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Bayesian adaptive model 
estimation to solve the speed 
accuracy tradeoff problem 
in psychophysical experiments
Jongsoo Baek1,5 & Hae‑Jeong Park1,2,3,4,5*

Most psychological experiments measure human cognitive function through the response time and 
accuracy of the response to a set of stimuli. Since response time and accuracy complement each other, 
it is often difficult to interpret cognitive performance based on only one dependent measurement 
and raises a speed‑accuracy tradeoff (SAT) problem. In overcoming this problem, SAT experimental 
paradigms and models that integrate response time and accuracy have been proposed to understand 
information processing in human cognitive function. However, due to a lengthy SAT experiment for 
reliable model estimation, SAT experiments’ practical limitations have been pointed out. Thus, these 
limitations call for an efficient technique to shorten the number of trials required to estimate the 
SAT function reliably. Instead of using a block’s stimulus‑onset asynchrony (SOA) accuracy with long 
block‑based task trials, we introduced a Bayesian SAT function estimation using trial‑by‑trial response 
time and correctness, which makes SAT tasks flexible and easily extendable to multiple trials. We 
then proposed a Bayesian adaptive method to select optimal SOA by maximizing information gain 
to estimate model parameters. Simulation results showed that the proposed Bayesian adaptive 
estimation was highly efficient and robust for accuracy and precision of estimating SAT function by 
enabling "multiple‑step ahead search."

In many psychophysical experiments (e.g., Stroop, Flanker), the primary measurements for behavior performance 
are response speed and accuracy. Despite specific information on each measure, researchers often focus on one 
measurement type while ignoring the other. However, response speed usually depends on accuracy, for example, 
the shorter response time (RT) with lower accuracy or vice versa. Thus, ignoring one aspect makes it difficult to 
interpret the other result correctly. This is called the speed-accuracy tradeoff (SAT). Inter-dependency between 
speed and accuracy should be considered to understand human cognitive processing.

Further, a simple RT or accuracy measurement does not provide insight into the accumulation of information 
over time. When there is no temporal constraint for a response, participants tend to respond to the stimulus when 
confident about their responses. That is, most responses are made with sufficient RT and high accuracy. Thus, 
experimental data do not include accuracy for quick responses (i.e., cognitive performance when the internal 
processes are occurring).

To study additional details about human information accumulation, researchers have developed the SAT 
experiment, a class of experimental manipulations by spreading or limiting RT over a wide range of time, and 
measurement accuracy as a function of RT. In a typical SAT experiment, participants are asked to change the 
strategy for decision-making and responding, emphasizing either fast or accurate response—with various cues: 
verbal instruction, payoffs, response deadline, or/and response-signals. For example, with the response-signal 
 manipulation1, participants can respond only during a response-signal with a certain duration being given. Each 
response-signal is presented for every trial or block after diverse stimulus-onset asynchrony (SOA)—the elapsed 
time between stimulus onset and response-signal. The stimulus was selected with the method of constant stimuli 
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(MCS), where a fixed set of SOA is predetermined by the experimenter and repeatedly presented in random 
order of SOA blocks.

Participants should respond quickly in short SOA conditions but have enough time to prepare responses in 
long SOA conditions. In this manipulation, mean RT and accuracy can be calculated for each SOA condition, 
and mean RT is plotted against accuracy. The SAT function, the accuracy as a function of mean RT, is known to 
follow a conditional accuracy function form:

where p is accuracy, λ the asymptotic performance, γ the rate parameter for the change of accuracy as a function 
of T, δ the x-axis intercept and µ an offset in the y-axis where accuracy begins to rise above chance performance 
(i.e., d′ = 0), and T is response  time2. For example, in a two-alternative forced-choice task in which the chance 
level is 0.5, the SAT function can be expressed by:

where p is probability correct. Mean RT and accuracy are fitted to the model with maximum likelihood method 
or least square method to estimate SAT function parameter.

Although SAT function provides detailed information about cognitive processes by measuring performances 
at multiple processing time points, trial numbers and experimental time for measuring SAT function is often 
demanding. This is because data from diverse SOA levels are required to fit the SAT curve and because the accu-
racy at each SOA level can be reliably evaluated with enough trials for the SOA (Fig. 1a). Indeed, SAT experiments 
are mainly based on long blocked trials to achieve sufficient precision for different SOA levels.

Since the SAT procedure requires sufficient data collection for multiple data points (i.e., SOA level), experi-
mental time could be several times longer in SAT experiment than in the non-SAT experiment. For example, 
a non-SAT version of the Flanker experiment collects 100 responses without restricting response times; an 
experiment with SAT manipulation could require 800–1000 trials, 100 trials for each of the eight SOA levels. If 
the research design includes other variables (e.g., congruency), experimental time gets even longer. The burden-
some data collection blocks the popularity of SAT experiments in psychological laboratories. Furthermore, it is 
not easy to run such experiments for special populations who have problems maintaining attention for a long 
time, such as patients, the elderly, or children. Thus, optimizing the SAT procedure is required for a quick and 
efficient estimation of the SAT function.

To make it efficient in data acquisition, we introduced an adaptive approach to estimate SAT function, which 
has often been used in the cognitive model parameter  estimation3–8. The adaptive design recursively processes 
the model parameters and optimal stimulus selection based on the previous and real-time response data. The 
optimal stimulus is determined to maximize information gain to estimate the unknown model parameter reliably.

For the adaptive approach, a long block-based conventional SAT task, which is inevitable for evaluating 
accuracy for the SOA of the block, may not be appropriate. Thus, estimation of the SAT function in an adaptive 
way calls for manipulation of SOA for a single trial or shorter blocked stimulation. In the current paper, we 
propose a single trial-based estimation of SAT with diverse SOA (Fig. 1b). In the conventional block-based SAT 
experiment, the number of SOA levels is often limited to 5–10 conditions since the number of stimuli should 
be high enough to calculate accuracy with sufficient precision for each SOA level. Thus, the blocked approach 
results in a lower resolution on the temporal scale (several bins of SOA), while higher resolution in the accuracy.

Therefore, we developed a method to estimate SAT function based on a single trial or a short block (batch) 
trial data for an SOA by utilizing data for diverse SOA levels. In this approach, a high temporal resolution com-
pensates for the lower resolution of accuracy in estimating the SAT function. The advantage of a single-trial or 

(1)p = �

(

1− exp−γ (T−δ)
)

+ µ for T > δ, otherwise p = 0

(2)p = �

(

1− exp−γ (T−δ)
)

+ 0.5

Figure 1.  The binary decision problem for SAT. (a) Conventional SAT function estimation using a limited 
number of SOA (response time) bins and high-precision response accuracies for those bins. (b) Current SAT 
function estimation using responses’ binarized correctness at various response times or SOAs.
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shorter block approach we prefer is its adequacy in terms of the adaptive design. Based on the single trial-based 
method, we propose an adaptive stimulation technique to estimate the SAT function.

The current paper is composed of three main parts. First, we describe a mathematical formulation for the 
single trial-based SAT function estimation. Second, we present a Bayesian formulation for the adaptive design 
technique to estimate SAT function. Third, we present simulations for the trial-based estimation and adaptive 
design technique and evaluate its performance compared to the convention SAT parameter estimation technique. 
To be more specific, we compared four SAT model estimation techniques with (1) conventional maximum like-
lihood method (procedure 1), where SAT model was fitted to simulated data with mean RT and accuracy for 
each block with a different SOA; (2) maximum likelihood estimation (procedure 2), where trial-by-trial RT and 
correctness was used for model fit, without averaging RT and correctness by SOA or RT; (3) Bayesian parameter 
estimation using trial-by-trial data (procedure 3) as a Bayesian version of procedure 2; and (4) Bayesian adaptive 
parameter estimation using trial-by-trial data (procedure 4) as an adaptive version of procedure 3. The procedures 
2, 3, and 4 we introduced in this study are separately evaluated to show the performance increase according to 
additive features in the model estimation. Figure 2 explains the Bayesian adaptive estimation scheme for SAT 
function used in the current simulation.

We expect the current approach to providing a new practical scheme to explore human performance con-
cerning speed and accuracy.

Results
Results showed that the procedure for fitting trial-by-trial data using Bayesian estimation with optimal stimulus 
selection was the most efficient and robust for accuracy and precision of estimating SAT function and parameters.

The Bayesian adaptive procedure with optimal stimulus selection. Figure 3a–c show the history 
of parameter estimates (λ, γ, δ respectively) for the virtual observer 1 with Procedure 4. The mean estimates of 
parameters (blue) converged to the true parameter (red), and the precision of the estimated parameters increased 
with the trial number. Shaded areas represent 68.2% of the half-width of the credible interval (HWCI) averaged 
over simulations. For λ, the average bias became less than 0.023 after 128 trials, and 0.021 after 256 trials, and 
further decreased to 0.017 after 512 trials, 0.012 after 1024 trials, and 0.007 after 2048 trials. The average bias for 
γ was 5.322 after 128 trials, 4.071 after 256 trials, and further decreased to 2.626 after 512 trials, 1.586 after 1024 
trials, and 0.983 after 2048 trials. For δ, the average bias was 0.033 after 128 trials, and 0.025 after 256 trials, and 
further decreased to 0.018 after 512 trials, 0.013 after 1024 trials, and 0.008 after 2048 trials. The average 68.2% 
HWCI of λ started at 0.035 in the first trial, and decreased to 0.032 after 128 trials, 0.018 after 512 trials, and 
0.009 after 2048 trials for λ; started at 9.752 in the first trial, and decreased to 5.481 after 128 trials, 2.742 after 

Figure 2.  The overall procedure of the Bayesian adaptive estimation for SAT function. From a prior p0(θ) , 
model parameter θ is estimated in a Bayesian update rule. After the t-th trial, the prior distribution pt(θ) at the 
t-th trial is updated to the posterior distribution pt(θ |rx) with the observer’s binarized response rx (correct or 
incorrect) for a stimulus with an RT x by Bayes rule. See Method section for details.
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512 trials, and 1.164 after 2048 trials for γ; started at 0.135 in the first trial, and decreased to 0.042 after 128 trials, 
0.022 after 512 trials and 0.011 after 2048 trials for δ.

Figure 3d–f shows the accuracy and precision of the estimated SAT functions obtained with 128, 512, and 
2048 trials. The true SAT functions are plotted as red curves, and the estimated functions are shown as blue 
curves. Shaded areas represent the 68.2% HWCI of the estimated functions over simulations. With increasing trial 
numbers, the procedure improved accuracy (decreasing discrepancy between blue and red curves) and precision 
(reducing shaded area) of the estimated SAT functions. It took less than 100 trials to recover the SAT function’s 
general shape (average absolute bias = 0.020) and decreased to below 0.019 after 128 trials, 0.011 after 512 trials, 
and 0.005 after 2048 trials. The average 68.2% HWCI became less than 0.021 after 128 trials, and decreased to 
below 0.012 after 512 trials and 0.006 after 2048 trials. The results indicate that Procedure 3 can rapidly estimate 
the true SAT function with only a small number of trials compared to the conventional SAT procedure.

Figure 3.  Results of simulations with the Bayesian adaptive estimation (Procedure 4). (a–c) Accuracy and 
precision of λ, γ, δ estimation. The mean of estimated parameters (blue curve) approached the true parameter 
(red line). HWCI of estimates also quickly decreased as trials were iterated. (d–f) Accuracy and precision of the 
estimated SAT function were obtained with 128, 512, and 2048 trials. With less than 128 trials, the procedure 
recovered the general shape of the SAT function. Further, it increased both accuracy and precision (g) stimulus 
selection occurred intensively in three SOA ranges: short (0.2–0.3 s), mid (0.35–0.45 s), and long (1.2 s) (h) 
information gain over SOA was maximum at the three SOA ranges where the stimulus was frequently selected. 
(i) Information gain was much higher in earlier trials than later trials.
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Stimulus sampling pattern of the procedure for observer 1 is presented in Fig. 3g. The procedure intensively 
tests three ranges of SOA: short (0.2–0.3 s), mid (0.35–0.45 s) and long (1.2 s) SOAs to characterize δ, γ and λ. 
The procedure does not frequently test SOA greater than 0.5 s (except the longest SOA, 1.2 s) throughout the 
whole experiment. Figure 3h shows the information gain as a function of SOA accumulated over entire trials. 
The information gain was higher in the three ranges that the stimulus was selected frequently. Figure 3i shows 
the trial-by-trial information gain. It is evident that the procedure gains much more information in earlier trials 
than later trials.

The performance of the proposed procedure would vary with the number of trials in each block, block lengths. 
To explore the effects of block length (i.e., the number of trials in each block) on the performance of Procedure 
4, we simulated responses of observer 1with four different block length settings: 1, 4, 16, and 64 trials in each 
block. Simulations were iterated 1,024 times for each setting. As shown in Fig. 4, the procedures with smaller 
block lengths (i.e., block size = 1 or 4 trials) generally showed better accuracy than others. The accuracy of the 
procedure with block length = 16 trials converged to that with smaller block lengths after a small number of total 
trials (e.g., after 128 trials, bias was 0.019, 0.019, and 0.019 for the procedure with block length = 1, 4, and 16 
respectively). However, the accuracy with block length = 64 trials (bias = 0.021 after 128 trials) did not converge 
to those with smaller block sizes even after a large number of trials.

The precision of the procedure also varied with the settings of the block length. The precision of the pro-
cedure with block length = 16 was worse than those with smaller block lengths at the beginning but became 
almost equivalent to after a small number of total trials (SD = 0.020, 0.020, and 0.020 for the procedure with 
block length = 1, 4, and 16 respectively after 128 trials). The precision with block length = 64 trials (SD = 0.022 
after 128 trials) was greater than those with smaller block lengths when a total number of trials were relatively 
small, but converged to others after 256 trials (SD = 0.018, 0.017, 0.017, and 0.017 for the procedure with block 
length = 1, 4, 16, and 64 respectively).

Accuracy. Figure 5 shows the accuracy of estimated SAT parameters and function for the four simulated 
observers over 2048 trials. The bias of estimated parameters—the mean absolute difference between true and 
estimated parameters—was plotted against the number of simulated trials with four estimation procedures in 
the first three columns (λ, γ, δ for column a–c, respectively).

Generally, the bias of parameter estimates decreased as trial repeated in all observers. For λ, Procedure 1 
and 2 showed almost equal bias, but higher than Procedure 3 and 4 in observers 1 and 2 and lower in observers 
3 and 4. For γ, there was a difference in bias between Procedure 1 and Procedure 2 for observers 3 and 4 who 
have relatively high γ values. For observer 3, the bias of estimated γ was saturated higher in Procedure 1 than 
Procedure 2 and did not decrease after 500 trials. For observer 4, Procedure 1 showed higher bias than Procedure 
2 over whole trial numbers. Procedure 3 and 4 were superior to Procedure 1 and 2 in all observers, especially 
when a small number of trials was tested. In all observers, Procedure 4 showed similar or slightly better accu-
racy than Procedure 3. A similar pattern was observed in the bias of estimated δ: smaller bias with Procedure 
4 than with Procedure 1 and 2. Accuracy of Procedure 3 was close to Procedure 1 and 2 in observer 1–3, but to 
Procedure 4 in observer 4.

The rightmost column in Fig. 5 shows the accuracy of the estimated SAT function. The bias of estimated 
functions rapidly decreased with trial numbers tested. For observers 1 and 2, accuracy was comparable between 

Figure 4.  Accuracy and precision of SAT function estimated with Procedure 4 with different block lengths (1, 
4, 16, and 64 trials in each block). The procedure with smaller block lengths (1 and 4) showed better accuracy 
and precision than with larger block lengths when a total number of trials was small (< 128 trials). The accuracy 
and precision with block length = 16 trials converged to those with smaller block lengths after 128 trials.
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Procedure 1 and 2, but better with Procedure 3 and 4 than Procedure 1 and 2. For observers 3 and 4, there was 
a significant difference in bias between Procedure 1 and Procedure 2–4. Therefore, in terms of accuracy of esti-
mation, we conclude (1) that the fitting trial-by-trial procedure (Procedure 2) was superior to the conventional 

Figure 5.  The accuracy of estimated SAT parameters and function with four estimation procedures for four 
simulated participants. The bias (mean absolute difference between true and estimated parameters) of (a) λ, 
(b) γ, and (c) δ was plotted as a function of trial numbers. In each panel, different procedures were presented 
with different colors. Procedure 4 showed better or equivalent accuracy (more negligible bias) than the other 
procedures, except λ for participants 3 and 4. (d) Mean absolute difference between true and estimated SAT 
function was also smaller with Procedure 4 than with the other procedures. (Note. Procedure 1: Maximum 
likelihood estimation with mean RT and accuracy; Procedure 2: Maximum likelihood estimation with trial-
by-trial RT and accuracy; Procedure 3: Bayesian estimation without optimal stimulus selection; Procedure 4: 
Bayesian adaptive estimation with optimal stimulus selection).
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procedure of fitting averaged data (Procedure 1), since it was more robust for estimating SAT function and 
parameters for observers with high γ value and (2) that the Bayesian adaptive procedure with or without opti-
mal stimulus selection (Procedure 3 and 4) is comparable or better than the fitting trial-by-trial procedure 
(Procedure 2).

Precision. Figure  6 shows the precision of estimated SAT parameters and function with four estimation 
procedures. With Procedure 1 and 2, the standard deviation of estimated parameters over 10,000 simulations 
decreased as trial number increased. With Procedure 3 and 4, the standard deviation for λ and γ increased ini-
tially but dropped after a small number of trials. The smaller standard deviation at the beginning of the Bayesian 
estimation procedures is caused by the same prior distribution in repeated measures: the procedures always start 
with the uniform prior distribution for all simulations. For all parameters, Procedures 1 and 2 showed compara-
ble precision but worse than Procedures 3 and 4. It should be noted that precision for λ was slightly smaller with 
Procedure 1–3 than with Procedure 4 for observers 3 and 4, but the difference was minimal (less than 0.006). The 
superiority of precision with Procedure 4 was more significant in smaller trial numbers.

Procedure 4 also showed the best precision of the estimated functions. Procedure 1 and 2 showed comparable 
precision but worse than Procedure 3 and 4. With Procedure 4, the average standard deviation of the function 
became less than 0.02 after 95 trials on average (i.e., about 6 blocks of 16 trials). To reach a 0.020 probability 
correct precision, Procedure 1 requires 304, 512, 136, and 272 trials for observers 1–4, respectively. However, 
Procedure 4 only needs 132, 273, 53, and 40 for observers 1–4, respectively. It was about 2–6 times more efficient 
than Procedure 1 (The ratio of trials required for 0.02 precision with Procedure 4 vs. Procedure 1 is 0.434, 0.533, 
0.390, and 0.147). Results indicated that the Bayesian adaptive procedure for trial-by-trial data with optimal 
stimulus selection (Procedure 4) could rapidly estimate the true SAT function for a wide range of potential popu-
lations with reasonable accuracy and precision within only 15–50% of the experimental time of the conventional 
procedure with MCS and MLE for averaged data (Procedure 1).

Discussion
In the current study, we suggest two methods for adaptively estimating the SAT function with smaller samples 
(i.e., number of trials). We firstly introduce a Bayesian inference for estimating SAT function using trial-by-trial 
RT and binarized correctness. The trial-by-trial RT and binarized correctness can be extended to deal with 
trial RTs and correctness within a short or long block. We then introduce an optimal adaptive scheme to select 
the most informative stimulus level for the next block. Starting with a prior distribution of the parameters, the 
Bayesian adaptive procedure tests the observer at the most informative SOA by evaluating the stimulus space to 
find the SOA that maximizes the expected information gain or minimizes the entropy of the posterior distribu-
tion of the SAT function parameters. It then updates the probability distribution of the parameters based on the 
observer’s response by Bayesian inference. The procedure is iterated until the total number of trials reaches a 
set value. Compared to the conventional SAT procedure with MCS, the Bayesian adaptive SAT procedure uses 
a much finer stimulus sampling resolution. It estimates the SAT function’s whole shape with much less testing 
since it concurrently measures the observer’s performance across all different SOA conditions and utilizes all 
available information acquired during the experiment and prior knowledge about the functional form of the SAT 
function. Results from simulations showed that the procedure requires only 50–150 trials of data collection to 
measure the SAT function with reasonable accuracy and precision: with only 100 trials, the procedure achieved 
0.024 average absolute bias and 0.020 precision (in probability correct). That is, with this procedure, reasonably 
precise estimates can be obtained in 5–10 min, which is significantly less than the typical one-hour test time for 
the conventional MCS. We believe that the proposed procedures can work as a valuable tool in many clinical 
settings and cognitive laboratories.

Several Bayesian adaptive procedures have been developed for many psychophysical  experiments6,7,9–11. 
QUEST, the first Bayesian adaptive procedure in  psychophysics11, was developed for threshold estimation of the 
psychometric function, which follows Weibull distribution. The Φ  procedure6, which estimates the threshold 
and slope of psychometric function concurrently, further optimized the experimental procedure by adopting the 
stimulus selection with minimum  entropy6,7,9,10 . Researchers applied the algorithm of the Φ procedure to the 
estimation of other psychological functions. For example, qCSF estimates contrast sensitivity  functions10,12–14, 
qYN assesses sensitivity and response bias in Yes–No  task15, and qPR examines iconic memory decay  function3. 
These applications can estimate multiple parameters and select optimal stimulus in multi-dimensional stimulus 
space (e.g., qCSF estimates three parameters with selecting contrast and spatial frequency of the next stimulus). 
Although the specific algorithms have become more complex and sophisticated, the algorithms’ core was the 
same for all these procedures.

Our development of the SAT function adopted the algorithm from previous Bayesian adaptive procedures. 
However, there are some significant aspects of this procedure. First, our procedure is an adaptive procedure that 
can handle RT data. While all the previous Bayesian adaptive procedures focused on the fitting accuracy for pre-
determined stimulus levels ignoring RT, our procedure fit accuracy for participant’s RT. Therefore, the estimated 
SAT function enables us to understand more about the underlying cognitive process. Second, in our procedure, 
we implemented a block-based optimal stimulus selection. Most Bayesian adaptive procedures for psychophys-
ics change stimulus level trial-by-trial with "one-step-ahead search"—finding the "current best" stimulus for 
the subsequent trial. Conversely, by its nature, the SAT experimental procedure should change the stimulus by 
block. Due to this unique SAT procedure feature, optimal stimulus selection should be made by blocks with n 
trials. Thus, this application for SAT procedure requires predicting information gain during the next block with 
multiple trials for each stimulus level and select the optimal —most informative stimulus level. We successfully 
implemented this "multiple-step ahead search"16 by computing the likelihood of k correct out of n trials.
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Our simulation was carried out with the assumption that each SOA block consisted of 16 trials. The perfor-
mance of the proposed Bayesian adaptive estimation (i.e., Procedure 4) would vary with the number of trials in 
each block, block lengths. Accuracy and precision at a given number of total trials can be improved by decreasing 
block length, especially when the number of total trials is limited. This is because the procedure with a shorter 
block length can acquire more information about the underlying SAT function by faster and more frequent 
switching to the stimulus level with the maximum information. To test the effect of the block length on the 

Figure 6.  The precision of estimated SAT parameters and function with four estimation procedures for four 
simulated participants. The standard deviation of (a) λ, (b) γ, and (c) δ estimates was plotted as a function of 
trial numbers. In each panel, different procedures were presented with different colors. Procedure 4 showed 
better precision (smaller standard deviation) than the other procedures, especially for a small number of trials. 
(d) The standard deviation of the estimated SAT functions was also smaller with Procedure 4 than with the 
other procedures. (Note. Procedure 1: Maximum likelihood estimation with mean RT and accuracy; Procedure 
2: Maximum likelihood estimation with trial-by-trial RT and accuracy; Procedure 3: Bayesian estimation 
without optimal stimulus selection; Procedure 4: Bayesian adaptive estimation with optimal stimulus selection).
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performance of the procedure, we ran additional simulations with four different settings of the block length 
(i.e., 1, 4, 16, and 64 trials in each block) and results supported the prediction. However, in practice, it should 
also be considered how frequently human observers can switch their decision criteria (from fast but inaccurate 
responses to slow but accurate responses), and how performance gets stabilized in an SAT experiment. It is not 
ascertained if participants successfully changed the psychological states every 16 trials. Thus, more studies are 
required to identify the optimal block length for the SAT procedure.

In our study, the functional form of SAT was the exponential approach to the limit (Eq. 1). The entire SAT 
function, often obtained with the response-signal procedure, provides rich information about the decision pro-
cess at different decision criteria (or decision thresholds in context of the drift–diffusion model). In contrast, 
other process models for SAT (e.g., sequential sampling models including the drift–diffusion) mainly aim to 
investigate decision process on a single point on this function (i.e., a single decision criterion)2,17. For example, 
the parameter estimation in the drift model (e.g., decision time) is roughly positioned at a single point in the 
current exponential curve (each point at x-axis is related to a decision time). In the current SAT model, the 
parameters that define exponential function of diverse decision criteria were estimated.

The proposed procedure allows us to measure the SAT function with a relatively short experimental time 
without sacrificing accuracy and precision. In the simulation, we set the prior as a uniform distribution. The 
efficiency of the Bayesian adaptive procedure can be further improved by setting more realistic priors. Another 
improvement can be made for the assumption of expected RT for stimulus selection. We assumed that the 
expected response time, X, for a given SOA block is the time window’s midpoint for simplicity. Indeed, expected 
response time could be longer than mid-point in short SOA blocks and shorter than mid-point in long SOA 
blocks. Elaboration on the expected RT can improve the efficiency of the optimal stimulus selection.

Methods
SAT model parametrization. In the SAT function  of2, the probability of correct response  pi, i.e., accuracy, 
has been modeled with a psychometric function of a given time constraint  Ti and model parameters θ = {�, γ , δ} 
with the following equation.

The goal of the procedure is to estimate the parameters θ of a psychometric function �θ(Ti) . The time 
constraint  Ti could be controlled using the SOA of the response-signal. The prior probability distribution, θ, is 
defined as a three-dimensional joint probability distribution. Each dimension corresponds to each parameter 
of the SAT function.

The conventional approach fits the SAT curve using continuous accuracy data at a small number of SOA 
bins, as shown in Fig. 1a. In the current study, we propose a trial-based estimation of the SAT curve shown in 
Fig. 1b. The model parameter in the proposed method is estimated by the binarized response on the (semi-) 
continuous SOAs.

Trial‑based parameter estimation. A unique feature of data analysis for an SAT experiment with 
response-signal manipulation is RT variability for each SOA condition. Because the mean RT is determined 
by the participant’s responses, the error for accuracy includes variability of RT and measurement error. (See 
Fig. 7 for the illustration of the large variability problem). Such variability results in an inaccurate and imprecise 
estimate of SAT function and its parameters. Therefore, estimation could be more efficient and robust if RT vari-
ability in each data point is reduced.

The procedure estimates θ = {�, γ , δ} of the SAT function using Bayesian  inference6,7,9–11. It starts with a 
prior probability distribution p0(θ), and updates their posterior probability distribution based on the observer’s 
response after each trial.

After the t-th trial, the prior distribution pt(θ) at the t-th trial is updated to the posterior distribution pt(θ |rx) 
with the observer’s binarized response rx (correct or incorrect) for a stimulus with a RT x by Bayes rule:

where pt(θ) and p(rx|θ) are the prior probability density function and likelihood. The probability of a response 
rx—either 0 or incorrect or 1 for correct—pt(rx) for a stimulus with RT x, is estimated by weighting the empirical 
response probability by the prior:

The likelihood of observing the response rx given θ and RT x, p(rx|θ) , can. be computed with the SAT func-
tion, �θ(x) . The posterior at time t becomes the prior distribution of the subsequent trial at time t + 1.

The parameter estimate after t-th trial is a marginal mean of the posterior distribution. Marginal posterior 
distributions of the parameters are computed via two-dimensional summation, and the expectations of the 
marginal posterior distributions are used to estimate the parameters of the SAT function after each trial. The 
estimated SAT function can be reconstructed by plugging the estimated parameters into the model (Eq. 2). 

(3)pi = �(Ti , �, γ , δ) = �θ(Ti) = �

(

1− exp−γ (Ti−δ)
)

(4)pt(θ |rx) =
pt(θ)p(rx |θ)

pt(rx)

(5)pt(rx) = ∫ pt(θ)p(rx |θ)dθ

(6)pt+1 = pt(θ |r
t+1
xt+1

)
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The function also can be estimated by averaging reconstructed functions with parameters resampled from the 
posterior distribution.

We showed that the trial-based estimation of the SAT curve works successfully (see Results). Based on the 
trial-based Bayesian procedure, we then propose an adaptive optimal SOA selection scheme.

Bayesian adaptive estimation with optimal stimulus selection. At the beginning of each SOA 
block, the procedure selects the most informative stimulus level (e.g., SOA) to capture the SAT function cor-
rectly. Most modern procedures for Bayesian parameter estimation select stimulus levels for the subsequent trial 
with the one-step-ahead search  algorithm6. This algorithm computes the entropy of the posterior density for all 
stimulus levels, x, and responses for the subsequent trial, rx . Then, the expected posterior entropy is computed 
by weighting the likelihood of getting a response to the entropy of the posterior density. A new trial is chosen 
at an intensity that minimizes the expected posterior entropy with respect to  X6,7,9,10. Alternatively, the stimulus 
selection can be made by maximizing the expected information gain, quantified as the entropy change between 
the prior and posterior (see  Heitz17).

However, in SAT experiments, stimulus level changes after each block, rather than after each trial. Since 
RT has variability in each SOA block of SAT experiment with the response-cue approach, we assume that the 
expected response time, X, for a given SOA block is the midpoint of a time window for simplicity. For example, 
the expected response time at t-th block,  Xi = 0.6 + 0.2/2 = 0.7 for 0.6 s of SOA block when the response window 
is 0 to 0.2 s.

The expected information gain after the next block can be computed by mutual information:

For the case in which n trials are included in a block, entropy can be defined for all types of responses, as a 
function of x,

where

(7)It(Rx;�) = Ht(Rx)−Ht(Rx |�)

(8)Ht(Rx |θ) = −
∑

r∈{0,1,··· ,n}

pt(rx |θ)logpt(rx|θ)

(9)p(rx|θ) = p(r = k|x, θ) =

(

n
k

)

�θ(x)
k(1−�θ(x))

n−k

(10)Ht(Rx |�) =
∑

θ

pt(θ)H(Rx|θ)

Figure 7.  Illustration of a large variability problem. In a block of SOA = 0.4 s, RTs (red dots) are a random 
variable between 0.4 and 0.6 s (shaded area), and the mean RT has variability (horizontal error bar). The 
corresponding accuracy for the RTs also has large variability (vertical error bar) and measurement errors.
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The SOA for the next block is chosen at an intensity xt+1 that maximizes the expected information gain 
It(�;Rx) for x.

The procedure stops after when precision reached a target level or after a predefined number of trials. Our 
study showed that 50–200 trials were sufficient to achieve an appropriate level of precision. The MATLAB code 
is available for download at a public repository (https:// osf. io/ 75sqe).

Simulation and comparison of model estimation procedures. The performance of the procedure 
for observers with a range of parameters of SAT function was assessed by simulating four virtual observers with 
different values. To evaluate the benefit of the Bayesian adaptive SAT procedure (Procedure 4) and trial-by-trial 
fitting procedure (Procedures 2 and 3) over the conventional SAT procedure with the MCS (Procedure 1), we 
compared the accuracy and precision of suggested procedures.

Simulated experimental setting. Procedure 1–3. The parameters of the simulated observers are summarized in 
Table 1. The parameters of simulated observers were set based on our pilot studies of the Stroop task and Flanker 
task. The simulated observers performed a 2-alternative forced-choice (2AFC) task employing the response-
signal manipulation. Observers’ responses for RT and correctness were simulated for 8 SOA levels (0.06, 0.09, 
0.12, 0.24, 0.36, 0.48, 0.60, and 1.20 s) with the time window for response of 0.2 s. In each trial, response time, x, 
for all observers were generated randomly from an ex-Gaussian  distribution18 (μ = 0.3, σ = 0.06, τ = 0.08), which 
was constrained by SOA of the block and the time window. The expected probability of correct, pc(x), of the 
simulated observer was calculated for the simulated RT, x. Observer’s response in each trial was simulated by 
drawing a random number r from a uniform distribution over the interval from 0 to 1. The response was labeled 
as correct if r < pc(x) and incorrect otherwise. Each simulated experimental run consisted of 2048 trials (= 256 
trials per SOA condition X 8 SOAs). Simulated runs were iterated 10,000 times for each observer.

Procedure 4. We simulated the same four observers’ responses as in Procedures 1–3. Stimulus space (i.e., pos-
sible cue delays) was sampled from 0 to 1.2 s with 49 equally spaced samples. Each block’s stimulus was selected 
by the observer’s responses and the maximum information gain rule (described in the previous Method section). 
Each simulated experimental run consisted of 2048 trials (= 16 trials per block X 128 blocks). Simulated runs 
were iterated 10,000 times for each observer.

Model parameter estimation methods. Procedure 1: The conventional SAT function estimation with averaging 
RT and correctness. The traditional SAT experiment uses constant stimuli (MCS): stimuli are presented for a 
fixed set of predetermined SOAs repeatedly in random order. After the experiment is completed, RT and correct-
ness were averaged for each SOA condition for the data analysis. Alternatively, all responses can be grouped by 
RT into serval bins, then the mean correctness, accuracy is calculated for each bin. The mean RT and accuracy 
for SOA or RT bins were fitted to the model using the maximum likelihood estimation (MLE) or the least square 
estimation (LSE).

Procedure 2: The maximum likelihood SAT function estimation with trial-by-trial RT and correctness. A vari-
ation of the SAT estimation procedure could be fitting trial-by-trial RT and correctness to the model without 
grouping and averaging by RT or SOA. In this procedure, the model was fitted with trial-by-trial RT and cor-
rectness using the proposed binarized scheme, without averaging RT and correctness by SOA or RT. All data 
collection procedures were the same as Procedure 1: experiment with MCS and fitting with MLE/LSE after the 
data collection.

Procedure 3: The Bayesian SAT function estimation with trial-by-trial RT and correctness. The model was fit-
ted to the same simulated dataset with trial-by-trial RT and correctness in Procedure 2 but using the Bayesian 
estimation procedure. The prior was set to a uniform distribution over 21 linearly spaced λ values (from 0.4 to 
0.5), 30 linearly spaced γ values (from 1 to 30), and 25 linearly spaced δ values (from 0.02 to 0.5).

Procedure 4: Bayesian estimation with trial-by-trial RT and correctness. In this procedure, we used an adap-
tive approach for estimating SAT function with Bayesian inference and optimal stimulus selection based on pro-
cedure 3. The SAT function is characterized by an exponential model and a prior distribution of the parameters. 

(11)Ht(Rx |θ) = −
∑

r∈{0,1,··· ,n}

pt(rx |θ)logpt(rx|θ)

Table 1.  SAT parameters of simulated observers.

λ γ δ

Observer 1 0.470 7.5 0.28

Observer 2 0.450 5.0 0.22

Observer 3 0.495 22 0.24

Observer 4 0.495 20 0.36

https://osf.io/75sqe
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The stimulus level (i.e., SOA) for the next block is selected to maximize the expected information gain on the 
SAT function parameters. After each trial in each block, the parameters’ posterior distribution is updated using 
the Bayes rule and observer’s response. Stimulus selection and posterior update are repeated until a fixed number 
of blocks or a pre-set test precision is reached. In this section, we described the algorithm of the procedure and 
evaluated the performance of the procedure with a batch of simulations.

The parameter space and the prior were set to the same as in Procedure 3. The SAT function was estimated 
by the resampling method: the procedure resamples the posterior distribution of the parameters 1000 times, 
reconstructs the SAT functions from each set of sample parameters, and then averages over all the resampled 
SAT functions.

All four procedures are summarized in Table 2. The details will be discussed in the following sections.

Performance evaluation. We compared the fitting performance—accuracy and precision—of fitting proce-
dures. A good procedure should quickly increase the accuracy and precision of the estimated SAT function or its 
parameters as the trial number increases. We assessed bias of estimated SAT parameters and function by mean 
absolute difference between true and estimated parameters or accuracy and precision by the standard deviation 
of repeated  measures19,20.

Accuracy can be defined by the inverse of bias. For each parameter, the bias of estimate was calculated by the 
mean absolute discrepancy between the estimated and true parameter:

where  Ptrue is the true parameter value, and  Pij is the parameter estimate obtained after the i-th trial in the j-th 
simulation.

Precision is assessed by the inverse of the standard deviation of repeated measures. It is also important to 
evaluate and compare the convergence of estimated SAT functions to the true function and its parameters of two 
procedures. The average absolute bias of the estimated SAT function can be calculated as:

where Pckij is the estimated probability correct for expected RT after i-th trials obtained in the mean RT in k-th 
SOA block of the j-th simulation and Pcktrue is the true probability correct. Since mean RT’s vary across simula-
tions, we computed expected pc for the fixed set of time points (0.06, 0.09, 0.12, 0.24, 0.36, 0.48, 0.60, and 1.20 s) 
with estimated SAT function for all simulations. The precision of the estimated SAT function was assessed by 
the averaged standard deviation of repeated measures over SOAs:

In Bayesian estimation, precision also can be assessed by the half-width of the credible interval (HWCI) of 
the posterior  distribution21. The HWCI refers to the shortest interval that covers most of the distribution. The 
95% credible interval represents a 95% probability that the actual value lies within the  range22, whereas the 
confidence interval, the most popular index of precision, represents an interval that contains the true value of 
the parameter for 95% of unlimited  repetitions23.

Ethical approval. Not applicable to the current study. The current study is based on simulation.

Data availability
No datasets were generated or analysed during the current study.
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(12)biasi =

∑J
j=1

∣

∣Pij − Ptrue
∣

∣

J

(13)average absolute biasi =

∑K
k=1

∣

∣

∣

∑J
j=1 (Pc

k
ij − Pcktrue)

∣

∣

∣

J × K
,

(14)SDi =

√

√

√

√

∑K
k=1

∑J
j=1

(

Pckij −mean(Pckij

)

)2

J × K

Table 2.  Procedures for estimating SAT functions and their parameters. MCS: method of constant stimuli, 
MLE: maximum likelihood estimation, LSE: least square estimation.

Data collection Data analysis

Stimulus selection Stimulus change Data Model fitting Estimation frequency

Procedure 1 MCS By long block Averaged MLE/LSE Offline

Procedure 2 MCS By short block Trial-by-trial MLE/LSE Offline

Procedure 3 MCS By short block Trial-by-trial Bayesian Online

Procedure 4 Adaptive By short block Trial-by-trial Bayesian Online
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