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Abstract

Background: The ability of deep learning (DL) algorithms to identify eyes with neovascular 

age-related macular degeneration (nAMD) from optical coherence tomography (OCT) scans has 

been previously established. We herewith evaluate the ability of a DL model, showing excellent 

performance on a Korean dataset, to generalize onto an American dataset despite ethnic 

differences. In addition, expert graders were surveyed to verify if the DL model was appropriately 

identifying lesions indicative of nAMD on the OCT scans.

Methods: Model development dataset – 12,247 OCT scans from South Korea; External 

validation dataset – 91,509 OCT scans from Washington, USA. In both datasets, normal eyes or 

eyes with nAMD were included. After internal testing, the algorithm was sent to the University of 

Washington, USA, for external validation. Area under the receiver operating characteristic curves 

(AUC) and precision-recall curves (AUPRC) were calculated. For model explanation, saliency 

maps were generated using Guided GradCAM.

Results: On external validation, AUC and AUPRC remained high at 0.952 (0.942–0.962) and 

0.891 (0.875–0.908) at the individual level. Saliency maps showed that in normal OCT scans, the 

fovea was the main area of interest; in nAMD OCT scans, the appropriate pathological features 

were areas of model interest. Survey of ten retina specialists confirmed this.

Conclusion: Our DL algorithm exhibited high performance for nAMD identification in a Korean 

population, and generalized well to an ethnically distinct, American population. The model 

correctly focused on the differences within the macular area to extract features associated with 

nAMD.

Introduction

Deep Learning (DL) is a novel artificial intelligence (AI) technology in which convolutional 

neural networks (CNN) are programmed to optimize a specific performance criterion using 

large datasets with a known outcome 1–3. Robust algorithm performance has been reported 

in identifying candidate patients for corneal refractive surgery 4, classification of retinal 

diseases including diabetic retinopathy (DR) and age-related macular degeneration (AMD) 
5–8, detection of glaucoma 9, and identifying retinopathy of prematurity 1011.

After creating a robust DL algorithm, the next challenge is allowing clinicians, regulators 

and ultimately patients to understand what the computer ‘sees’ and how it ‘thinks’ when 

undertaking the designated task – essentially to present its reasons for disease classification 

and diagnosis. In image analysis, this is where model explanation techniques are often 

applied. Model explanation techniques typically utilize saliency maps (also known as 

heatmaps) to highlight areas which the CNN deems critical in making decisions. The 

strength at which an area is highlighted is pitched according to its weightage in the decision-

making process. There are several visualization methods to do this, for example, occlusion 

testing, integrated gradients, soft attention and class activation mapping 12. Using these 

methods, researchers often analyze heatmaps post model development to ascertain that the 

decision-making process of CNN is based on clinically relevant, and not random, features. 
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In our study, we use the Guided GradCAM technique, a form of class activation mapping 

useful for identifying discriminative regions and widely used for classification 13. Guided 

GradCAM saliency maps have been shown to provide both high-resolution and class-

discriminative visualizations of the retinal images 1415.

In addition to model explanation, external validation studies are important to illustrate the 

ability of the DL algorithm to generalize. With regard to OCT scans, generalization across 

populations is difficult because variations in ethnicity, age, and sex are known to 

significantly alter the appearance of retinal structures, even in the absence of disease 16. 

Despite this, generalizability across populations and clinical settings is a key step to be 

fulfilled if real-world application is desired.

The use of OCT – trained DL algorithms to clinically classify AMD has been pursued by a 

handful of studies in recent years 17–22. In 2019, Bhatia et al was the first, and at this time 

only, to externally validate their DL algorithm on OCT scans acquired from independent 

centres in foreign populations 22. However, model explanation and visualization techniques 

were not included. In this manuscript, we report the performance of our DL algorithm on a 

local South Korean dataset and on an external American dataset. To the best of our 

knowledge, our present study adds to current literature by being the first to implement 

visualization techniques on both internal and external validation datasets. We will examine 

the areas of model interest highlighted by the saliency maps, correlating them with the 

clinically important pathological features of neovascular AMD (nAMD). In addition, expert 

graders were surveyed to verify if the DL model was appropriately identifying lesions 

indicative of nAMD on the OCT scans.

Methods

Ethics Statement

This retrospective cross-sectional study was approved by the institutional ethics committee 

at Yonsei University (4–2019–0442) and by the Institutional Review Board of the University 

of Washington (UW; STUDY00010512), and adhered to the tenets of the Declaration of 

Helsinki. The ethics committee waived written informed consent given de-identification of 

image and clinical data.

Participants and Image database

OCT images with relevant accompanying clinical data were obtained from Severance 

Hospital, Yonsei University, South Korea between 2005 and 2017. All macular OCT scan 

images were extracted using an in-house developed automated extraction tool from the 

Heidelberg Spectralis (Heidelberg Engineering, Heidelberg, Germany) imaging database.18 

Each raster macular OCT scan was extracted as individual OCT images. We included the 5 

images centred on the fovea of both conventional and enhanced depth imaging (EDI) OCT 

scans. Macular OCT scans with B-scan widths between 6 mm and 9 mm were included. 

Multiple OCT scans from the same patient taken at different visits were included. The 

clinical information of participants was extracted from in-house electronic medical records 

and the physician’s order communication system housed in the clinical data repository and 
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data warehousing in Severance Hospital. This clinical information was linked to OCT 

images via patient medical record number and visit dates.23 All clinical diagnoses and the 

dates of every clinical encounter and intravitreal injection were extracted from the clinical 

data repository.

Reference Standard for OCT images

The following methodology describes how OCT scans were classified into ‘normal’ and 

‘nAMD’ before model development for use as the ground truth. ‘Normal’ OCT images were 

handpicked by a retina specialist (THR) from an image pool of participants who 1) 

Underwent a baseline OCT scan and 2) Not indicated for further OCT examinations during 

the follow-up period (till 2017). This was done because this pool represents participants 

expected to be free of macular pathologies that would require repeat OCT scans. OCT 

images of poor quality and steep curvature due to high myopia were excluded.

‘nAMD’ OCT images were selected by the same retina specialist (THR) from pooled OCT 

images extracted from patients who 1) Received the Korean Classification of Disease 

diagnosis code of ‘nAMD’ and 2) Received an intravitreal injection of anti-vascular 

endothelial growth factor (VEGF) in either eye at the same visit.

From this pool, images clearly indicative of nAMD were selected. This was defined as the 

presence intraretinal fluid/ cyst (IRC), subretinal fluid (SRF), fluid below the retinal pigment 

epithelium (RPE), detachments (PED), hard exudates, or subretinal fibrous scar tissue 24. 

Other retinal pathologies such as diabetic macular oedema and myopic choroidal 

neovascularization (CNV) were excluded based on OCT images. Images from the same 

patient taken at different visits that fulfilled these criteria were included. Poor quality images 

and images of retinal areas without any typical nAMD features (SRF, IRC, PED) were 

excluded.

Internal Validation and External Validation

A total of 12,247 OCT images in the internal dataset were divided into a training set to 

develop our models and a test set reserved to evaluate model performance. This division was 

performed participant-wise, meaning that images taken from 1972/ 2465 participants (80%) 

were randomly sorted into the training set, and images taken from 493/ 2465 participants 

were randomly sorted into the test set (Supplementary Table 1). OCT images from the same 

patients have similar morphological characteristics. If these images from the same patients 

are distributed in both the training and test sets, it will result in overfitting and potentially 

inflate the performance. Hence, in our study design, the training set and the test set should 

be separated based on individual-level, and not image-level. For external validation, a dataset 

of macular OCT images from the UW was used 18. The OCT images of the external dataset 

were not transferred to Severance Hospital in South Korea, in accordance with privacy 

protection guidelines. Instead, the developed DL algorithm was sent over to the UW, USA, 

for external validation. The external validation dataset included 91 509 OCT images (48 543 

nAMD; 42 966 normal) captured from 1440 participants (319 nAMD; 1121 normal) of 

different ethnic groups in different clinical setting in the United States.
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Image Preprocessing, Model Development, and Model Explanation

Images were preprocessed to remove noise and to enhance contrast. Original images in the 

acquired datasets came in two sizes – 768 X 496 pixels (9 mm scan) and 512 X 496 pixels (6 

mm scan). Blank space was added to the right and left margins to create identical image 

sizes of 768 × 496 pixels. Finally, we resized all OCT images from 768 X 496 pixels to 192 

X 124 pixels (one fourth) while maintaining the width: height ratio. Data augmentation was 

performed. Our proposed DL model, based on the VGG-16 neural network architecture 25, 

was developed, trained and evaluated in TensorFlow (http://tensorflow.org). Supplementary 

Figure 1 provides further detail regarding image preprocessing, augmentation and model 

architecture. Concerning model explanation, saliency maps created with Guided GradCAM 
1526 were superimposed over input images of the test set to facilitate understanding of how 

our model classified OCT images of nAMD and normal eyes.

Survey of Retina Specialists

Ten retina specialists independently accessed one hundred twenty OCT scans with overlaid 

saliency maps to determine if areas of high model interest corresponded to lesions indicative 

of nAMD (PED, SRF, and IRC). The 10 specialists are practising experts in the field from 

Japan, South Korea, and Singapore, and experienced in interpreting OCT images on a 

regular basis. To create a questionnaire, OCT scans with single pathology (e.g. PED), and 

with two or more pathologies were selected. For three types of findings of PED, SRF, and 

IRC, 10 questions (total 30) were made, and 10 questions were made for mixed OCT scans. 

Each question contains three representative images, and each retinal specialist was asked to 

answer a total of 40 questions. Each specialist was asked to evaluate how well the generated 

heatmaps (which represent areas of model interest) reflect actual lesions characteristic of 

nAMD. The Likert scale was used with a 5-point scale that ranges from “strongly agree (5)” 

to “(1).” Supplementary Document 1 provides details and a summary of the results.

Statistical Analysis

Python packages including NumPy, SciPy, matplotlib, scikit-learn were used to process and 

analyze the data27. Performance was evaluated using the test set of 2485 OCT scans (1478 

nAMD; 1007 normal) from Severance Hospital, Yonsei University, South Korea (Figure 1), 

while the external validation dataset from the UW, USA included 91 509 OCT images (48 

543 nAMD; 42 966 normal). The statistical methods used for analysis include – area under 

the ROC curve (AUC), area under the PR curve (AUPRC), sensitivities and specificities with 

95% Confidential Intervals (CIs). Analysis was conducted both at the individual level and 

image level.

Results

The characteristics of our study population are described in Supplementary Table 1. It was 

observed that normal participants (mean [SD] age of 54.9 [6.2] years) were younger than 

nAMD patients (mean [SD] age of 70.2 [10.0] years). The learning curve of training of the 

neural network with accuracy and loss is provided in Supplementary Fig 1.
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We first evaluated performance of the model in internal test set (Supplementary Fig 2). The 

DL algorithm performed well, predicting the presence of nAMD with AUC of 0.999 (95% 

CI, 0.998–0.999) at the individual level. Correspondingly, the AUPRC was 0.999 (95% CI, 

0.999 – 0.999) at the individual level. Figure 1 describes the ROC curves and precision-

recall curves. of external validation. A total of 91 509 OCT images (48 543 nAMD and 42 

966 normal OCT scans) from 1440 participants (319 nAMD patients and 1121 normal 

participants) were included for external validation. The performance was AUC of 0.901 

(95% CI, 0.899–0.903) at each image level and AUC of 0.952 (95% CI, 0.942–0.962) at 

each individual level. AUPRCs were 0.928 (95% CI, 0.926–0.929) at each image level and 

0.891 (95% CI, 0.875–0.908) at each individual level.

Representative images from generated saliency maps in the internal validation set are 

provided in Fig 2. The highlighted areas represent parts of the image which the trained CNN 

deemed to be most critical in the classification task. Fig 2A is an example of one OCT scan 

classified as ‘normal’; its overlying heatmap reflects that model focus on the fovea and its 

surroundings. This was consistently observed in ‘normal’ scans, with more instances 

provided in Supplementary Fig 3. Similarly, Fig 2B is an example of an OCT scan classified 

as ‘nAMD’, with green highlights reflecting high model interest in components of nAMD 

(IRC, SRF, PED). Figures 3 – 5 each show close-up representative examples of SRF, PED 

and IRC respectively. More examples are included in Supplementary Figures 4 – 6 

respectively. These clinically relevant areas were identified by CNN without feature 

engineering. Fig 3 shows that the network paid attention to the inner margin of SRF and on 

retinal pigment epithelial mottling.

A similar pattern in the saliency maps was observed in the external validation set from the 

UW. Details are provided in Supplementary Fig 7. Saliency maps also showed high model 

attention on the fovea in normal OCT images while three components of IRC, SRF, and PED 

were areas of focus in nAMD OCT images. Supplementary Fig 8 shows the false positive 

and false negative cases with saliency maps in the UW dataset. Most of false-negative cases 

(ground truth ‘nAMD’; predicted as ‘normal’) shows small PED or IRC, and mottled RPE. 

The false-positive cases (ground truth ‘normal’; predicted as ‘nAMD’) shows that the raised 

portion near the prelaminar optic nerve, or the posterior hyaloid membranes; or slight focal 

disruption of the ellipsoid zone/interdigitation zone were highlighted in saliency maps.

Our survey of ten retina specialists showed strong agreement that the features that the DL 

algorithm was focusing on are the features of PED (mean Likert scale, 4.8 ± 0.3), and SRF 

(mean Likert scale, 4.5 ± 0.4). However, retina specialists gave relatively lower agreement 

on IRC (mean Likert scale, 3.6 ± 0.6), and were neutral (mean Likert scale, 3.1 ± 0.4) on the 

images that included more than two types of pathologies. (Supplementary Document 1).

Discussion

Our study adds to current literature demonstrating that a DL algorithm can effectively 

classify nAMD from normal eyes using OCT images, doing so with an extremely high 

performance (AUC of 0.999 at the image and patient-level). The novelty of our study stems 

from successful reproduction of the results in an ethnically distinct population. Moreover, 
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saliency maps demonstrated that our DL model focused on pathological features associated 

with nAMD, in agreement with what clinicians deem important for nAMD diagnosis. This 

adds transparency and interpretability to the DL algorithm.

We confirmed that our model, trained on a South Korean (predominantly Asian) dataset, 

performed well (AUC of 0.952 at the patient level) upon external validation on an American 

(predominantly Caucasian) dataset. This reflects the generalizability of our algorithm across 

geographic areas and ethnic differences. About OCT scans, generalization across 

populations is difficult because variations in ethnicity, age, and sex are known to 

significantly alter the appearance of retinal structures, even in the absence of disease 16. 

Furthermore, methodological and statistical considerations such as biased sampling, image 

quality, unknown systemic error and lack of adequate sample size may confound the results. 

Concerning AMD subtypes, polypoidal choroidal vasculopathy is a common subtype of 

AMD in Asian populations, while choroidal neovascularization secondary to AMD is the 

more common subtype in Western populations 28. The ability of the algorithm to perform 

well in a completely different ethnic population suggests that the OCT features that the DL 

model was extracting and using for decision-making are generalizable regardless of the 

subtype of AMD.

We believe that the generalizability of our algorithm was, in part, enhanced by the common 

use of the Heidelberg Spectralis (Heidelberg Engineering, Heidelberg, Germany) imaging 

system in both centres. The Heidelberg Spectralis is a favoured platform for the diagnosis 

and monitoring of macular diseases amongst retina specialists and is involved in many OCT-

based DL studies 18–22. With similar imaging conditions, this provided a favourable 

environment with reduced ‘noise’, contributing to the good performance of our algorithm 

across two different institutions.

Moving on to model explanation, saliency maps demonstrated that our DL model focused on 

pathological features associated with nAMD, in agreement with what clinicians deem 

important for nAMD diagnosis. This is seen on both internal validation (Figures 2–5; 

Supplementary Figures 3–6) and external validation (Supplementary Figure 6). This 

verification allows us to safely suggest that the DL model is making classifications based on 

pathological features rather than systemic errors that cannot be detected. A common 

systemic error that paradoxically results in the correct classifying patients with nAMD is 

poor-quality OCT images secondary to cataracts in the elderly. Since nAMD are more 

common in the elderly, there is a high chance that a patient with significant cataract would 

also have nAMD. Hence while elderly patients with significant cataract are correctly 

classified as patients with nAMD, it may not be based on the pathomorphological features of 

nAMD but instead, due to poor image quality. In contrast, saliency maps in our study 

showed that the areas of interest identified by our model are associated with clinical 

diagnoses of SRF, IRC, and PED 24.

A majority of the surveyed retina specialists (Supplementary Document 1) agreed that the 

developed DL algorithm was appropriately classifying images based on the clinical features 

of nAMD, specifically PED and SRF. However, when IRC and several pathologies were 

mixed, saliency maps could not highlight the lesions enough to be deemed satisfactory by 
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the retina specialists. This is because, as seen in the figures, PED and SRF are well 

highlighted, whereas in cases of mixed or IRC, saliency maps highlighted only small 

portions of these lesions. Also, one notable fact is the false positive cases shown in the 9 mm 

OCT scan in Supplementary Fig 8. The highlighted area shown in the false positive is the 

raised portion near the prelaminar optic nerve. Therefore, we can assume that DL infers the 

presence of nAMD from a structure that rises upward on the OCT scans. In our explorative 

analysis, the performance from 6 mm images was greater than that from 9 mm images 

(AUCs, 0.999 in 6 mm vs. 0.989 in 9 mm in internal test set) because the optic disc is not 

shown in 6 mm images. All of the external sets (UW dataset) were 9mm images, which may 

make performance somewhat lower. Finally, the performance of the DL algorithm for 

detecting macular lesions such as nAMD can be lowered when the OCT field contains the 

optic disc (e.g. 9 mm). Our study has several limitations. First, OCT scans with nAMD 

features were manually selected by a retina specialist, reducing the likelihood of including 

OCT images of other diseases. Second, our DL algorithm was trained on a very specific 

purified set of central 5-B-scan images with extremes in phenotypes and age was not 

matched. The performance of this model may be degraded in the real-world setting when 

confounded by other ocular pathology or in extrafoveal lesions. Third, this model may not 

be applicable to images acquired from other OCT platforms. Ideally, future studies would 

include images from different OCT manufacturers for further generalizability. In addition, 

our DL algorithm does not diagnose or detect nAMD in a real-world setting with many 

retinal diseases. This excellent performance was obtained in special controlled data 

including only normal and nAMD. Therefore, clinical applications could not be discussed 

based on current results. The features that the DL algorithm is focused on are not specific to 

nAMD, and the distinction between other retinal diseases such as dry AMD and diabetic 

retinopathy should be further investigated.

In conclusion, our proposed DL algorithm shows high performance for the differentiation of 

nAMD from normal OCT images in a Korean population, and generalized well to an 

ethnically distinct, American population. The model correctly focused on the macula and its 

surroundings to extract features associated with nAMD, specifically SRF and PED that were 

confirmed to be clinically relevant. Our present study adds to current literature by 

implementing visualization techniques on both internal and external validation datasets, 

improving the interpretability and transparency of DL algorithm.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synopsis

Deep learning shows high performance for the differentiation of neovascular age-related 

macular degeneration from normal OCT images and generalized well to an ethnically 

distinct. The model correctly focused on the macula and clinically relevant features.
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Figure 1. 
External test using data at the University of Washington. AUC, area under the receiver 

operating characteristic curve; AUPRC, area under the precision–recall curve.
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Figure 2. Representative OCT images of normal and neovascular age-related macular 
degeneration with saliency map.
Fig 2A shows an example of a normal OCT image with the saliency map. The attention is 

located at the concave part of the inner retina region of the fovea. This image is from 

enhanced depth imaging (EDI) OCT with the B-scan width of 6 mm. The trained network 

appeared to value inner retina at the foveal depression in normal eyes to make the 

classification. For the majority of normal OCT images in the test set, similar attention to the 

inner retina at the foveal depression was observed (Supplementary Fig 3). In Fig 2B, three 

components of nAMD, intraretinal fluid or cyst (IRC), subretinal fluid (SRF), and retinal 

pigment epithelial detachments (PED) were noted in the heatmap.
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Figure 3. Representative examples of subretinal fluid OCT images with saliency map.
Fig 3A and 3B were from the same patient at different levels of the B-scan. They show that 

the network located attention on the inner margin of subretinal fluid (SRF), and some on 

retinal pigment epithelial mottling. Both intraretinal cyst and SRF were noted in Fig 3C, and 

both pigment epithelial detachment and a small amount of SRF were noted in Fig 3D. More 

exemplary images of SRF are provided in Supplementary Fig 4.
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Figure 4. Representative examples of large pigmented epithelial detachment OCT images with 
saliency map.
It was found that the inner margin of the retinal pigment epithelial detachments (PEDs) were 

identified regardless of the size of the PED (small lesion in Fig 4A and large lesion in Fig 

4B) or a number of the PED (multiple PEDs in Fig 4C). In Fig 4D, there is a small PED with 

a relatively normal fovea contour without elevation. Both the fovea area and the PED were 

identified, and the algorithm still correctly predicted this image as a nAMD. More 

exemplary images of PED are provided in Supplementary Fig 5.
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Figure 5. Representative examples of intraretinal cyst OCT images with saliency map.
Fig 5A and 5B show intraretinal fluid or cysts (IRCs) of a relatively large size and Fig 5C 

shows IRCs of a relatively smaller size. Despite the differences in IRC, attention is located 

at the inner and outer margin of IRC. In Fig 5D, the entire IRC is noted in the saliency map. 

More exemplary images of IRC are provided in Supplementary Fig 6.
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