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Single-cell analysis of gastric pre-cancerous and cancer lesions
reveals cell lineage diversity and intratumoral heterogeneity
Jihyun Kim1,10, Charny Park 1,10, Kwang H. Kim2,10, Eun Hye Kim3,4, Hyunki Kim5, Jong Kyu Woo6, Je Kyung Seong6,7,8,11✉,
Ki Taek Nam2,11✉, Yong Chan Lee3,4,11✉ and Soo Young Cho 1,9,11✉

Single-cell transcriptomic profiles analysis has proposed new insights for understanding the behavior of human gastric cancer (GC).
GC offers a unique model of intratumoral heterogeneity. However, the specific classes of cells involved in carcinogenetic passage,
and the tumor microenvironment of stromal cells was poorly understood. We characterized the heterogeneous cell population of
precancerous lesions and gastric cancer at the single-cell resolution by RNA sequencing. We identified 10 gastric cell subtypes and
showed the intestinal and diffuse-type cancer were characterized by different cell population. We found that the intestinal and
diffuse-type cancer cells have the differential metaplastic cell lineages: intestinal-type cancer cells differentiated along the intestinal
metaplasia lineage while diffuse-type cancer cells resemble de novo pathway. We observed an enriched CCND1 mutation in
premalignant disease state and discovered cancer-associated fibroblast cells harboring pro-stemness properties. In particular,
tumor cells could be categorized into previously proposed molecular subtypes and harbored specific subtype of malignant cell with
high expression level of epithelial-myofibroblast transition which was correlated with poor clinical prognosis. In addition to
intratumoral heterogeneity, the analysis revealed different cellular lineages were responsible for potential carcinogenetic pathways.
Single-cell transcriptomes analysis of gastric pre-cancerous lesions and cancer may provide insights for understanding GC cell
behavior, suggesting potential targets for the diagnosis and treatment of GC.
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INTRODUCTION
Gastric cancer (GC) is the fourth most commonly occurring
human cancer and the second most common cause of cancer-
related deaths worldwide, despite the global decrease in its
incidence1. In general, GC incidence rapidly increases in the
elderly, with a divergent peak in the young ages2,3. According to
the Lauren classification, GC is divided into the intestinal and
diffuse types (IGC and DGC, respectively), and mixed-type GC is
very rare1. A carcinogenetic pathway for IGC driven by multiple
events has been proposed (Correa’s hypothesis) with chronic
superficial gastritis progressing into chronic atrophic gastritis
(CAG), intestinal metaplasia (IM), dysplasia, and ultimately
carcinoma1. However, atrophic changes have not been closely
correlated with DGC4, and the mechanism underlying DGC
development is poorly understood.
Recent studies incorporated in The Cancer Genome Atlas

(TCGA) and Asian Cancer Research Group (ACRG) revealed the
usefulness of next-generation sequencing for the molecular
classification of GC, and identified its prognostic significance in
independent cohorts5,6. Epigenomic and genomic studies on the
premalignant state of GC revealed distinctive patterns of gene
expression and DNA methylation, which can be used to
investigate carcinogenesis risk and progression markers for
patients with IM7–9. Systematic analysis of the tumor microenvir-
onment (TME) infiltrate patterns in 1524 patients with GC

revealed that TME phenotypes are correlated with genomic
characteristics10. Single-cell RNA sequencing (scRNA-seq) has
been used to characterize the heterogeneity of the GC cell
population and TME11,12. A inter- and intra-heterogeneity for TME
provide the transcriptional diversity with macrophages and
cytotoxic T cells13. Also, the intra-genomic heterogeneity in GC
provides the diversity of GC cell lineages in GC patients and 12-
gene signature appears to be fundamental to GC carcinogenesis
as it is not only highly prognostic in GC cohort but performed just
as robustly in several large scale localized GC cohorts14. However,
all of these high-throughput methods used to analyze tumor
plasticity have the limitations reproducing histopathology stages
for the Correa’s hypothesis, extending prior to GC molecular
subtypes in single cell resolution, and investigating inter-/intra-
heterogeneity for IGC and DGC.
Accordingly, the present study aimed to characterize the

cellular heterogeneity in GC by single cell transcriptome analysis.
To this end, we profiled the cancer cell landscape for adjacent
precancerous and GC lesions. We also evaluated the tumor
plasticity by analyzing cell populations of lineages categorized
according to the Lauren classification. Finally, we classified the
masked tumor cell signatures by single cell RNA sequencing
(scRNA-seq) and bulk sequencing to identify the molecular
markers of cell transition from the premalignant to malignant
states in gastric carcinogenesis (Fig. 1a).
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Fig. 1 Single-cell profiling of adjacent normal and gastric cancer tissues. a Overview of single-cell RNA-seq analysis of the adjacent non-
cancer (n= 24) and gastric cancer (GC) tissue (n= 24) from 24 patients. b t-Stochastic neighbor embedding (t-SNE) map of filtered
13,022 single cells in the adjacent non-cancer and cancer tissues. Colors represent cell types based on the expression of known marker genes:
endothelial cell (EC), enteroendocrine, fibroblast, gland mucous cell (GMC), intestinal metaplasia (IM), tumor cell, pit mucous cell (PMC). c t-SNE
plot showing the expression of marker genes for seven cell types. d t-SNE plot showing sub-clustering of IM cells: chief cells, goblet cells,
metaplastic stem-like cells (MSCs), PMC, proliferative cell 1 (PC1), and proliferative cell 2 (PC2). e t-SNE plot showing the expression of marker
genes for three cell types. PGC was highly expressed in chief cell (Supplementary Fig. 5b). f Pie charts represent the distribution of ten cell
types in the adjacent normal tissue and cancer lesion (left). Bar plots show the frequency of specific cell types in different tissue comparisons
(right). Points on the bar plots represent individual samples; P values were calculated by the t test.
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RESULTS
Tumor plasticity of GC cell populations
From 24 gastric cancer (GC) patients, paired non-cancerous and
cancer tissues were obtained (Methods). Among the 24 adjacent
non-cancerous sites, 16 were classified as a premalignant lesion
(CAG or IM) and eight showed benign superficial gastritis
(Supplementary Table 1). GC patients showed signs of Epstein-
Barr virus (EBV, 4.2%) or Helicobacter pylori infection (79.2%), but
microsatellite instability (MSI) did not observed.
After quality control and filtering, we identified 30,888 cells

from 24 GC patients. As previous studies already proposed the
immunology driven GC prognosis with scRNA-seq11–14. A high
proportion of immune cells was observed in patients with DGC
(Supplementary Fig. 1a). We identified 7831 immune cells (46%)
from DGC patients and 1296 immune cells (25.4%) from IGC
patients. Diffuse-type samples had displayed high immune scores
in previous bulk RNA-seq studies5,6,10; similarly, DGC samples from
TCGA-STAD and ACRG datasets used in this study were shown to
display high immune scores (Supplementary Fig. 1b). We
identified six immune cell types, including B cells, dendritic cell
(DC), monocytes, macrophages, NK cells, and T cells (Supplemen-
tary Fig. 2). The proportions of DCs, monocytes, and T cells
increased in cancer tissues, and the amount B cells increased in
non-cancerous tissues. We performed sub-clustering analysis to
determine the type of T cells present and found that the
population of CD8+ T central memory (Tcm) cells decreased
and that of CD4+ Tcm cells increased in tumor tissue. It has been
reported that CD8+ Tcm to confer superior antitumor immunity
compared with effector memory T cells15, and that the proportion
of CD4+ Tcm increases in the blood of GC patients16.
We excluded immune cells (CD45-positive) for our analysis and

focused more on tumor and non-immune stromal cells (Methods).
Further clustering of tumor cells and stromal fibroblasts disclosed
unique subclasses that might be relevant to GC’s malignant
features. To elucidate the cellular heterogeneity of GC cells, we
select 13,022 cells annotated stromal (fibroblast, endothelial and
endocrine cells), epithelial and tumor cells excluding immune cells
from distinct lesions (Methods). Of these, 7095 cells (54.5%)
originated from matched adjacent non-cancerous lesions and
5927 cells (45.5%) originated from GC lesions. Clustering analysis
identified 10 distinct sub-clusters. The cell types were character-
ized as endothelial cell (EC; expressing PLVAP, KDR, PTPRB),
enteroendocrine cell (expressing CHGA, GAST, PROX1), fibroblast
(expressing MMP2, PDGFRA, MYL9, FN1, CAV1), gland mucous cell
(GMC; expressing MUC6 and TFF2), IM (intestinal metaplasia;
expressing TFF3, CDX1, CDX2) [chief (expressing PGC), goblet
(expressing MUC2, ITLN1, HES6), metaplastic-stem cell (MSC;
expressing OLFM4, REG1A, CLDN3), and proliferative cell (PC;
expressing CDKN2A, MKI67, RBP4)], pit mucous cell (PMC; expres-
sing GKN1, GKN2, MUC5AC), and tumor cell (expressing EPCAM,
CDH17, COL3A1, PDGFRB), based on the DEG from each cluster to
known marker genes of various cell types (Fig. 1b–e, Methods).
Cells from each cluster were unbiased distributed among different
patients (Supplementary Fig. 3). We performed proportion tests
for the number of patients in each cluster and found that the
sample frequency for each cell cluster was not significantly high or
low. The CNVs were estimated to distinguish tumor cell cluster
(Supplementary Methods), and we found high CNV signals in
tumor cell cluster compare to the other cell types (Supplementary
Fig. 4a). We confirmed common CNV signals from TCGA STAD
dataset. A total of 12 genes were identified as common CNVs from
the GISTIC2 results for the TCGA STAD data set5. We found that
CD44, CDK6, GATA4, GATA6, KLF5, and KRAS, which were amplified
in TCGA STAD cohort, were amplified in cancer cell clusters.
ARID1A and SMAD4, which annotated deletions in the TCGA STAD
cohort, were inferred to be deleted in the cancer cell cluster
(Supplementary Fig. 4b). We then, defined the IM cluster (Fig. 1b, c

and Supplementary Fig. 5a) based on CDX1 and CDX2 expression,
and then further clustered them into sub-IM cell types. Among
4115 cells, six clusters were identified and classified into five cell
types (Fig. 1d, e) namely chief, goblet, MSC, PMC, and PC. The
major cell types of the IM cluster were MSC (34.4%), PMC (30.4%)
and PC (21.6%, PC1: 13.5% and PC2:8.1%).
We next investigated the cell type distribution according to

lesion type (adjacent non-cancer vs. GC) and the Lauren
classification (IGC vs. DGC) (Fig. 1f, Supplementary Fig. 1c, and
Supplementary Table S9). The PC cluster in IGC was bigger than
that in DGC (P= 0.06) and the EC cluster in IGC was smaller than
that in DGC (P= 0.12). However, the frequencies and correlation
coefficients of other cell types except for PC, tumor cells, GMC, and
MSC did not show any significant differences by the lesion type or
Lauren classification (Supplementary Fig. 5d, e). In adjacent non-
cancer lesions, GMCs represented the largest proportion of cells,
which was significantly reduced in GC lesions (P= 0.04, t Test;
Fig. 1e); PMCs showed a similar pattern (P= 0.08). The proportions
of MSCs and tumor cells significantly increased in GC lesions
compared to adjacent non-cancer lesions (P= 0.003 and 0.02,
respectively). Furthermore, IM cells formed two distinct clusters
representing cells from the adjacent non-cancer and GC lesions.
MSCs were enriched in GC lesions (Supplementary Fig. 5c).
Notably, 2.1% of cells from the adjacent non-cancer lesions were
tumor cells. We found that tumor cells in the adjacent non-cancer
lesions were detected in five patients with IGC (56%) and in 11
patients with DGC (73%). Some non-malignant cells (GMC, PMC,
chief, and PC cells) were consistently observed in both adjacent
non-cancer and GC lesions. The presence of tumor cells in
adjacent non-cancer lesions was strongly correlated with MSCs
and goblet cells, but these relationships were not as pronounced
in GC lesions (Supplementary Fig. 5d). PC was divided into two
types: PC1 and PC2. The PC1 cluster showed high expression in
TFF1 and TFF2, where most cells were obtained from non-
cancerous tissues. The PC2 cluster showed high expression in TFF3
and REG4, where cells were obtained from the cancer tissue of
intestinal patients. Zhang et al. identified two PC clusters: gastric
proliferative cells and intestinal proliferative cell11. TFF1 and TFF2
were highly expressed in gastric proliferative cells, and TFF3 and
REG4 were highly expressed in the intestinal proliferative cell
cluster. These observations may suggest that the premalignant
state of the adjacent non-cancerous mucosa comprises of IM and
rare tumor cells, and our data have high reproducibility and
provide reliable results. It could be suggested that GC represent a
cellular population harboring spectrum of cell lines representing
non-malignant, premalignant, and malignant states.

Tracing GC cell lineages associated with the Lauren
classification
We next established a pseudotemporal trajectory to trace cell
lineages (Supplementary Methods). As above description, GC
and adjacent non-cancer lesions were collected from IGC and
DGC patients. To investigate inter-heterogeneity of two Lauren
types in GC, we pooled all selected cells (non-immune cell) from
24 samples and also analyzed lineage/state compositions for
each IGC and DGC. The GC cell trajectory was reconstructed from
a dataset of 13,022 using Monocle17 (Fig. 2a and Supplementary
Fig. 6). The pseudotime increased from benign to malignant cell
type. Non-malignant cells, such as enteroendocrine cells and
GMCs, were showed earlier pseudotime in the cell lineage, and
tumor cells were showed later pseudotime of the trajectory
(Fig. 2a and Supplementary Fig. 6a). The expression levels of the
known IGC markers MUC13 and CDH1718 and the known DGC
markers COL1A2 and SPARC19 increased from GMCs to tumor
cells in the tree (Supplementary Fig. 6b).
To reconstruct the IGC specific pseudotemporal trajectory, we

selected 3686 cells from IGC patients (1340 cells from GC lesions
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Fig. 2 Tumor cell types determined by pathological classification and functional features. a Trajectory plot of a total of 13,022 cells. In the
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and 2346 cells from adjacent non-cancer lesion; Fig. 2b). To
identify the underlying characteristics of cancer progression
according to cell lineage, the cells were divided into three
progression states (I1, I2, and I3) based on the pseudotime,
excluding fibroblasts and ECs. The non-malignant cells were
located at the earlier pseudotime (I1) of the trajectory (Supple-
mentary Fig. 7a). The expression levels of ENO1 and TFF3, known
IM markers20, were high in the I2 state and the expression levels of
CEACAM and MUC13, known IGC markers18, were high in the
I3 state (Fig. 2c, e). Fibroblasts, ECs, and some tumor cells were
located at I4 (Supplementary Fig. 7a). We traced the neoplastic
progression of cell lineage changes from IM (MSC and goblet cell)
to the intestinal tumor cell (Fig. 2b). The expression levels of many
IGC marker genes continually increased from the I1 to I3 state.
Visualization of IGC cells in a trajectory tree revealed that the
intermediate time-point IM cells were closer to tumor cells at
the later time points than to GMC. Based on these observations,
we propose that the IGC cell lineage shows a neoplastic
progression pattern from IM to tumor, and that IM might be a
precursor state in accordance with Correa’s hypothesis.
Next, we established the DGC trajectory using 8946 cells from

DGC patients (4336 from GC lesions and 4610 from adjacent non-
cancer lesion). Cells were arranged along four branches (Fig. 2b;
right panel) and were divided into four progression states (D1, D2,
D3, and D4) based on the pseudotime. The GMCs showed earlier
pseudotime (D1) (Supplementary Fig. 7b), and fibroblasts and ECs
were located at D5. The tumor cells were showed later pseudotime
at trajectory tree (D3 and D4). DGC markers, such as COL1A2, were
expressed in D4 (Fig. 2c, e)19, and the extracellular matrix–related
pathway genes were significantly enriched (P= 1.11e–16). IGC
marker genes, including CEACAM5, KRT8, and MUC1318, were
highly expressed in D3 (Fig. 2c). Several IM-related pathways,
including WNT signaling, Trefoil factors initiating mucosal healing,
and HEDGEHOG ligand21, were enriched in the premalignant state
I2 and D2 (P < 9.03e-03; Fig. 2d); mTOR signaling, RAS pathway,
and VEGF signaling, functioning in IGC, were highly enriched in the
I3 and D3 states (P < 0.01; Fig. 2d)22. To determine if the D1–D3
cells followed the intestinal cell lineage, we identified DEGs within
each cascade. Genes involved in cancer progression overlapped
irrespective of the pathological classification, excluding D4 state
(Fig. 2c). Further, 84 DEGs (84.0%) in D3 cells overlapped with
DEGs of the I3 cells (Supplementary Table 2); 72.6% of DEGs in D2
grouped in I2 and 99.6% of DEGs in D3 also grouped in I3. We
calculated diffuse tumor dispersion and tumor cellularity for nine
diffuse samples with IHC, and observed that average tumor
cellularity was 58% (max: 100% and min: 30%) and average diffuse
tumor dispersion was 81% (max: 100% and min: 70%) in DGC
patients. These observations suggest that some of DGC tumors in
this study are of mixed-type, though dispersion of intestinal tumor
cell in DGC is small. We found that the cell lineage compositions of
IGC are following the Correa’s hypothesis but DGC would have
different carcinogenetic mechanism.

Tumor cell subpopulations and epithelial–myofibroblast
transition in DGC
To understand the characteristics for the tumor cells, and extending
prior GC molecular subtyping, we performed re-clustering of all
defined tumor cells (Supplementary Fig. 8a), demonstrating eight
sub-cell population (Fig. 3a). IGC markers (CDH17, REG4, andMUC13)
were highly expressed in the C1 and C2, and DGC markers (COL1A1
and S100A4) were highly expressed the C0 and C3–C7, respectively
(Fig. 3b and Supplementary Table 3)18,19. Nearly all tumor cells were
categorized into the prior GC molecular subtypes, called ACRG
subtypes using ACRG signatures6 (MSS/TP53+, MSS/TP53–, MSI, and
EMT; Supplementary Methods) from deconvolution method, as
anticipated (Fig. 3a, right panel and Supplementary Fig. 8b). Cells in
C1 and C2, which showed high expression of IGC marker genes, had

a high signature score for MSS/TP53+ and MSS/TP53–, the major
molecular phenotypes of IGC6 (Supplementary Fig. 8b). Cells in C0,
C3, C4, C6, and C7, which showed high expression of DGC marker
genes, had a pronounced EMT signature, the major molecular
phenotype of DGC23. Furthermore, 30 MSI cells were identified,
which were scattered and enriched in C1 and C2 (P= 4.18e–09;
Fisher’s exact test). We inferred that the MSI cell type observed low
frequency in our samples, in accordance with the pathological test.
These results suggest that four major molecular subtypes can be
reproducible at single cell level.
Molecular characterization was identified stem cell (SC)-related

signatures in the tumor cells population. We analyzed SCs-related
signatures in tumor cells, including target gene expression of the
embryonic stem (ES) cell-like transcriptional factors involving
NANOG homeobox, octamer-binding transcription factor 4
(OCT4), SRY-related HMG-box2 (SOX2), and MYC, to obtain
genetic evidence of the presence of SCs population. Those genes
sets targeted by four ES cell regulators were activated both in
human ES cells and tumors24. The target genes of NANOG, OCT4,
SOX2, and NOS were mainly expressed in C3, C4, and C7 (Fig. 3c
and Supplementary Fig. 8c). The SCs-related and EMT signatures
were up-regulated in C3, C4, and C7 (Fig. 3c). Recent reports
indicate that the emergence of cancer SCs occurs in part as a
result of EMT, and that gastric EMT activation could endow gastric
epithelial cells with a cancer cell stemness property25,26. There-
fore, SCs-related signature may represent in GC, which may
increase the heterogeneity of GC and support the existence of SC
signature at single cell resolution.
A group of cells (C5) that did not express EMT signatures (Fig. 3c

and Supplementary Fig. 8d), but highly expressed myofibroblast-
associated genes such as TAGLN and EGR1 (Supplementary Fig. 8e)
was identified in the tumor cell clusters analysis27–29. These C5
cells were enriched in markers of the epithelial–myofibroblast
transition (EmyoT), in which normal epithelial cells transdiffer-
entiate into myofibroblastic cells in cancerous transformation
(Supplementary Table 4 and Fig. 3c)29.
Analysis of combinded GC cohort data indicated that the

EmyoT (C5) type was significantly correlated with poor overall
survival (Supplementary Methods; Fig. 3d). Survival analysis
revealed that the EmyoT type was associated with the worst
prognosis (P= 4.42e–06; HR= 1.72 and 95% CI 1.39–2.12,
compared to intestinal type), followed by the EMT (HR= 1.21
and 95% CI 0.99–1.49 by log rank test), and intestinal type of GC
in the combined GC cohort data. The statistical analysis of the
independent extensive GC cohort meta-analysis data also
confirmed our findings that EmyoT-type GC is associated with
poor clinical outcome (Supplementary Fig. 9). The EMT type was
previously reported to be correlated with poor prognosis30,
which was inconsistent with the current data. This disagreement
is likely due to the difficulty of defining EmyoT type cells in bulk
diffuse-type tumor samples. This demonstrates that deconvolu-
tion analysis of the identified gene sets is strongly predictive of
GC prognosis. The EmyoT subpopulation was also identified in
samples from GC patients by immunohistochemistry (IHC;
Methods). Nine of ten EmyoT type from diffuse-type tumors
harbored MRTFA+ cells, an EmyoT marker29 (Supplementary
Table 5). We then used IHC to analyze proteins encoded by
differentially expressed genes in C5, including SRF and IGFBP5.
Morphologically, SRF and IGFBP5 were present in the diffuse-
type tumor cells, with some overlap with MRTFA+ cells (Fig. 3e).
These observations indicated that EmyoT cells might represent
one of the transdifferentiation processes in DGC.

CCND1 mutation profile in the IGC cell lineage
We identified 574 variants of 35 oncogenes as hotspot mutations
in GC cells (Methods; Fig. 4a)31, which were enriched in the cell
cycle, MAPK signaling, and other signaling pathways
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(Supplementary Tables 6 and 7). Cell cycle-related genes,
including CCND1, CDK4, CDKN2A, and RB1, were frequently
mutated in MSCs, PCs, and tumor cells (Supplementary Fig. 10a).
CCND1 was frequently mutated at two gain-of-functional sites
(T286 and P287; Fig. 4a). These mutations drive cellular
transformation, nuclear export, and proteasome-mediated degra-
dation32–34. Further, CCND1mut activates the G1/S pathway and
regulation of G1/S pathway genes in GC carcinogenesis35–37, and
the expression levels of these genes were increased in CCND1mut

cells (Fig. 4b; Supplementary Fig. 10b). The trajectory of
premalignant and malignant cells reconstructed from 5048 cells,
including IM cells, revealed three branches (Supplementary
Fig. 10c). The malignant cells divided between two branches,
and premalignant cells (MSCs and PCs) were arranged at the
trajectory center. The CCND1mut cells were traced from MSCs to
malignant cells (Fig. 4c). The CNV signal for CCND1 was not
identified across cell types (Supplementary Fig. 4b). These were
suggested that CCND1mut could be potentially a risk factor of IGC
and might play as an oncogenic driver in MSCs.
To validate the role of CCND1mut in the premalignant state, we

performed scRNA-seq to analyze samples from 5 control individuals
who were diagnosed as having IM, but no evidence of GC
development within 5 years of clinical follow-up (Supplementary
Table 1). We identified eight cell clusters including immune cells such
as B and T cell clusters in this group, with the IM cluster further
divided into goblet, chief, and MSC clusters (Supplementary Fig. 10d).
Interestingly, CCND1mut cells (T286 and P287) were not identified
among MSCs in this control group (Supplementary Table 6).
Collectively, we propose that the cells in the control group is close
to the cancer-free state and CCND1mut in MSCs could be a molecular
signature of premalignant state transition in IGC.

Cancer-associated fibroblast subtypes and their roles in GC
In GC, cancer-associated fibroblasts (CAFs) are one of the critical
components of the TME that promote or impede tumorigenesis38.
To better understand their roles in GC, we selected annotated
fibroblasts from IGC and DGC clusters (Supplementary Fig. 5a) and
reconstructed a pseudotemporal trajectory to trace CAF differentia-
tion. The CAF trajectory was split into three branches, representing
four states (Fig. 5a). Fibroblast cell marker genes such as SFRP2 and
CXCL12 were expressed in the gray region of the trajectory (Fig. 5a;

right panel), and CAF markers were specifically expressed at the two
branch ends (Fig. 5b). We identified three CAF types based on the
states of gene expression profiles: inflammatory (iCAF), myofibro-
blastic (myCAF), and intermediate CAFs (inCAF) (Fig. 5a). Genes
encoding cytokines (IL6, IL11, and IL24), chemokines (CXCL1, CXCL2,
CXCL5, and CXCL6)39, and matrix metalloproteinases (MMP1, MMP3,
and MMP10)40 were uniquely upregulated in iCAFs (Fig. 5b;
Supplementary Fig. 11a). Furthermore, myCAFs were identified by
known marker genes such as TPM1, TPM2, MYL9, TAGLN, and
POSTN29 (Fig. 5b and Supplementary Fig. 11a). Finally, inCAFs were
distinctly divided between iCAFs and myCAFs, with high expression
of PDGFRA, POSTN, ID1, and ID3 (Fig. 5b and Supplementary Fig.
11a); PDGFRA is a commonly used iCAF marker in different cancer
types41 and ID1 is activated in myCAF42.
iCAFs were more prevalent in DGC than in IGC (43.1% vs. 20.3%,

P= 0.0001; Fisher’s exact test), while the reverse was observed for
myCAFs (36.5% vs. 24.1%, P= 0.02; Fisher’s exact test). However,
the difference of the inCAF prevalence between IGC and DGC was
not significant. In addition, iCAFs mainly comprised cells from GC
lesions, but distribution of other cells with myCAFs and inCAFs did
not differ in GC or adjacent non-cancer lesions. iCAFs are reported
to be closely associated with GC invasion and promoting stemness
of tumor cells29,43. IL6, CXCL1, and CXCL2 are biomarkers of pro-
stemness CAFs43, and these markers were highly expressed in
iCAFs (Supplementary Fig. 11a). Pro-stemness-associated path-
ways, including NF-kappa B signaling, TNF signaling, and
cytokine–cytokine receptor interaction pathways, were enriched
in iCAFs44 (Fig. 5c). Next, we observed an association between
iCAFs and stemness in the GC cohort data based on DEGs with
CAF subtypes (Supplementary Table 8), and stemness scores in the
iCAF-high group were higher than those in the iCAF-low group
(Fig. 5d and Supplementary Fig. 11b). Furthermore, iCAF scores
were positively correlated with the stemness scores (R= 0.3;
Fig. 5d), whereas myCAF and inCAF were negatively correlated
with stemness (Supplementary Fig. 11d). These observations
indicate that the stemness in GC could be promoted by an
increasing iCAF signature, and especially, the iCAF expression is
strongly associated with stemness in DGC (Supplementary Fig.
11c). The intratumoral heterogeneity of CAFs may provide
evidences that CAFs are involved in complex tumor structures
and paracrine interactions in the TME.
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Finally, independent microarray data for 124 normal, IM, CAG,
and GC samples was analyzed (GSE2669) to verify the existence
of three different CAF subtypes in GC. We were able to identify
three iCAF, myCAF, and inCAF signatures in these samples, as
well (Supplementary Table 8). In 57 GC patients, all CAF
signatures were elevated in GC lesions. Specifically, the iCAF
signal was pronounced in GC (Fig. 5e; P < 2.2e–16) during cancer
progression (normal, CAG, IM, and GC). The myCAF and inCAF
signals were not significantly different (Fig. 5e) in cancer but the
inCAF signal increased with tumor progression from the
premalignant state onward.

DISCUSSION
Overall, the present study confirms several important observations
from previous in vivo, in vitro, and large-cohort genomics studies,
offering a comprehensive catalog of gastric cells in the adjacent

non-cancer and GC lesions at single-cell resolution to describe GC
cellular heterogeneity and carcinogenetic pathways.
Identification of the cell subtypes and reconstruction of Correa’s

hypothetical pathways are yielded several findings. First, GC cells
are more complex and heterogeneous than previously reported.
GC presents ten cell types comprising several subpopulations with
highly homogenous non-malignant cells. The adjacent non-
cancerous site also contains a small number of tumor cells, which
was consistent with previous study showing that patients
diagnosed with IM harbor some tumor cells at the single-cell
level11. Although the Lauren classification is reproducible, at
single-cell resolution, DGC harbors an appreciable proportion of
intestinal-type tumor cells. These findings might be explained the
lack of noticeable variation between IGC and DGC in bulk
genomics studies previously reported.
IGC and DGC are exhibited by different cell lineage composi-

tion. Tumor cells are characterized by a variety of neoplastic
progression pathway and de novo carcinogenetic pathway, as

iCAF
myCAF
inCAF

Fibroblast

Insulin secretion
Hedgehog signaling

Vascular smooth muscle contraction
cGMP-PKG signaling
Adrenergic signaling

Tight junction
Drug metabolism

Hypertrophic cardiomyopathy
Oxytocin signaling

Primary immunodeficiency
ABC transporters

Regulation of stem cell pluripotency
B-cell receptor signaling

Cytokine-cytokine receptor interaction
NF-kappa B signaling

Epithelial cell signaling in H.pylori infection
FoxO signaling
DNA replication

Homologous recombination
HIF-1 signaling

TNF signaling

P53 signaling

cAMP signaling

iCAF myCAF inCAF

ba

d

STMN2

CNN1
TAGLN

PROM1

PDGFRA
POSTN

CXCL1
CXCL5
STC1
WNT5A

DCN

SFRP2
CXCL12

APOE

iCAF myCAF inCAF -3 0 3
Scale

e
0.4

0.2

0.0

-0.2

-0.4

2.0

1.0

0.0

-1.0

1.5

1.0

0.5

0.0

Av
g.

ex
pr

es
si

on
 (l

og
2)

iCAF myCAF inCAF

P < 2.2e–16

P = 0.48 P = 0.26

c

Adjacent normal
Cancer

P = 0.0003

R = 0.30

Pseudotime

Z-score

Fig. 5 Cancer-associated fibroblast (CAF) heterogeneity and pro-stemness in gastric cancer. a Trajectory trees of CAF reconstructed using
annotated fibroblasts and endothelial cells. Colors correspond to the malignancy (left) and CAF types (right). b Heatmap plot showing
expression of significantly variable genes (P < 1.0e–05; likelihood ratio test) and known CAF markers. Collected cells (columns) are sorted by
pseudotime, and the genes (rows) are clustered by hierarchical clustering. c Hallmark pathways of the CAF subtypes determined by
enrichment analysis. Significance was determined by the R package limma (adjusted P < 0.05). d Box plot of the stemness score in bulk RNA
metadata (left), and correlation between iCAFs and the stemness scores (right). e Boxplots of CAF marker gene expression patterns plotted
using bulk RNA data (GSE2669), according to the gastric diseases progression cascade (i.e., normal, premalignant, Intestinal Metaplasia (IM) or
chronic atrophic gastritis (CAG), and cancer). P values were calculated by ANOVA.

J Kim et al.

8

npj Precision Oncology (2022)     9 Published in partnership with The Hormel Institute, University of Minnesota



demonstrated by the trajectory and sub-clustering analysis based
on gene expression profiles. Each cell lineage had a differential
gene expression profile, phenotype, and functional characteristics.
In the intestinal-type cell lineage, tumor cells progress from IM,
with a gradual increase in cellular heterogeneity in the malignant
stage. In the diffuse-type cell lineage, SCs-related signatures
interact with intratumoral CAFs and can evolve into different cell
populations to survive. DGC heterogeneity could be induced by
SCs-related signature and results in progression to GC. We
propose that GC heterogeneity may be associated with these
independent cellular lineage characteristics, which can inform
lineage-specific tailored therapy for GC patients.
Most of the tumor cells from our GC samples could be categorized

into previously proposed GC molecular subtypes with expected
clinicopathological behavior. In addition, we identified a unique
population of cancer cells, the EmyoT type, characterized by a
distinct gene expression profile with significant clinical implications.
The EmyoT tumor cell type was associated with diffuse marker gene
expression, a pronounced EmyoT signature, and weak EMT signature,
and correlated with a poor clinical prognosis. Furthermore, tumor cell
signatures robustly correlated with survival in various cohorts,
suggesting the clinical adoption of these subtype-specific genes as
biomarkers for treatment modality and prognosis prediction.
Moreover, our results suggest that CCND1mut and iCAFs may play

a role in neoplastic lineage changes in GC. In the intestinal cell
lineage, CCND1mut in MSCs may have an oncogenic role from the
premalignant state onward, associated with increased cell cycle
damage. In both IGC and DGC, CAFs emerge in the premalignant
state, and their numbers increase in the malignant state. In addition,
iCAFs exhibit pro-stemness properties in DGC and might participate
in de novo carcinogenesis in DGC. These findings could be used to
identify new markers to identify high-risk groups and to monitor GC
progression from the premalignant state.
However, we have limitation for biological validation, including

cell biological assays and in vivo analysis in knockout mouse model.
This is another significant project for a new investigation of gastric
carcinogenesis and an understanding of human GC carcinogenesis.
We believe that our results will be provide new insight to cancer
biologist and provide inspiration for GC carcinogenesis. The GC cell
atlas generated in this study provides a new reference point for the
investigation of gastric carcinogenesis, and will contribute to the
understanding of human GC carcinogenesis, including organoids
and humanized GC mouse models.

METHODS
Samples and sample pre-processing for single-cell RNA
extraction
This study was approved by the Institutional Review Board of Severance
Hospital (IRB 4-2017-1131) and written informed consent was obtained
from each participant. Freshly biopsied gastric mucosal specimens were
obtained from two sites (cancer site and non-cancerous adjacent site) by
conventional upper gastrointestinal endoscopy using SwingJaw biopsy
forceps (Olympus Medical System, Tokyo, Japan, 2.45mm). Human
stomach tissues were cut into approximately 1-mm3 pieces, suspended
in 5ml of dispase (5 U/ml) in Hanks’ balanced salt solution (STEMCELL, cat#
07913) with 5 mg collagenase type IV (Sigma, cat# C5138), and incubated
at 37 °C for 2 h with gentle shaking. The samples were then passed
through a 100-μm cell strainer (Falcon), the cells were re-suspended in
phosphate-buffered saline (PBS) containing 1 mM ethylenediaminetetraa-
cetic acid (EDTA), and centrifuged at 720 × g for 5 min. To remove red
blood cells, cell pellets were re-suspended in PBS with 1 mM EDTA, and
centrifuged through a discontinuous 50% Percoll (2.5 ml Percoll mixed
with 2.5 ml PBS; Sigma, cat# P4937) gradient at 470 × g for 20min, with
minimum acceleration and no deceleration. The material between the PBS
and 50% Percoll layers was collected and re-suspended in PBS for scRNA-
seq. After cell isolation, all of the protocols such as cell barcoding and
library construction were performed according to the manufacturer’s
instructions for the 10× chromium single cell 3′ v2 kit and sequenced with
the Illumina HiSeq 2500 platform.

Single-cell quality control and data pre-processing
ScRNA-seq data was analyzed using the 10× Genomics software package
Cell Ranger version 2.1.1. The data were mapped to the hg19 reference
genome (v1.2.0) supplied by 10× Genomics. A gene count matrix was
generated from unique molecular identifiers (UMIs) by Cell Ranger. The
following thresholds were used to identify low-quality cells: (1) standard
deviation of all genes per cell lower than 1; (2) zero UMI count for 90% of
all genes; (3) 10% or more of the expression originates from the
mitochondrial or hemoglobin genes; or (4) UMI values lower than 100 or
larger than 20,000. The data matrix was normalized for sequencing depth
by dividing by the total number of UMIs for each cell and then transformed
to a log scale using the R package Seurat45. After normalization, the cells
were split into immune and non-immune cells based on the average PTPRC
(CD45) expression level. Principal components analysis was performed to
select variable genes to reduce dimension complexity. Highly variable
genes were identified using the FindVariableGenes function with
parameters for x.low.cutoff= 0.0125, x. high.cutoff= 6, and y.cutoff= 0.5.
These variable genes were used as inputs for PCA using the RunPCA
function with parameters for seed.use= 12345 and pcs.compute= 30. The
first 20 principal components and a resolution of 0.8 were used for
clustering using FindClusters. The principal components were then used to
generate a two-dimensional representation using t-distributed stochastic
neighbor embedding (tSNE). Cluster analyses were performed using the
RunTSNE function in the Seurat package with parameter dims.use= 1:5
and seed.use= 12345. To find differentially expressed genes (DEGs) for
each cluster, the likelihood-ratio test for cell clusters was implemented
using the FindAllMarkers function (parameters: genes detected in at least
25% cells, and differential expression threshold of 0.25 log fold change
using Wilcoxon rank sum test with P < 0.05 following Bonferroni
correction), with selected genes showing at least 2-fold up-regulation
and false discovery rate (FDR) < 0.01 compared to those in the remaining
clusters (Supplementary Tables 2 and 3). We compared the marker genes
for each cluster to literature-based markers of cell lineages to assign a cell
lineage per cluster6,11. The tumor cell was identified marker gene
expression and CNV signal (Supplementary Methods).
Trajectory analysis was performed to track the cell transition status

(Supplementary Methods). Cell data was reprocessed to remove low-UMI
count genes or low-quality cells and re-normalized for library size using the
R package Monocle17. After quality control, dimensionality reduction and
trajectory construction were then performed. Cells were placed onto a
pseudotime trajectory using the orderCells function. A secondary cluster
analysis of selected cell population were repeated same process (detection
of variable genes, scaling with UMI regression, PCA, clustering, and tSNE).

CG meta-cohort construction for validation
The GC meta-cohort was constructed by 1378 bulk-seq dataset from GEO
(GSE13861, GSE66229, GSE26899, GSE26901, GSE28541, GSE29272, and
GSE84437) and TCGA STAD dataset. The GC meta-cohort was normalized
and eliminated batch effect (Supplementary Methods). To determine the
cell type proportions in bulk gene expression profiles, the MuSic
deconvolution method was used46 with the tumor subtype-specific gene
signatures (Supplementary Table S3).

Visualization of EmyoT in situ
To determine the multi-protein–positive zone in diffuse-type tumor lesions,
IHC staining from consecutive sections were performed. Images (10×) of
each EmyoT marker (SRF, IGFBP5, MRTFA) from the same tumor area in
representative tumors were further analyzed. Images were aligned and
divide into 1530 tiles (45 × 34) to mimic the approximate size of a tumor cell
and each tile was annotated in each color to the stained position in the
section. The images of the EmyoT markers were overlapped, and double-
positive tiles (MRTFA+ IGFBP+ or MRTFA+ SRF+ ) were annotated in blue.

Single-cell mutation calling and calculation of mutation allele
frequency
To detect single cell variants, we used the VarTrix tool (https://github.com/
10xgenomics/vartrix). Variant allele frequencies (VAF) in known somatic
hotspots of oncogenes were calculated using the following equation:
VAF=mutation allele read count/(mutation allele read count+ reference
allele read count). After calling the mutations in samples, mutations with
zero read counts compared with the reference was filtered out, including
immune cells. To extract molecular cancer drivers, 4463 somatic hotspots
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in 394 oncogenic driver genes and pathways identified previously in a pan-
cancer study31 were considered. To evaluate the expression of genes
involved in the cell cycle, such as the G1/S phase pathway genes, the
appropriate gene lists were obtained from the MsigDB database47.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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