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Simple Summary: This study evaluates the prognostic capability of the 18fluorodeoxyglucose
([18F]FDG) positron emission tomography (PET)/computed tomography (CT) in patients with
anaplastic thyroid cancer (ATC) which can be used as a potential biomarker reflecting glycolysis.
ATC is a rare, but highly lethal disease with a one-year overall survival of 20%, and its prognostic
factors have rarely been investigated. In this study, survival data correlated with PET/CT derived
parameters provide evidence that FDG uptake assessed by PET/CT is a prognostic marker, which
may have a clinical impact on the management of patients with ATC.

Abstract: Anaplastic thyroid carcinoma (ATC) is a rare but highly lethal disease. Therefore, its
diagnosis at an early stage and a rapid and accurate establishment of a proper treatment strategy
is warranted. Tumor glycolysis assessed by 18fluorodeoxyglucose ([18F]FDG) positron emission
tomography (PET)/computed tomography (CT) is predictive of many cancers despite its limited
proven applicability to ATC. We investigated the prognostic capability of [18F]FDG PET/CT in
patients with ATC. Forty patients with ATC were subjected to [18F]FDG PET/CT for pre-treatment
evaluation. The tumor size and stage, overall survival (OS), and PET parameters, including the
maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion
glycolysis (TLG) were analyzed. The 1-year OS rate was 17.5% with a mean life expectancy of
7.1 months. Distant metastasis was detected solely using PET/CT in 37.5% of cases. High SUVmax,
MTV, and TLG were significantly associated with poor prognosis (p < 0.001, p = 0.002, and p < 0.001,
respectively). A significant difference (p < 0.001) was observed in OS between patients with a high
and low tumor SUVmax. Glucose metabolism assessed by [18F]FDG PET/CT was significantly
associated with the OS of patients with ATC. PET-derived parameters such as SUVmax, MTV, and
TLG are useful prognostic biomarkers for ATC.

Keywords: anaplastic thyroid carcinoma; [18F]FDG PET/CT; prognosis; glycolysis

1. Introduction

Anaplastic thyroid cancer (ATC) is a highly dedifferentiated cancer that retains only a
few characteristics of thyroid follicular cells [1–3]. ATC is rare, accounting for only 1.3–9.8%
of all thyroid cancers [1], but it represents over half of thyroid cancer-related deaths [4].
In addition, ATC is associated with a very poor prognosis [5,6]. The median survival
of patients with ATC is approximately 5 months, with a 1-year overall survival (OS) of
20% [1]. All patients with ATC are classified by the American Joint Committee on Cancer
(AJCC) TNM system as stage IV [7–9], owing to a poor disease prognosis. Therefore, it
is imperative to establish a rapid and definitive diagnostic method at the early stage of
this cancer because of its substantially rapid growth and aggressiveness. Although there
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are several management options and recommendations [10], there is no clear consensus
or unified treatment of choice. In most studies, larger tumor size, extrathyroidal invasion,
and distant metastasis are reported as prognostic factors [11,12], but these factors may not
be accurately evaluated prior to surgery. Contradictory results were reported for factors
such as age, sex, leukocytosis, and acute symptoms [13–17]. In particular, the usefulness of
prognostic factors for ATC before treatment should be further studied.

18Fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET)/computed
tomography (CT) is an imaging modality that visualizes glycolysis using a radioactive
biomarker called FDG, a glucose analogue. The [18F]FDG PET/CT is a well-established
method for the diagnosis, staging, and evaluation of treatment response, recurrence, and
prognosis in various malignancies. In particular, the prognostic role of [18F]FDG PET/CT
has been demonstrated in different cancers, including well-differentiated thyroid can-
cer [18]. The American Thyroid Association (ATA) guidelines for the management of
patients with ATC recommends the use of [18F]FDG PET/CT for adjunctive pre-treatment
radiological tumor staging [10]; [18F]FDG PET/CT is particularly valuable in evaluating
metastatic sites and determining tumor resectability. Considering the rarity of ATC, large-
scale studies to date have been limited, most have been published as case reports [19–24],
and only a few studies have investigated the role of [18F]FDG PET/CT in ATC [25–27].
Bogsrud et al. reported an intense FDG uptake on PET in ATC tumors from 16 subjects. A
review article indicated that FDG PET provides a higher sensitivity (66–100%) and speci-
ficity (79–90%) than conventional imaging methods in the follow up of medullary thyroid
cancer and ATC patients. Poisson et al. reported the benefit of FDG PET/CT in the initial
staging in 18 ATC patients. Additionally, they found that the intensity of FDG uptake was
suggestive of a poor prognosis. However, the various risk factors of ATC have not yet been
explored to determine the prognostic role of [18F]FDG PET/CT.

In this study, we aimed to examine the prognostic role of [18F]FDG PET/CT in a
relatively large cohort of patients with ATC and, thus, demonstrate its applicability as a
potential biomarker for ATC prognosis.

2. Patients and Methods
2.1. Study Subjects

In this retrospective study, we collected data from January 2012 to December 2020
of patients who were at least 20 years of age at the time of ATC diagnosis. The [18F]FDG
PET/CT was performed prior to any treatment, and the patients were then subjected
to standard treatments according to the ATA guideline [10]. The collected clinical data
included age, histopathology, lympho-vascular invasion, tumor size, lymph node status,
treatment modalities, and survival outcomes. The TNM stage was classified based on
the AJCC manual, 8th edition [7–9]. Enrolled patients with any other invasive cancer,
no electronic medical record, no PET/CT evaluation, any other inflammatory disease
(including autoimmune disease and infection), and organ failure were excluded from this
study. Patients who underwent PET/CT evaluation at other hospitals were also excluded
from this study to maintain uniformity in the PET/CT protocol. The study was approved
by the Institutional Review Board (IRB) of the Gangnam Severance Hospital, Korea. The
need for informed consent was waived under IRB approval because of the retrospective
study design.

2.2. PET/CT Imaging Protocol

All patients were fasted for at least 6 h and their blood glucose levels were confirmed
to be lower than 140 mg/dL before the administration of [18F]FDG (5.5 MBq/kg of body
weight) [28]. Sixty minutes after [18F]FDG intravenous injection, scanning was performed
using a dedicated PET/CT scanner (Biograph mCT, Siemens Healthcare Solutions USA,
Inc., Knoxville, TN, USA). Whole body low-dose CT images were obtained for attenuation
correction using automatic dose modulation with a reference of 40 mA and 120 kV. PET
data were then acquired from the skull base to the proximal thigh for 3 min per bed position
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in a three-dimensional mode. PET images were reconstructed with the ordered subset
expectation maximization algorithm. Maximum intensity projection, cross-sectional views,
and fusion images were generated and reviewed. Cross-calibration between the PET and
dose calibrator was conducted on a monthly basis.

2.3. PET/CT Imaging Analysis

Image analysis was performed using MIM 6.8.10 (MIM software Inc., Cleveland,
OH, USA). The PET/CT images were independently reviewed by two experienced nu-
clear physicians blinded to the imaging studies and clinical and pathologic results. The
physicians reached a consensus about the interpretation of the imaging finding.

For semi-quantitative evaluation, the standardized uptake value (SUV) was calcu-
lated by measuring the tumor absorption of [18F]FDG in the region of interest as follows:
SUV = (radioactivity concentration in region of interest (ROI))/(injected dose/patient’s
weight (kg)). The volume of interest was drawn over the primary thyroid cancer lesion on
the PET/CT images, and the maximum SUV (SUVmax) of the tumor was measured. An
iso-contour connecting outline was automatically produced that was equal to or greater
than each threshold of 41% of the SUVmax of the primary tumor on each PET/CT axial
image. According to the EANM procedure guideline for tumor imaging, the 3D iso-contour
at 41% of the maximum pixel value corresponds best with the actual dimensions of the
tumor [28]. By adopting the relative threshold of SUVmax as a cutoff, this method can
segment the heterogeneous lesions more reliably than by using fixed threshold. Multiple
lesions are automatically segmented at once. Metabolic tumor volume (MTV) was calcu-
lated by summation of the voxels of each PET/CT slice. Total lesion glycolysis (TLG) was
calculated by multiplying the selected PET volume by the average SUV within that volume
as follows: TLG = MTV × average SUV.

2.4. Statistical Analyses

OS was defined as the time from diagnosis to death from any cause. The data of
patients who did not exhibit relevant events were censored at the end of follow-up. Con-
tinuous variables between the two groups were compared using the Student’s t-test or
Mann–Whitney U test. Categorical variables were compared using the chi-square test
or Fisher’s exact test. For statistical analysis, all continuous variables were divided into
two groups; the specific cut-off values were determined using the Contal and O’ Quigley
method [29]. Spearman’s correlation analysis was used to evaluate the relationships be-
tween tumor size and PET parameters. Survival curves were obtained by the Kaplan–Meier
method, and two-group comparisons were performed using the log-rank test. Univariate
and multivariate Cox proportional hazard models were used to identify factors associated
with survival outcomes. The variables showing statistically significant differences in the
univariate analysis were used in the subsequent multivariate analysis.

Statistical analyses were performed using SPSS version 24 (SPSS Inc., Chicago, IL,
USA) software. A value of p < 0.05 was considered statistically significant.

3. Results
3.1. Patient Characteristics

The baseline characteristics and clinicopathologic features of all enrolled patients are
shown in Table 1. The analysis of the 40 patients with ATC revealed their mean age to
be 67.5 years (range, 41–85), and 50% were female. The 1-year OS was 18%, with a mean
OS of 7.1 months, consistent with previous study results [6,30,31]. Distant metastasis was
reported in 73% of patients, and the most frequently involved organs were the lung, bone,
and brain. Fifteen patients (37.5%) showed distant metastasis only on PET/CT.
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Table 1. Patient characteristics.

Patient Characteristics Value Percent

Total number of patients 40 100%
Sex (female) 20 50%

Age (year, mean) 67.5 ± 9.9
Tumor size (cm, mean) 5.3 ± 2.2

Stage *
IVA 4 10%
IVB 7 17%
IVC 29 73%

Distant metastasis
Distant node 22 55%

Lung 26 65%
Bone 7 18%
Brain 2 5%

Treatment
No treatment 1 3%

Surgery 13 33%
CTx 34 85%
RTx 31 78%

CTx + RTx 22 55%
Multimodality Tx 35 88%

Survival
1-year OS 17.5%

Mean OS (month) 7.1
PET parameters (mean)

SUVmax 20.7 ± 12.7
SUVpeak 17.9 ± 10.1

MTV 88.7 ± 82.1
TLG 843.0 ± 940.7

CTx, chemotherapy; RTx, radiation therapy; OS, overall survival; PET, positron emission tomography; SUVmax,
maximum standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion glycolysis. * AJCC stage
was determined based on the 8th edition.

3.2. PET Parameters

The mean values of SUVmax, MTV, and TLG were 20.7, 88.7, and 843.0, respec-
tively. Tumor size showed a moderate correlation with PET-derived tumor volumes (MTV:
ρ = 0.688, TLG: ρ = 0.633, p < 0.001 for both) but had no correlation with SUVmax (ρ = 0.278,
p = 0.083). The optimal cut-off values for SUVmax, MTV, and TLG were 17.97, 59.53 cm3,
and 604.64 g, respectively, as determined by the Contal and O’ Quigley method [29]. Pa-
tients with PET parameters greater than or equal to the cut-off value were categorized as
the high group, and patients with parameters less than the cut-off value were categorized
as the low group. Among all patients, 21 (52.5%) belonged to the high SUVmax group,
23 (57.5%) in the high MTV group, and 21 (52.5%) in the high TLG group. Figure 1 shows
representative [18F]FDG PET/CT images of patients with ATC exhibiting a high and low
FDG uptake.

3.3. Kaplan–Meier Survival Analysis

Figure 2 shows the Kaplan–Meier analyses of patients with ATC according to the
aforementioned PET-derived parameters. The OS was 347 days for patients with low
SUVmax as compared with an OS of 135 days for patients with high SUVmax (p < 0.001,
Figure 2a). Similarly, patients with low TLG had a significantly longer OS than those
with high TLG (OS 343 vs. 142 days, p < 0.001, Figure 2b). OS also showed a statistically
significant difference with respect to MTV (OS 349 vs. 163 days, p = 0.001).
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Figure 1. Representative 18fluorodeoxyglucose ([18F]FDG) positron emission tomography 
(PET)/computed tomography (CT) images of patients with anaplastic thyroid cancer and lung 
metastases. (a) The maximum intensity projection image of a 74-year-old female patient. (b) PET 
axial and (c) fusion axial images show intense FDG uptake in the thyroid tumor. The maximum 
standardized uptake value (SUVmax) was 35.98, and the patient expired 2.1 months after diagnosis. 
(d–f) The maximum intensity projection, PET axial, and fusion axial images of a 63-year-old female 
patient with a tumor SUVmax of 8.81. Her overall survival time was 8.1 months. 
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Figure 1. Representative 18fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET)/computed tomography
(CT) images of patients with anaplastic thyroid cancer and lung metastases. (a) The maximum intensity projection image of
a 74-year-old female patient. (b) PET axial and (c) fusion axial images show intense FDG uptake in the thyroid tumor. The
maximum standardized uptake value (SUVmax) was 35.98, and the patient expired 2.1 months after diagnosis. (d–f) The
maximum intensity projection, PET axial, and fusion axial images of a 63-year-old female patient with a tumor SUVmax of
8.81. Her overall survival time was 8.1 months.
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3.4. Univariate and Multivariate Analyses

The statistically significant variables for predicting OS in univariate and multivariate
analyses are shown in Table 2. No statistical difference was observed in the baseline
characteristics, including age, association with differentiated cancer, capsular invasion,
lymph node metastasis, and treatment modalities. According to the optimal cut-off value
of tumor size, 24 (60.0%) patients belonged to the large tumor group. Tumor size, local
extension, distant metastasis, SUVmax, MTV, and TLG were significant prognostic factors
in the univariate analysis (p = 0.007, p = 0.010, p = 0.031, p < 0.001, p = 0.002, and p < 0.001,
respectively). As a significant correlation was observed between MTV and TLG (r = 0.927,
p < 0.001), MTV and TLG models were separately analyzed. In the multivariate analysis,
SUVmax independently predicted OS with a hazard ratio (HR) of 5.105 (p = 0.010) in the
MTV model and 4.673 (p = 0.017) in the TLG model.

Table 2. Univariate and multivariate analyses of overall survival.

Univariate
Analysis

Multivariate
Analysis

(MTV Model)

Multivariate
Analysis

(TLG Model)

Patient
Characteristics HRs (95% CIs) p Value HRs (95% CIs) p Value HRs (95% CIs) p Value

Sex (Female) 2.929 (1.337–6.417) 0.006 1.032 (0.417–2.555) 0.945 1.038 (0.419–2.570) 0.936
Age (>64 years) 1.978 (0.937–4.173) 0.074

Tumor characteristics
Tumor size (>4.7 cm) 2.946 (1.344–6.460) 0.007 1.854 (0.780–4.410) 0.163 1.844 (0.796–4.271) 0.153

Association with
differentiated cancer 0.543 (0.237–1.245) 0.149

Capsular invasion 1.127 (0.309–4.108) 0.856
Local extension 4.999 (1.479–16.897) 0.010 3.720 (0.946–14.634) 0.060 3.343 (0.846–13.203) 0.085

Lymph node
metastasis 1.931 (0.670–5.562) 0.223

Distant metastasis 2.270 (1.078–4.779) 0.031 2.222 (0.957–5.160) 0.063 2.276 (0.997–5.194) 0.051
PET parameters
High SUVmax 6.558 (2.319–18.546) <0.001 5.105 (1.489–17.508) 0.010 4.673 (1.325–16.484) 0.017

High MTV 3.207 (1.516–6.781) 0.002 1.309 (0.474–3.611) 0.603
High TLG 4.239 (1.903–9.441) <0.001 1.515 (0.518–4.425) 0.448
Treatment
Surgery 0.459 (0.207–1.015) 0.054

R1 resection 3.198 (0.283–36.091) 0.347
CTx 1.360 (0.411–4.500) 0.615
RTx 0.891 (0.339–2.341) 0.815

Multimodality Tx 0.954 (0.363–2.508) 0.924

PET, positron emission tomography; SUVmax, maximum standardized uptake value; MTV, metabolic tumor volume; TLG, total lesion
glycolysis; CTx, chemotherapy; RTx, radiation therapy; Tx, therapy; HR, hazard ratio; CI, confidence interval.

4. Discussion

In this study, we evaluated the applicability of [18F]FDG PET/CT as a prognostic
marker in patients with ATC.

Given the rarity of ATC and the short-life expectancy of affected patients, obtaining
sufficient quantities of data from patients with ATC was difficult. Therefore, it was challeng-
ing to advance our understanding of the factors that may influence treatment responses and
the resulting survival rates. In the present study, survival datasets from 40 patients with
ATC were obtained and analyzed. The SUVmax of the tumor was a significant prognostic
factor in the multivariate analysis of OS. To the best of our knowledge, this is the first study
to identify the prognostic role of [18F]FDG PET/CT by analyzing PET-derived parameters
along with various risk factors.

The [18F]FDG PET-CT is a molecular imaging technique that can visualize glucose
consumption non-invasively in vivo using [18F]FDG, a glucose analogue. It is widely used
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to reveal tumor glucose metabolism in patients with various cancers [32–36]. Especially
in the preoperative setting, it is the most efficient and useful method for demonstrating
glucose consumption. The 2012 ATA guideline [10] suggests that [18F]FDG PET/CT can
detect GLUT1 glucose transporter overexpression in ATC cells, as it results in a significant
increase in FDG uptake [37]. The NCCN guideline also recommends PET/CT scans to
accurately stage the disease in patients with ATC [38]. Previous studies have reported the
significant role of FDG PET or PET/CT in ATC for staging, follow up, detecting residual or
metastatic disease, and assessing therapeutic response [23,25,26]. In these studies, FDG PET
scan findings altered the management recommendations in 25–50% of patients. Poisson
et al. were the first to show that FDG uptake is a significant prognostic factor for survival
in patients with ATC. However, this study, which was conducted a decade ago, included
only 18 patients and did not consider the effects of other prognostic factors [27].

In the present study, distant metastasis was detected solely by PET/CT in 15 patients
(37.5%); the locations of metastasis were found to be the lungs (7 patients), bones (6 patients),
distant lymph nodes (5 patients), and brain (1 patient). In particular, [18F]FDG PET/CT
was effective in identifying bone lesions, which may not be visible in CT images. PET/CT
is a preoperative non-invasive imaging modality that can be used for a whole body scan in
a single examination. In 4 out of 15 patients, distant metastases in more than two organs
were solely detected by PET/CT.

In the univariate analysis, PET parameters such as SUVmax, MTV, and TLG (p < 0.001,
p = 0.002, and p < 0.001, respectively) were found to be more reliable and significant
prognostic factors than tumor size (p = 0.007) or stage (p = 0.031). This finding has a
great clinical impact because FDG uptake, which reflects tumor glycolysis, can be a more
efficient prognostic indicator than the previously known risk factors of ATC; neither the
type of treatment modality nor R0 resection showed statistical significance in the prognosis.
However, it should be considered that a unified treatment method for ATC has not yet
been proposed and that the condition of the patient varies depending on the location
of occurrence even if the tumor burden is similar. Although sex as a risk factor is still
controversial, a multivariate analysis in a previous study showed that old age, node
invasion, capsular invasion, and the female sex were poor prognostic factors [39]. Tumor
size and distant metastasis is a significant predictor for OS in univariate analysis (p = 0.007,
and 0.031), but it was not significant in a multivariate analysis (p = 0.163, and 0.063). This
discrepancy may be due to multicollinearity and the relatively small number of sample size.
Considering the rapidly progressing characteristics of ATC, the disease can be dismal even
if there is no distant metastasis at the time of diagnosis. In addition, if there is a mass effect
such as an airway or vessel invasion, it could be lethal independently. In the multivariate
analysis, MTV and TLG were not identified as statistically significant factors for OS in each
model. There were several hypotheses that could explain this observation, including a
statistical correlation between SUVmax and volume-based parameters, low FDG uptake in
the tumor owing to necrosis, anatomical specificity such as a possible catastrophic airway
compromise, and the presence of lung metastasis with multiple nodules even if the volume
is small. Due to the multicollinearity and small number of samples, the statistical analysis
according to the type of surgery and T stage was limited. Instead, the analysis using a
cut-off value of tumor size and the presence of a local extension were performed in the Cox
proportional hazard model analysis.

The [18F]FDG PET/CT findings were expected to have a direct impact on the manage-
ment of patients with ATC because the data suggested that patients with a high tumor FDG
uptake had a poor prognosis, and such [18F]FDG PET/CT findings would allow for a more
aggressive treatment to be recommended in the early stages of disease. By additionally
detecting metastases with pre-treatment PET/CT, an appropriate treatment plan can be
established involving surgery, radiation therapy, and/or chemotherapy. In addition, by
providing accurate information to patients with a low life expectancy or to caregivers,
suitable assistance such as palliative or terminal health care can be provided.
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The present study had some limitations. First, this study was retrospectively per-
formed at a single institution. Second, as ATC itself has a wide physiopathological spectrum
and there is no universal treatment method, selection bias could have been reduced through
a more refined and homogenous patient group. Third, we measured SUV, a clinically ac-
cepted parameter for PET studies, to quantify FDG uptake. SUV itself can be influenced by
multiple factors such as plasma glucose and insulin levels, although this is an inevitable
point that all the researches using SUV face. Thus, further validation is warranted through
prospective multicenter studies with a larger number of patients in the future. Despite
these limitations, this study clearly identified the applicability of tumor FDG uptake to
predict the outcomes of patients with ATC.

This study revealed that PET-derived parameters can play a prognostic role in ATC
and can have a great clinical impact. The diagnosis and initial evaluation of ATC are still
challenging and critical [40,41]. In cancer cells, GLUT1 expression, tumor proliferation,
and the resulting glucose uptake reflect tumor aggressiveness. We believe that future
follow-up studies on the correlation with radiomics or cellular molecular marker related to
FDG PET/CT could solidify the importance of tumor glucose metabolism and resulting
impacts on the prognosis in patients with ATC. Pre-treatment [18F]FDG PET/CT in patients
with ATC to determine the extent of disease as well as for prognosis can facilitate multi-
disciplinary team engagement and coordination for selected patients. In the future, the
application of [18F]FDG PET/CT needs to be particularly specified in the ATC guidelines.

5. Conclusions

Glucose metabolism of the tumor as assessed by [18F]FDG PET/CT was found to be
related with the outcomes of patients with ATC. PET/CT was excellent for detecting distant
metastasis, and PET-derived parameters such as SUVmax, MTV, and TLG were significantly
associated with the OS of patients with ATC. Especially, SUVmax independently predicted
OS in the multivariate analysis. FDG uptake assessed by pre-treatment PET/CT is a
significant prognostic marker, which may have a clinical impact on the management of
ATC patients.
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