimod shorten the half-life of antibodies by blocking FcRn. Intravenous 
immunoglobulin (IVIG) inhibits antibody-producing cells by activating the FcγRIIb inhibitory receptor and enhances the degradation of autoantibodies 
by saturating FcRn. (B) In BP, autoreactive B cells switch to become antibody-producing cells resulting in production of pathogenic anti-BP180/BP230 
autoantibodies which migrate to dermo-epidermal junction. IgG and IgE autoantibodies against BP180 promote complement activation leading to infiltration of 
granulocytes such as neutrophils and eosinophils into the dermis. Release of various proteases plays an important role in creating clefts and in blister formation. 
Along with pemphigus, rituximab depletes CD20+ B cells. IVIG saturates FcRn reducing the life span of autoantibodies, and suppresses antibody-producing 
cells by activating FcγRIIb. Omalizumab, a monoclonal antibody against IgE, can decrease the level of pathogenic IgE autoantibodies. Sutimlimab decreases 
complement activation at the dermo-epidermal junction.
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a chimeric autoantibody receptor (CAAR) composed of Dsg3 combined to CD137-CD3ζ 
signaling domains were developed (77). Preclinical data showed Dsg3 CAAR T cells 
specifically target and lyse Dsg3-specific B cells, thus preserving non-pathogenic B cells (78). 
Rilzabrutinib and tirabrutinib, oral Bruton’s tyrosine kinase inhibitors that inhibit B-cell 
activation, were found to decrease the dose of systemic corticosteroid needed and reduce 
disease activity in pemphigus vulgaris in a phase 2 trial (79,80). In addition, efgartigimod 
and ALXN1830, FcRn blocking antibodies, showed an early onset of clinical improvement in 
pemphigus patients in phase 2 trials (81,82).

Bullous pemphigoid
Bullous pemphigoid is the most common subepidermal AIBD clinically featuring pruritic 
tense bullae with erosions on the skin and/or mucosa. Target Ags of bullous pemphigoid are 
BP180 (bullous pemphigoid Ag 2; BPAG2) and BP230 (bullous pemphigoid Ag 1; BPAG1), 
which are the components of hemidesmosomes connecting basal keratinocytes to dermal 
structures. Several drugs such as dipeptidyl dipeptidase-4 inhibitors and immune checkpoint 
inhibitors (e.g., PD-1 and PD-L1 inhibitors) may be triggers for bullous pemphigoid (83,84). 
Bullous pemphigoid is thought to be associated with neurologic disorders including 
dementia, multiple sclerosis, and Parkinson’s disease (85). Because it preferentially occurs in 
older adults with comorbidities and requires long-term use of systemic corticosteroids and 
immunosuppressive drugs, patients with bullous pemphigoid have a higher mortality rate 
(approximately 20%) than healthy older adults (86).

IgG and IgE autoantibodies targeting the extracellular NC16A domain of BP180 (Fig. 3B) are 
associated with disease activity (87,88), and their pathogenicity was confirmed by the passive 
transfer of human autoantibodies to humanized or human skin-grafted mouse models 
(89,90). Complement activation and granulocyte infiltration are followed by the autoantibody 
deposition on the dermo-epidermal junction (91). These factors are known to contribute to 
blister formation (89-91). In addition to the presence of autoreactive B cells (92), dysfunction 
of regulatory B cells is observed in peripheral blood of patients with bullous pemphigoid (93). 
Additionally, a decrease in regulatory T cells might lead to disease since evidence of bullous 
pemphigoid has been found in Foxp3-deficient mice and humans (94-96).

Current and new immunotherapies for bullous pemphigoid
Bullous pemphigoid is mainly treated with systemic and topical corticosteroids and 
immunosuppressive agents (97,98). Dapsone and doxycycline can be applied as steroid-
sparing agents (99-101). Rituximab treatment showed remission at 5 months after treatment 
and increased survival rates over a long-term period (102). Intravenous immunoglobulin 
has also proven beneficial, but with limited therapeutic effects (103). Based on the existence 
of pathogenic IgE autoantibodies in bullous pemphigoid, omalizumab, a monoclonal Ab 
against IgE, has been reported to be effective for the treatment of bullous pemphigoid (104). 
However, clinical results are variable among patients because it cannot reduce pathogenic 
IgG autoantibodies (104). Sutimlimab, a C1s inhibitor, decreased complement deposition at 
the dermo-epidermal junctions in patients with bullous pemphigoid in a phase I trial (105).

ALOPECIA AREATA (AA)

AA, a chronic autoimmune inflammatory disease causing sudden hair loss, has a lifetime 
prevalence of 2% (106). It is characterized by patch-like distribution without scarring, often 

https://doi.org//10.4110/in.2022.22.e7

Immunopathology and Immunotherapy of Skin Diseases



10/20https://immunenetwork.org

in sharply defined areas, with dystrophic hairs called exclamation point hairs (107). There 
is a genetic predisposition for AA, and several studies have shown up to a 10-fold increased 
risk for first-degree relatives of AA patients (108). In the early stage of AA, the proportion 
of telogen hairs and dystrophic hair shafts increase before hair loss (109). Along with the 
disease progression, peribulbar inflammation takes place, and the hair follicles miniaturize 
leading to developmental arrest in the anagen phase (110). Affected hair follicles prematurely 
enter the telogen phase and undergo shortened cycles.

AA is known to be a T-cell-mediated inflammatory disease (Fig. 4). Normal anagen hair 
follicles are considered immune privileged sites with low expression of the MHC (111). This 
immune privilege is broken in AA lesions, where MHC I and II molecules in the hair follicles 
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Alopecia areata

Figure 4. Pathophysiology and immunotherapeutic agents of alopecia areata. In alopecia areata, NKG2D+CD8+ T cells infiltrate into the dermis and relocate to 
the hair follicle bulb. IL-15 is an important cytokine for pathogenesis of this disease through activation and proliferation of NKG2D+CD8+ T cells. The IL-15 receptor 
complex is composed of IL-15Rα expressed on follicular epithelial cells and CD122 and Fcγ on T cells, and trans-activates CD8+ T cells through multiple pathways 
including Ras-Raf-MEK-MAPK, PI3K-Akt-mTOR, and JAK1/3-STAT5 signaling. These pathways upregulate expression of KLRK1, encoding NKG2D, and IFNG. IFN-γ binds 
to the IFN-γ receptor on follicular epithelial cells and triggers JAK1/2-STAT1 signaling, thereby upregulating expression of MICA, ULBP3, IL15, and CXCR3. Ruxolitinib 
and baricitinib inhibit JAK1 and JAK2, and brepocitinib inhibits JAK1. Tofacitinib is a JAK1 and JAK3 inhibitor, and ritlecitinib is a selective JAK3 inhibitor.
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are increased with recruitment of CD8+ and CD4+ T cells and APCs (112). These features first 
gave rise to the concept that hair follicle autoantigens play a primary pathogenic role in AA. 
Several autoantigens in AA have been proposed so far, but the exact autoantigens remain 
elusive (113). In addition to TCR-mediated activation in T cells, a genome-wide association 
study suggests that a TCR-independent, natural killer group 2D (NKG2D)-mediated pathway 
is involved in the pathogenesis of AA (114). NKG2D+CD8+ T cells exert their cytotoxic 
functions on hair follicles through NKG2D, contributing to pathogenesis in the C3H/HeJ AA 
mouse model (115). In human AA, ligands of NKG2D, such as MICA and ULBP3, were found 
to be upregulated in the hair follicle (114,116), and NKG2D+CD8+ T cells were infiltrated into 
and activated in perifollicular areas (114,117).

IFN-γ and IL-15 are important cytokines involved in the pathogenesis of AA. IL-15 is known 
to upregulate NKG2D and drive TCR-independent activation in CD8+ T cells (118). In AA 
lesions, IL-15Rα and IL-15Rβ are upregulated in the hair follicle and CD8+ T cells, respectively, 
indicating that trans-presentation of IL-15 activates CD8+ T cells (115). After CD8+ T cells 
recognize IL-15, downstream signaling pathways, including JAK1/3-STAT5, MAP kinase, and 
mTOR pathways, are activated (118). Activated CD8+ T cells secrete IFN-γ which upregulates 
NKG2D ligands, MHC I and II, IL-15, and chemokine ligands of CXCR3 (e.g., CXCL9, 
CXCL10, and CXCL11) through the JAK1/2-STAT1 pathway in the follicular epithelium 
(119,120). These subsequent responses induce the recruitment, activation, and effector 
function of T cells, and this vicious cycle exacerbates inflammation in AA.

Current immunotherapies for AA
Currently, no treatment for AA has been approved by the FDA nor EMA, but various methods 
have been used for AA treatment (121). Severity of Alopecia Tool (SALT) score, indicating the 
rate of hair loss, is used to evaluate disease severity and treatment efficacy. Both systemic 
and local application of corticosteroids were found to be effective, but often resulted in 
limited curative rates of hair growth in moderate-to-severe AA. Cyclosporine, often used in 
combination with systemic corticosteroids, showed a hair regrowth rate of up to 76.6% (122). 
Methotrexate, alone or in combination with systemic corticosteroids, allowed full recovery 
in 64% of patients with alopecia totalis and universalis (123). Another treatment option for 
AA is topical immunotherapies such as diphenylcyclopropenone (DPCP) or squaric acid 
dibutylester, which induce delayed-type hypersensitivity (124). While the exact mechanism 
underlying the efficacy of this treatment is unknown, DPCP has shown a response rate of up 
to 72.2% for treatment of chronic and extensive AA (24).

New immunotherapies for AA
In treating AA, about 25% of patients are refractory to conventional therapy and 13.5-33% of 
patients recur (125). Recent studies suggest that blocking the JAK pathway could be an option 
for refractory AA (126). Currently, there are several oral JAK inhibitors for treatment of AA, 
including tofacitinib (JAK 1 and 3 inhibitor), ruxolitinib (JAK 1 and 2 inhibitor), baricitinib 
(JAK 1 and 2 inhibitor), ritlecitinib (JAK 3 inhibitor), and brepocitinib (Tyrosine kinase 2 and 
JAK 1 inhibitor). JAK inhibitors can affect both NKG2D+CD8+ T cells and follicular epithelial 
cells (115), interrupting the positive feedback loop involving IFN-γ and IL-15 (113,127,128). In 
a retrospective study of tofacitinib, 58% of patients with at least 40% scalp hair loss achieved 
greater than 50% change in SALT score over 4–18 months of treatment (129). In a comparative 
study, tofacitinib (20 mg twice daily) and ruxolitinib (5 mg twice daily) showed similar efficacy 
after 6 months of treatment (130). In a phase 2 trial, 51.9% of severe AA patients (SALT > 
50) taking 4 mg/d of baricitinib achieved SALT ≤ 20 at week 36, while 3.6% of the placebo 
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group achieved SALT ≤ 20 (131). In a phase 2a study of severe AA (SALT > 50), 50% of patients 
receiving ritlecitinib (200 mg/d for 4 weeks, then 50 mg/d for 20 weeks) and 64% of patients 
receiving brepocitinib (60 mg/d for 4 weeks, then 30 mg/d for 20 weeks) achieved a 30% 
improvement in SALT score (SALT30), while 2% of the placebo group achieved SALT30 (132).

CONCLUSION

Advancements in understanding of skin immunity and molecular pathogenesis have resulted 
in promising therapeutic approaches for refractory inflammatory skin disorders. Although 
glucocorticoids and traditional immunosuppressants persist as the most prevalent treatment 
methods, monoclonal antibodies targeting pathogenic cytokines and their receptors and 
small molecule inhibitors of cytokine signaling have recently arisen as potential solutions. 
Still, many inquiries remain unanswered and possible safety issues exist, especially in regard 
to the FDA’s latest drug safety communication on JAK inhibitors. With continuous research 
in the fields of dermatology and immunology, further understanding of the pathological 
mechanisms underlying distinct inflammatory disorders will be gained. Along with this, 
ongoing and future clinical trials will identify novel, more effective targeted immunotherapy 
approaches for cutaneous inflammatory conditions.
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