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INTRODUCTION

Brain metastases are the most common type of 
intracranial tumors in adults [1], and these substantially 
affect the overall prognosis of patients with underlying 
cancers [2]. Although the clinical outcomes of patients 
with brain metastases have largely improved due to 
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advances in neuro-oncology treatment, there is still 
room for improvement, because the management of brain 
metastases is often complex and controversial [3]. As MRI 
is the imaging modality of choice for brain metastasis [4], 
many studies have attempted to use MRI to address many 
questions in the field of brain metastasis. Radiomics is a 
recently introduced method that enables data mining from 
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MRI; therefore, many studies have used MRI with radiomics 
in patients with brain metastases. As radiomics is more 
likely to be used with MRI in the field of brain metastases 
in the near future, it is highly desirable to assess the 
quality of published studies to evaluate the current status.

Radiomics involves the exploitation of MRI data to 
extract high-dimensional quantitative imaging features, 
which can be used to support clinical decision-making [5,6]. 
Although previous radiomics studies in the field of neuro-
oncology have mainly focused on gliomas [7-12], there 
has been an increase in the number of studies on brain 
metastases. Indeed, radiomics studies have demonstrated 
promising results in the discrimination of brain metastasis 
from other tumors [13-20], identification of primary tumor 
types in patients with brain metastases [21-24], prediction 
of specific genetic mutations [25-29], prediction of survival 
[30,31], differentiation between radiation necrosis and 
brain metastasis [32-35], and prediction of outcome after 
radiosurgery [36-41]. However, such studies on brain 
metastases are confined within the limits of experimental 
settings, without translation into real-world clinical 
settings [42]. To lessen this translational gap, scientific 
and reporting quality must be high, which will enable a 
standardized evaluation of performance and increase the 
reproducibility and clinical utility of radiomics.

The radiomics quality score (RQS) is determined using 
a scoring system that incorporates the crucial aspects of 
radiomics studies and assesses their quality [43,44]. The 
Transparent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis (TRIPOD) checklist 
is also a well-known tool for assessing the quality of 
prediction models [45]. Additionally, the Image Biomarkers 
Standardization Initiative (IBSI) provides a comprehensive 
and detailed review of each mandatory step for radiomics 
analyses, including nomenclature of radiomics features, 
general schemes, and datasets for calibration [46]. To the 
best of our knowledge, no study has evaluated radiomics 
studies on brain metastases according to the criteria of 
these three quality assessment tools. Assessing the quality 
of current radiomics studies on brain metastases may further 
promote the use of radiomics as a clinical tool. Therefore, in 
light of the RQS, TRIPOD checklist, and IBSI guidelines, this 
study aimed to evaluate the quality of radiomics studies 
that focused on brain metastases.

MATERIALS AND METHODS

Systematic Search Strategy and Study Selection
PubMed MEDLINE (n = 516) and EMBASE (n = 56) 

databases were searched to collect all original research 
papers on radiomics analysis published until February 2021, 
and the following terms were used for the search: (“brain 
metastasis” OR “brain metastases”) AND (“radiomic” OR 
“radiogenomic” OR “texture”). From a total of 572 papers 
retrieved using the specified search terms, 39 duplicate 
articles were removed. Of the remaining articles, 504 were 
excluded because they were non-radiomics studies (n = 
100), conference abstracts (n = 25), not in the field of 
interest (n = 255), non-human (n = 6), non-brain (n = 20), 
review articles (n = 60), technical notes (n = 18), editorial 
articles (n = 1), erratum (n = 1), comments (n = 5), or case 
reports (n = 11), or included < 50 brain metastases (n = 2). 
Finally, 29 articles were included in the analysis (Fig. 1).

Analysis of Method Quality Based on RQS
The RQS was determined using 16 items classified into 

six domains, as reported in previous studies (Supplementary 
Table 1) [47-49]. Two reviewers (with 8 and 10 years of 
experiences in neuroradiology) independently evaluated 
the domain scores of all included articles (Supplement, 
Radiomics Quality Scoring) after first achieving consensus 
on the evaluation criteria through discussion. If 
disagreements occurred between the two reviewers, a final 
decision was made after a consensus was reached.

Additional discussions were required to reach consensus 
on the following topics: issues of “validation” (domain 2), 
“comparison with the gold standard” (domain 3), and 
“detection and discussion of biologic correlation” (domain 3) 
(Supplement, Consensus Reached for RQS Scoring) due to 
the distinct nature of studies on brain metastasis.

 
Analysis of Reporting Completeness Based on the 
TRIPOD Checklist

The TRIPOD checklist, consisting of 37 items in 22 criteria, 
was applied to each article to determine the completeness 
of the report [45]. The analysis type of the prediction 
model was determined as follows: development only, type 
1a; development and validation using resampling, type 1b; 
random split-sample development and validation, type 2a; 
nonrandom split-sample development and validation, type 
2b; development and validation using separate data, type 
3; or validation only, type 4. Details of the TRIPOD checklist 
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and data extraction are shown in Supplement (Reporting 
Completeness Based on TRIPOD Statement).

Reporting of Image Processing and Radiomics Feature 
Extraction according to the IBSI Guidelines

The IBSI guidelines provide a total of 76 items for 
complete reports on image processing and image biomarker 
extraction (https://ibsi.readthedocs.io/en/latest/04_
Radiomics_reporting_guidelines_and_nomenclature.
html#reporting-guidelines) [50]. Among these items, 
the two reviewers evaluated all the journals according 
to the six items related to the pre-processing: 1) bias-
field correction algorithm, 2) isovoxel resampling, 3) skull 
stripping, 4) gray-level discretization, 5) signal intensity 
normalization, and 6) use of IBSI guideline-compliant 
radiomics feature extraction software. These six items were 
chosen because they are the most commonly performed pre-
processing methods in the field of radiomics. In addition, 
the segmentation method (i.e., manual, semi-automatic, or 

automatic segmentation) was retrieved from each journal. 
Evaluations were discussed to reach a consensus. The 
detailed assessment criteria for each item are described in 
Supplement (Assessment of pre-processing steps according 
to the IBSI guidelines).

Statistical Analysis
All statistical analyses were performed using R software 

(version 4.0.2; R Foundation for Statistical Computing).
In total, 29 articles were reviewed. In the cases where 

a score of one point per item was obtained, the study 
was considered to have basic adherence to each item of 
the RQS, TRIPOD checklist, or IBSI guideline. The basic 
adherence rate (%) was calculated as the proportion of the 
number of articles with basic adherence to the total number 
of articles. Sixteen items of the RQS were scored. The RQS 
for each item was reported as the median and range values. 
The percentage of the ideal score (%) was calculated as the 
ratio of the mean score to the ideal score for each item, and 
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Fig. 1. Flow chart of the study selection process.
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the total RQS (-8 to 36) was calculated for all articles. A 
total of 35 items on the TRIPOD checklist was scored. When 
calculating the overall adherence rate, validation items (10c, 
10e, 12, 13, 17, and 19a) and “if done” items (5c and 11) 
were excluded from both the denominator and numerator. 
Seven items from the IBSI guidelines are scored.

RESULTS

Characteristics of Radiomics Studies on Brain Metastasis
The characteristics of the 29 included radiomics studies 

[13,15-19,22,24-26,28-33,35,37-40,51] are documented 
in Table 1. In the included studies, the median number 
of patients included was 77 (range, 24–439). The types 
of journals were clinical journals (7, 24.1%), imaging 
journals (18, 62.1%), and computer/neuroscience journals 
(4, 13.8%). Radiomics studies were either diagnostic 
(21, 72.4%) or prognostic (8, 27.6%). Except for eight 
prognostic studies covering prediction of survival and 
prediction of outcome after radiosurgery, all other studies 
were diagnostic. Detailed characteristics of the included 
studies are presented in Supplementary Table 2.

Except for one study using positron emission tomography, 
28 studies used MRI. Twenty-three (79.3%) studies used 
conventional images for feature extraction, and five 
(17.2%) used additional advanced images. Most studies 
performed manual segmentation (62.1%). Only three studies 
performed an external validation. Multiple brain metastases 
(> 1 lesion per patient) were included in the dataset of 20 
studies (69.0%). Among them, seven studies demonstrated 
the statistical analysis that was relevant to the handling 
of cluster-correlated data. In three studies, patients with 
multiple metastases were assigned to the validation set 
or the training set to prevent bias from cluster correlation 
[18,22,31]. Correction for false discovery rate [30], 
correlation tests between the features [24,27], and 
marginal proportional-hazards models were used for multiple 
lesions within the same patient [40]. In the remaining nine 
studies, only one lesion per patient constituted the dataset. 

Rate of Basic Adherence to the Reporting Quality 
according to the Six Key Domains

The rate of basic adherence to reporting quality for the 
16 items (six domains) of the RQS is documented in Table 2. 
In terms of domain 1, 20 studies (69.0%) included well-
documented image protocols. Nine studies (31.0%) involved 
multiple segmentations performed by different readers to 

evaluate segmentation reliability [14-17,23,26,29,35,40]. 
No study has used a test-retest approach or a phantom 
study.

In terms of domain 2, 24 studies (82.8%) performed 
feature reduction or adjustment for multiple tests. Ten 
studies (34.5%) performed validation using a dataset 

Table 1. Characteristics of the 29 Included Radiomics Studies
Article Characteristics Data

No. of patients, median (range) 77 (24–439)
Journal type

Clinical journal 7 (24.1)
Imaging journal 18 (62.1)
Computer science/neuroscience journal 4 (13.8)

Biomarker
Diagnostic 21 (72.4)
Predictive 0 (0.0)
Prognostic 8 (27.6)

Topics in brain metastasis 
Differentiation of brain metastasis and 
  other brain tumors

8 (27.6)

Differentiation of brain metastasis and 
  radiation necrosis after radiosurgery

4 (13.8)

Prediction of primary tumor type in patients 
  with brain metastasis

4 (13.8)

Prediction of specific gene mutations 
  in patients with brain metastasis

5 (17.2)

Prediction of outcome of radiosurgery 
  in patients with brain metastasis

6 (20.7)

Prediction of survival in patients with brain 
  metastasis

2 (6.9)

Sequence used for feature extraction* 
Conventional images 23 (82.1)
Advanced images (diffusion-weighted image 
  or diffusion tensor image)

5 (17.9)

Segmentation method
Automatic 1 (3.4)
Semi-automatic 9 (31.0)
Manual 18 (62.1)
Both automatic and manual 1 (3.4)

External validation
Performed 3 (10.3)
Not performed 26 (89.7)

Magnetic field strength (Tesla)*
1.5T 10 (35.7)
3T 11 (39.3)
1.5T & 3T 6 (21.4)
Not illustrated 1 (3.6)

Data are the number of studies with a percentage in parentheses 
unless specified otherwise. *Relevant for 28 radiomics studies that 
used MRI except for one study that used PET.
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obtained from the same institution, gaining two points 
[13,15,17,22,27,29-32,38]. One study (3.4%) performed 
validation using a dataset from another institute, earning 
three points [14]. In the remaining 18 studies (36%), 
validation was missing.

For domain 3, 13 studies (44.8%) performed multivariate 
analyses with non-radiomics features. Four studies (13.8%) 
earned 1 point each for using biological correlation 
components [23,29,33,41]. Only three studies (10.3%) 
compared radiomics-based methods with the “gold 
standard” method (e.g., neuroradiologists’ decision to 
distinguish brain metastasis from other tumors) [14,17,20]. 
Three studies (10.3%) provided potential applications 
of radiomics for the prediction of mutation status or 
progression-free survival through decision curve analysis or 
nomograms [26,31,41].

In terms of domain 4, only one study (3.4%) performed 
a cut-off analysis to stratify patients with significantly 
different progression-free survival [31]. Among the 26 
studies (90.0%) that used discrimination statistics or 
a resampling method, 21 studies (80.8%) used both 

discrimination statistics and a resampling method [13-
17,22-29,31-33,35,37-40]. Only two studies (6.9%) used 
calibration statistics with statistical significance [31,41], 
with only one study also applying a resampling method [41].

In terms of domain 5, none of the studies were 
prospective or executed a cost-effectiveness analysis. For 
domain 6, only one study (3.4%) made the code publicly 
available, which defined image pre-processing and feature 
extraction.

Assessment of the RQS
The median RQS for the 25 radiomics studies was 3.0 

(range, -6 to 12). The mean score was 3.4, which was 
9.6% of the ideal score (Table 2, Fig. 2). When considering 
each domain, the mean score and percentage of the ideal 
score were the lowest in domain 2 (feature selection and 
validation) and highest in domain 4 (model performance). 
Among the six domains, domains 5 (high level of evidence) 
and 6 (open science and data) had mean scores of 0 and 
0.03, respectively. In five studies (17.2%), neither feature 
selection nor validation was performed [19-21,34,41].

Table 2. Radiomics Quality Score according to the Six Key Domains

Basic Adherence 
Rate (%)*

Median 
(Range) 

Percentage of the 
Ideal Score (%)†

Total 16 items (ideal score 36) 50.0 3 (-6–12) 9.6 (3.4)
Domain 1: protocol quality and stability in image and 
  segmentation (0 to 5 points)

69.0 (20) 1 (0–2) 20.0 (1.0)

Protocol quality (2 points) 76.0 (19) 1 (0–1) 34.5 (0.7)
Multiple segmentations (1 point) 16.0 (4) 0 (0–1) 31.0 (0.3)
Test-retest (1 point) 0 (0) 0 (0–0) 0 (0)
Phantom study (1 point) 0 (0) 0 (0–0) 0 (0)

Domain 2: feature selection and validation (-8 to 8 points) 82.8 (24) -2 (-8–6) -4.3 (-0.3)
Feature reduction or adjustment of multiple testing (-3 or 3 points) 82.8 (24) 3 (-3–3) 65.5 (2.0)
Validation (-5, 2, 3, 4, or 5 points) 37.9 (11) -5 (-5–3) -46.2 (-2.3)

Domain 3: biologic/clinical validation and utility (0 to 6 points) 55.2 (16) 1 (0–4) 16.7 (1.0)
Non-radiomics features (1 point) 44.8 (13) 0 (0–1) 44.8 (0.4)
Biologic correlations (1 point) 13.8 (4) 0 (0–1) 13.8 (0.1)
Comparison to “gold standard” (2 points) 10.3 (3) 0 (0–2) 8.6 (0.2)
Potential clinical utility (2 points) 10.3 (3) 0 (0–2) 10.3 (0.2)

Domain 4: model performance index (0 to 5 points) 89.7 (26) 2 (0–4) 35.2 (1.8)
Cut-off analysis (1 point) 3.4 (1) 0 (0–1) 3.4 (0.0)
Discrimination statistics (2 points) 89.7 (26) 2 (0–2) 81.0 (1.6)
Calibration statistics (2 points) 6.9 (2) 0 (0–2) 5.2 (0.1)

Domain 5: high level of evidence (0 to 8 points) 0 (0) 0 (0–0) 0 (0)
Prospective study (7 points) 0 (0) 0 (0–0) 0 (0)
Cost-effectiveness analysis (1 point) 0 (0) 0 (0–0) 0 (0)

Domain 6: open science and data (0 to 4 points) 3.4 (1) 0 (0–1) 0.9 (0.0)

*Numbers in parentheses are the number of studies, †Numbers in parentheses are the mean values.
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Completeness of Reporting a Radiomics-Based 
Multivariable Prediction Model Using the TRIPOD 
Checklist

Of the 35 items in the TRIPOD checklist, the mean 
number of items reported ± standard deviation was  
17.2 ± 3.8 (range, 6–26). When we excluded “if relevant” 
and “if done” (item 5c) items from both the numerator 
and denominator, the adherence rate to this checklist was 
60.3%. The adherence rates to each TRIPOD checklist are 
shown in Table 3.

Reporting of Image Pre-Processing and Radiomics 
Feature Extraction according to the IBSI Guidelines

Among the 29 studies, 20 (69.0%) performed signal 
intensity normalization. Only six studies (20.7%) performed 
bias-field correction (five performed N4 bias correction 
while one performed N3 bias correction), and nine (31.0%) 
performed isovoxel resampling, four (13.8%) performed 
skull stripping, and four (13.8%) performed gray-level 
discretization (Table 4, Fig. 3). The software used for the 
extraction of radiomics features included Pyradiomics 
(27.6%), Matlab (27.6%), LIFEx (13.8%), IBEX (6.9%), and 
others (13.8%). Two studies (6.9%) did not mention the 
software used. Among these, Pyradiomics and LIFEx adhered 
to the IBSI guidelines (Table 4, Fig. 3).

DISCUSSION

In this study, radiomics studies on brain metastasis were 
evaluated with respect to scientific and reporting quality. 
Overall, the scientific and reporting quality of radiomics 
studies on brain metastases was suboptimal, with a low 
overall adherence rate for the RQS (50.0%) and TRIPOD 
checklist (60.3%) items. Only three studies performed 
external validation, indicating that most of the studies 
lacked generalizability. According to the RQS, none of the 
studies involved test-retest or phantom studies, prospective 
studies, or cost-effectiveness analyses. The majority of 
the studies did not address biologic correlations, compare 
radiomics-based methods to the gold standard method, 
state the potential clinical utility, perform cut-off analysis 
or calibration statistics, and provide open science and data. 
According to the TRIPOD checklist, the majority of studies 
did not report the title adequately. No study has described 
the blind assessment of outcomes and handling of missing 
data or presented a full prediction model. The detailed pre-
processing steps were missing in most of the studies. 

The basic adherence rate to the RQS items was low 
(50.0%). Specifically, the evaluation of feature robustness 
was insufficient, with only a few studies performing multiple 
segmentations, while no studies performed phantom studies 

Overall

Protocol quality and feature reproducibility

Feature selection and validation

Biological/clinical validation and utility

Model performance index

High level of evidence

Open science and data

-20                0                20                40                60                80              100

(%)

99.1

100

100-4.3

35.2 64.8

83.316.7

20 80

90.49.6

0.9

0

Actual RQS score Gap from the ideal RQS score

Fig. 2. RQS assessment results according to the six key domains. RQS = radiomics quality score
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or collected images at multiple time points. A considerable 
proportion of the studies executed feature extraction, which 
is essential to avoid overfitting [52]. However, only three 
studies performed external validation, whereas 18 studies 
did not perform validation at all. As validation is the key 
process to allow radiomics to be integrated as a reliable tool 
for clinical practice, future radiomics studies should include 
a validation step. Most studies did not describe biological 
correlations or comparisons with the gold standard. 
However, there are no established gold standards for the 
prediction of outcomes following radiosurgery or prediction 
of primary tumor types, except for pathologic confirmation, 
which inevitably decreases the adherence rate. Few studies 
have provided the potential clinical utility of radiomics 
and made the code publicly available. None of the studies 
were prospective and performed cut-off analysis, calibration 
statistics, and cost-effectiveness analysis, resulting in low 
adherence rates. Thus, the quality of radiomics studies 
on brain metastases has the potential to improve several 
categories of RQS.

In the reporting of radiomics studies according to the 
TRIPOD checklist, there were several highly problematic 
items. Only one study included the terms “development” 
and “validation” with the target population and outcome 
mentioned in the title. Similarly, most of the studies lacked 
the description of “development” and “validation” in the 
abstract and did not describe the specific study design. 
None of the studies reported handling of missing data. 
Furthermore, only a few studies reported their actions for 
blind assessment of predictors. These results of suboptimal Ta
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Table 4. Quality of Image Processing and Radiomics Feature 
Extraction according to the Image Biomarker Standardization 
Initiative Guidelines

Pre-Processing Performed Number of Studies (%)
Bias-field correction 6 (20.7)*
Isovoxel resampling 9 (31.0)
Skull stripping 4 (13.8)
Gray-level discretization 4 (13.8)
Signal intensity normalization 20 (69.0)
Software for feature extraction

Pyradiomics 9 (31.0)
Matlab 8 (27.6)
LIFEx 4 (13.8)
IBEX 2 (6.9)
Others 4 (13.8)
N/A 2 (6.9)

*One study performed N3 bias correction, and the remaining five 
studies performed N4 bias correction. N/A = not available
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reporting are in line with those of previous studies that 
investigated multivariable prediction model studies and 
oncologic studies according to TRIPOD [47,53]. Meanwhile, 
since the current TRIPOD checklists focus on regression-
based prediction model approaches, several studies 
that were irrelevant to the regression analyses were not 
applicable to the assessment of TRIPOD. Specifically, 
the checklists associated with model development and 
specification are based on regression analyses. The use 
of TRIPOD in artificial intelligence and machine learning 
(ML) studies is limited, as these studies frequently did not 
entail regression analyses [54]. Therefore, the development 
of a new version of the TRIPOD statement specific to 
ML (TRIPOD-ML) is currently in progress, focusing on 
ML prediction algorithms and building an established 
methodology for prediction research [54].

Adherence to the nomenclature of standard radiomics 
features and calculations described by the IBSI are 
important for improving the reproducibility of studies 
[52,55]. However, only a few studies have reported the 
quality of radiomics studies that assessed adherence to the 
IBSI of each journal [44,56]. In our study, we focused on 
the pre-processing steps in IBSI and reported the number of 
published radiomics studies on brain metastases following 
the guidelines. Bias-field correction aims to reduce low-
frequency intensity nonuniformity [57], while isotropic 
resampling reduces directional biases [58] and gray-level 

discretization cluster pixels according to intensity values 
to enhance feature reproducibility [59]. Image intensity 
normalization is also a necessary step in increasing 
repeatability [60]. However, the majority of the studies did 
not execute all pre-processing steps and only performed a 
few. Radiomics studies on brain metastases should focus on 
pre-processing, which will increase the reproducibility of 
radiomics features.

Among the 20 studies that enrolled multiple brain 
metastases of more than one lesion per patient to 
constitute the dataset, only seven studies demonstrated 
the statistical analysis relevant to the handling of cluster-
correlated data. Assignment of the respective metastases 
either to the validation set or to the training set for 
patients with multiple metastases was most frequently used 
to avoid bias from cluster correlation. As brain metastases 
tend to be multiple and multiple lesions from one patient 
may correlate with each other, specific considerations in the 
statistical analysis should be considered in future studies.

Our study had several limitations. First, the sample size 
was relatively small. Second, radiomics is still a developing 
imaging biomarker, and the suggested RQS and TRIPOD 
criteria may be too idealistic and strict. Phantom studies 
and multiple imaging acquisitions have rarely been applied 
to real-world practice. Additionally, it may be too extensive 
to provide the whole unadjusted association between each 
candidate predictor and outcome and the full prediction 
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model. However, considering these details is necessary to 
improve the scientific and reporting quality of radiomics to 
enable the clinical translation of radiomics in the future.

In conclusion, the overall scientific and reporting quality 
of radiomics studies on brain metastases published during 
the study period was insufficient, and this low quality may 
hamper the use of radiomics in the clinical field. The RQS, 
TRIPOD checklist, and IBSI guidelines should be adhered 
to make radiomics a more robust decision-making tool in 
clinical practice. 
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