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Purpose This study aimed to investigate the optimal threshold value in Hounsfield units (HU) 
on CT to detect the solid components of pulmonary subsolid nodules using pathologic invasive 
foci as reference.
Materials and Methods Thin-section non-enhanced chest CT scans of 25 patients with patho-
logically confirmed minimally invasive adenocarcinoma were retrospectively reviewed. On CT 
images, the solid portion was defined as the area with higher attenuation than various HU 
thresholds ranging from -600 to -100 HU in 50-HU intervals. The solid portion was measured as 
the largest diameter on axial images and as the maximum diameter on multiplanar reconstruc-
tion images. A linear mixed model was used to evaluate bias in each threshold by using the 
pathological size of invasive foci as reference.
Results At a threshold of -400 HU, the biases were lowest between the largest/maximum diam-
eter of the solid portion of subsolid nodule and the size of invasive foci of the pathological 
specimen, with 0.388 and -0.0176, respectively. They showed insignificant difference (p = 
0.2682, p = 0.963, respectively) at a threshold of -400 HU.
Conclusion For quantitative analysis, -400 HU may be the optimal threshold to define the solid 
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portion of subsolid nodules as a surrogate marker of invasive foci.

Index terms   Lung Neoplasms; Solitary Pulmonary Nodule; Adenocarcinoma of Lung; 
Multidetector Computed Tomography

INTRODUCTION

Subsolid nodules (SSNs), also known as ground-glass nodules, include nodules with hazy 
increased attenuation that do not obscure underlying bronchial structures or pulmonary ves-
sels (1). The presence of a solid component in SSNs suggests its invasiveness and malignancy. 
Therefore, the presence and size of the solid portion are important for risk stratification and 
treatment planning (2, 3). 

In the 2017 Fleischner guidelines, when the size of persistent SSNs with a solid component 
is more than 6 mm, malignancy is highly suspected compared to when the size is larger than 
6 mm without a solid portion (2). According to the Lung CT Screening Reporting and Data 
System, SSNs with a solid component > 6 mm or a growing solid component are classified 
into category 4, whereas pure SSNs are categorized into category 2 or 3 (4). In lung cancer 
staging by the American Joint Committee on Cancer (8th edition), the largest diameter of a 
solid component of ground-glass nodules is measured on the multiplanar reconstruction 
(MPR) image, and diameters of up to 1, 2, and 3 cm are cT1a, cT1b, and cT1c, respectively (5). 

Defining and measuring the solid portion of SSNs are important. However, defining SSNs 
is a challenging task (6, 7). Conventionally, it is based on the visual finding of individual as-
sessment. Furthermore, the assessment of SSNs depends on the qualitative description from 
the individual radiologists with different CT scan protocols. Therefore, intra-observer and in-
ter-observer variability among experienced chest radiologists cannot be avoided (8-10). 
Quantitative measurement of SSNs and its solid component may improve the accuracy and 
reduce inter-observer variability for differential diagnosis of SSNs. Few studies have evaluat-
ed the threshold attenuation for the solid portion indicating invasion foci on CT (11-13).

Despite these approaches, a quantitative threshold to determine the solid component of 
ground-glass nodules has not been established. Therefore, our study aimed to establish the 
optimal CT threshold value in Hounsfield units (HU) for detecting the solid components of 
SSNs.

MATERIALS AND METHODS

The study was approved by the Institutional Review Board of Gangnam Severance Hospi-
tal. Clinical data were reviewed from medical records (IRB No. 3-2016-0306). Given the retro-
spective nature of the study and the use of anonymized data, requirements for informed con-
sent were waived.

PATIENTS
Twenty-five patients who underwent surgical resection of persistent SSNs and had patho-
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logically confirmed minimally invasive adenocarcinoma (MIA) in Gangnam Severance Hos-
pital were consecutively and retrospectively included. MIA was defined as lepidic-predomi-
nant adenocarcinoma measuring up to 3 cm with an invasive component measuring up to 
0.5 cm and lacking lymphatic, vascular, alveolar space, or pleural invasion (5). 

CT PROTOCOL
Standard CT images were acquired using two CT scanners: a 16-slice multidetector CT 

(MDCT) scanner (Somatom Sensation 16; Siemens Medical Solutions, Erlangen, Germany) 
and a 64-slice MDCT scanner (Somatom Sensation 64; Siemens Medical Solutions). Non-en-
hanced CT scan was performed at a tube potential of 120 kVp with automatic exposure con-
trol (100–200 mA). Axial images were reconstructed at a section width of 1 mm with 1-mm in-
terval by filtered back projection technique and sharp convolution kernel. 

CT IMAGE ANALYSIS
The solid components of SSN more than the cut off value were assumed to be direct surro-

gate markers to the invasive foci of pathologic specimen. The solid component of SSNs was 
defined as the area with high attenuation than a certain threshold in HU.

All pre-operative CT images of enrolled patients were analyzed with a commercial pro-
gram (Aquarius iNtuition Ver. 4.4.12; TeraRecon, Inc., Foster City, CA, USA). The largest di-
ameter of the solid portion is estimated on the axial image, and the maximum diameter of 
the solid portion is estimated on the MPR image in this program by setting a specific value 
and masking it in the lung window setting (W: 1400; L: -500) (Fig. 1). The diameter of lesions 
more than the threshold attenuation on each image was measured independently by two ra-
diologists (C.P. and T.K), with 10 years and 25 years of experience in chest CT, respectively. 

Fig. 1. Measurement of the largest diameter of the solid portion on axial 
images.
Lesions with higher than threshold attenuation are regarded as solid 
portions and marked with blue. The largest diameter is then measured 
by an individual. Threshold attenuation is arranged from the top left 
(-600 HU) to the bottom right (-100 HU). The largest diameter of the sol-
id portion decreases as threshold attenuation increases.
HU = Hounsfield units
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Various thresholds ranging from -600 to -100 HU were applied in 50-HU intervals.

CATEGORICAL ASSESSMENT
Twenty-five pathologically proven MIA SSNs were categorized into radiologic adenocarci-

noma in situ (AIS), MIA, and invasive adenocarcinoma (IA) based on criteria of the measured 
solid portion on CT at each HU threshold from -600 HU to -100 HU: 0 mm, 0 mm to 5 mm, and 
larger than 5 mm. Classification was performed in both axial and MPR images, respectively.

STATISTICAL ANALYSIS
All continuous variables were expressed as mean ± standard deviation. Categorical vari-

ables were summarized as frequencies or percentages. Data normality was evaluated using 
Shapiro-Wilk test. Bias between CT measurement of the solid portion and invasive foci on 
pathologic specimen was defined as the mean difference between the largest diameter of the 
solid component on the CT image and pathological invasive focus. It was evaluated with lin-
ear mixed model using Bonferroni’s method for considering repeated measurements from 
various thresholds. Inter-observer reproducibility in measuring the solid portions on axial 
and MPR images was evaluated with the intraclass correlation coefficient. A p value < 0.05 
was considered statistically significant. For analysis, R (version 3.3.1.; R Foundation for Sta-
tistical Computing, Vienna, Austria) was used.

RESULTS

PATIENT AND LESION CHARACTERISTICS
The mean age of the 25 patients was 55.9 ± 12.7 years. Seven male patients (28%) were in-

cluded in this study. The mean size of SSN was 9.2 ± 1.33 mm, and the mean attenuation was 
-539.1 ± 96 HU. The mean size of invasive foci, confirmed by pathology, was 3.56 ± 1.33 mm. 

SEMI-QUANTITATIVE CT ANALYSIS ON AXIAL AND MULTIPLANAR 
RECONSTRUCTED IMAGES 

The largest size of the solid portion on the axial image at each HU threshold from -600 HU 
to -100 HU in 50 HU intervals is shown in Table 1. At a threshold of -400 HU on the axial im-
age, the bias was lowest between the measured solid components of SSNs and pathologically 
confirmed invasive foci (0.388), showing insignificant difference (p = 0.2682) (Fig. 2).

The maximum size of the solid portion on the MPR image at each HU threshold from -600 
HU to -100 HU in 50 HU intervals is shown in Table 1. Compared with the analysis on the axi-
al image, the solid lesion component was larger on the MPR image. The measurements of 
solid components were not significantly different from the invasive component size on pa-
thology at -400 HU threshold (p = 0.963). Similarly, at a threshold of -400 HU on the multipla-
nar reconstructed image, the bias was lowest (-0.0176) between the measured solid compo-
nents of SSNs and pathologically confirmed invasive foci (Fig. 3). Inter-observer agreement in 
measuring the solid portion on axial and MPR images was excellent, with 0.985 and 0.961, re-
spectively. 
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CATEGORICAL ASSESSMENT
Radiologic classification of the 25 SSNs is summarized in Table 2 and Fig. 4. On both axial 

and MPR images, 25 pathologically proven MIA SSNs were categorized into 20 AIS and 5 MIA 
at -100 HU threshold and 4 MIA and 21 IA at -600 HU threshold. At a threshold of -400 HU on 
the axial image, 19 (76%) SSNs were classified into MIA, which showed the highest accuracy. 

Table 1. Maximum Sizes of the Solid Portion of Subsolid Nodules on Axial and MPR Images

Threshold 
    (n = 25)

Mean Size (mm) ± Standard Deviation Mean Difference (Bias) p-Value

-100 HU
Axial 0.26 ± 0.68 3.296 < 0.001
MPR 0.31 ± 0.87 3.247 < 0.001

-150 HU
Axial 0.50 ± 0.94 3.057 < 0.001
MPR 0.55 ± 1.06 3.014 < 0.001

-200 HU
Axial 0.89 ± 1.24 2.668 < 0.001
MPR 0.93 ± 1.31 2.630 < 0.001

-250 HU
Axial 1.38 ± 1.58 2.182 < 0.001
MPR 1.39 ± 1.60 2.630 < 0.001

-300 HU
Axial 1.88 ± 1.67 2.171 < 0.001
MPR 2.00 ± 1.67 1.565 < 0.001

-350 HU
Axial 2.47 ± 1.88 1.094 0.002
MPR 2.76 ± 2.22 0.804 0.034

-400 HU
Axial 3.17 ± 1.95 0.388 0.268
MPR 3.58 ± 2.39 -0.018 0.963

-450 HU
Axial 4.07 ± 2.07 -0.514 0.142
MPR 4.52 ± 2.39 -0.962 0.011

-500 HU
Axial 4.97 ± 2.17 -1.409 < 0.001 
MPR 5.44 ± 2.47 -1.882 < 0.001 

-550 HU
Axial 6.25 ± 2.22 -2.693 < 0.001
MPR 6.67 ± 2.34 -3.109 < 0.001

-600 HU
Axial 7.25 ± 2.50 -3.686 < 0.001
MPR 7.75 ± 2.56 -4.186 < 0.001

The mean size of pathologically confirmed invasive foci is 3.56 ± 1.33 mm. 
HU = Hounsfield units, MPR = multiplanar reconstruction
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DISCUSSION

This study demonstrated that a threshold value which defines the solid component of MIA 
on the CT image of -400 HU showed the best performance. Both the largest diameter and the 
maximum diameter of the solid portion exhibited the lowest difference with the diameter of 
the pathologically confirmed solid portion on -400 HU, without significant difference. Bias 
was lower in the maximum diameter on the MPR image than in the largest diameter on the 
axial image. This finding may also be because the maximum diameter is measured in 3D di-
mension in pathology (14). However, -400 HU threshold on the axial image showed the high-
est accuracy for predicting MIA (76%). A threshold of -400 HU to -300 HU on both axial and 
MPR images showed relatively high accuracy for predicting MIA. As the threshold increased 
from -600 HU to -100 HU, the solid portion on CT reduced with increasing number of SSNs 
classified as AIS, indicating underdiagnosis. By contrast, as the threshold decreased from -100 
HU to -600 HU, the solid portion on CT enlarged with increasing number of SSNs classified 
as IA, indicating overdiagnosis. Clinicians can use the lower HU threshold if they do not 
want to underdiagnosis the MIA as an AIS. Conversely, if clinicians do not want to overdiag-
nosis the MIA as an IA, they can use the relatively higher HU threshold.

In CT scan, the HU is proportional to the degree of X-ray attenuation (15), and attenuation 
of each pixel is related to tissue density (16). Normal alveolar structure and air space repre-
sent very low density, which is near -950–-850 HU. However, as a tumor grows, cellularity in-
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Fig. 2. Bar graph of bias between invasive foci and largest diameter of the solid portion on axial images 
along CT HU threshold with mean value and 95% confidence interval.
The dotted line represents the mean size of pathologically confirmed invasive foci (3.56 mm).
HU = Hounsfield units
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Fig. 3. Bar graph of bias between invasive foci and maximum diameter of the solid portion on multiplanar 
reconstruction images along CT HU threshold with mean value and 95% confidence interval.
The dotted line represents the mean size of pathologically confirmed invasive foci (3.56 mm).
HU = Hounsfield units

creases with high density and appears as high HU on CT, which is higher than the threshold, 
although it is difficult to differentiate with fibrosis, vasculatures, or the collapse of alveolar 
spaces (17, 18). According to the 2015 WHO classification, invasive foci of MIA are defined as 
either any histologic subtype other than a lepidic pattern (such as acinar, papillary, micropap-
illary, or solid) or tumor cells infiltrating myofibroblastic stroma (14). Thus, we can assume 
that the density or cellularity of invasive foci in SSNs may be higher than tissue density or cel-
lularity of approximately -400 HU empirically as a result of this study, even though not exactly 
-400 HU, suggesting higher cellularity or density than non-invasive tumor lesion with lepidic 
cellular growth or normal structures.

Some studies expended effort to set HU threshold for the solid lesions of SSNs (11-13) and 
tend to suggest a relatively high HU value as threshold (11, 12). Matsuguma et al. (11) used 
-160 HU for the cut off value on the lung window to define the solid portion of SSNs. Similar-
ly, Ko et al. (12) used -188 HU for the threshold and regarded the part of the nodule that 
showed higher attenuation as a solid part. The Fleischner guidelines recommended mea-
surement of the solid component with narrow and/or mediastinal setting, which may indi-
cate HU threshold near -150 HU considering the width and level of mediastinal setting (2, 
19). Meanwhile, Cohen et al. (13) suggested that segmentation of the solid component shows 
the best performance at a threshold of -350 HU, and measurements on mediastinal windows 
(window width, 400 HU; level, 30 HU) were significantly smaller than the actual sizes of the 
invasive components. In the same context, Lee et al. (20) compared two different thresholds, 
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namely, -160 HU and -400 HU. They concluded high diagnostic accuracy in -400 HU for deter-
mining the presence of solid components of SSNs, whereas low sensitivity and negative pre-
dictive value in -160 HU. Similarly, we showed -400 HU as a threshold value for defining the 
solid component of SSNs. The high HU threshold is a conservative suggestion, which may 
overlook the actual solid portion; however, as in our suggestion with a lower threshold, it can 
be observed that it fits well.

Several recent technological approaches are available to analyze SSN characteristics by us-

Table 2. Classification of SSNs by Size of the Solid Portion on CT

Threshold (n = 25) AIS MIA IA
-100 HU

Axial 20   5   0
MPR 20   5   0

-150 HU
Axial 18   7   0
MPR 18   7   0

-200 HU
Axial 14 11   0
MPR 14 11   0

-250 HU
Axial 11 14   0
MPR 11 14   0

-300 HU
Axial   7 18   0
MPR   7 18   0

-350 HU
Axial   6 17   2
MPR   6 15   4

-400 HU
Axial   2 19   4
MPR   2 15   8

-450 HU
Axial   2 13 10
MPR   2 11 12

-500 HU
Axial   0 13 12
MPR   0   9 16

-550 HU
Axial   0   7 18
MPR   0   5 20

-600 HU
Axial   0   4 21
MPR   0   4 21

AIS = adenocarcinoma in situ, HU = Hounsfield units, IA = invasive adenocarcinoma, MIA = minimally inva-
sive adenocarcinoma, MPR = multiplanar reconstruction, SSNs = subsolid nodules
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ing CT textures, radiomics, or even artificial intelligence and deep learning (21-24). Chae et 
al. (21) reported that higher kurtosis is a significant differentiator of pre-invasive lesions from 
IA in SSNs. Son et al. (22) argued that the 75th percentile CT attenuation value and entropy 
can help distinguish them. Moreover, radiomics and deep learning have recently shown high 
performance in distinguishing IA along SSNs with an area under the curve more than 0.9 (23, 
24). However, these complex methods are difficult to apply in daily practice, and further vali-
dation is needed. Our -400 HU threshold proposal is easy to apply as the default setting in 
PACS like the mediastinum setting, with excellent inter-observer agreement and high specific-
ity for invasiveness, and even higher accuracy for real pathologically confirmed size of inva-
sive foci.

This study has a number of limitations. First, it was a single-center retrospective study, and 
bias could not be avoided. Second, the study design only included pathologically confirmed 
MIA. No data were available for pre-invasive lesions, such as atypical adenomatous hyperpla-
sia or AIS, and IA, and this can be considered as selection bias. Third, the sample size was 
small. A future multi-center study with large sample size involving other pre-invasive lesions 
is warranted. Finally, direct pathologic comparison was not conducted between CT showing 
solid portion and that exhibiting invasive foci of tissue. Solid portions of SSNs have a tendency 
to represent invasive foci, but they do not directly correspond with invasive foci (25). However, 
by setting a threshold attenuation of -400 HU for the solid portion of SSNs like in our study, the 
maximum diameter of the solid portion of SSNs can be easily and rapidly acquired without 
statistical difference with pathologically confirmed solid portion and with great inter-observer 
agreement.
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Fig. 4. Stacked bar graph of 25 MIA SSNs for classification into radiologic AIS, MIA, and IA based on criteria for the measured solid portion on 
CT at each HU threshold.
A, B. Radiologic classification of the 25 SSNs, based on axial images (A) and multiplanar reconstruction images (B).
AIS = adenocarcinoma in situ, HU = Hounsfield units, IA = invasive adenocarcinoma, MIA = minimally invasive adenocarcinoma, SSNs = sub-
solid nodules 
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In conclusion, -400 HU might be the optimal threshold to define the solid component of 
SSNs with the lowest bias and excellent inter-observer agreement. This threshold value is po-
tentially helpful as a surrogate marker of invasive foci and to differentiate part-solid nodules 
from pure ground-glass nodules for guidelines. 
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폐의 아고형결절에서 침습적 병소를 검출하기 위한 
반-정량 분석을 통한 최적의 CT 임계 값 결정

이선용1 · 이다현1 · 이재호1 · 이성수2 · 한경화3 · 박철환1 · 김태훈1*

목적 병리학적 침습성 병소를 기준으로 폐 아고형결절의 고형 부분을 진단하기 위한 최적의 

CT 임계값을 알아보고자 하였다.

대상과 방법 병리적으로 최소 침습성 선암이 확진된 25명의 환자에 대해 비조영증강 흉부 CT 

영상을 후향적으로 분석하였다. CT 영상에서 고형 부분은 -600부터 -100 Hounsfield units 

(이하 HU) 단위 사이에서 50 HU 간격의 다양한 임계치보다 높은 감쇠를 나타내는 영역으로 

정의되었다. 각 임계치에서 고형부분의 축상 영상 최대 직경과 다면재구성 영상 최대 직경을 

각각 측정한 후, 선형 혼합 모델을 이용하여 병리적 침습성 병소 크기와 비교하였다. 

결과 -400 HU 단위의 임계값에서 아고형결절의 고형 부분의 크기와 침습성 병소의 크기는 

통계학적으로 유의미한 차이를 보이지 않았으며(축상 영상: p = 0.2682, 다면재구성 영상: p = 

0.963) 오차가 가장 적었다(축상 영상: 0.388, 다면재구성 영상: -0.0176).

결론 아고형결절의 침습성 병소를 진단하기 위해, -400 HU 단위가 고형 부분을 정의하는 최

적의 정량 분석 임계값일 수 있다.
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