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INTRODUCTION

Pulmonary embolism (PE) is a potentially fatal disease 
with varying clinical presentations. It is the third most 
common cause of death in the United States. It can have 
a fatal prognosis if the diagnosis or treatment is delayed. 
Accordingly, prompt diagnosis, in turn allowing for prompt 
treatment, can dramatically reduce the mortality rate [1-5].

Currently, multidetector computed tomography (MDCT) is 
considered the standard imaging modality for diagnosing PE 
[6]. Technical advancements in CT in the past decade have 
allowed physicians to obtain images of higher quality, with 
exposure to lower levels of radiation, which demonstrate 
small subsegmental pulmonary artery (PA) embolisms 
[7,8]. CT has high diagnostic accuracy in detecting PE [9-
12]. It is the most clinically important imaging modality 
for evaluating patients with PE. In addition, it can provide 
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crucial information on the hemodynamic stability and 
prognosis of patients with acute PE [13-15].

Dual-energy computed tomography (DECT) can provide 
both morphological and functional pulmonary information of 
the lung in a single contrast-enhanced examination. It has 
the advantages of MDCT and uses X-rays with two different 
energy spectra to detect specific substances according to 
the material decomposition theory [16,17]. This enables 
selective visualization of the iodine components in tissues. 
It has recently been actively applied in patients with PE 
owing to the simultaneous demonstration of pulmonary 
emboli occluding the PA and resultant perfusion defects 
in the lung parenchyma [18-20]. This may yield more 
information about the burden of PE because both perfusion 
and angiographic images are obtained without increasing 
the radiation dose. Thus, DECT is a feasible option for the 
evaluation of PE [21,22]. 

The aim of this review is to discuss the potential clinical 
applications of DECT in PE, focusing on the diagnosis and 
risk stratification of PE. 

Diagnosis of PE Based on DECT: Can DECT 
Increase the Diagnostic Accuracy of PE?

DECT is useful for detecting acute PE [20,22-25]. The 
main strength of DECT is that it can show perfusion defects 
in the lung parenchyma caused by PA occlusion and enable 
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direct visualization of filling defects in the PAs [26,27]. The 
iodine map provides a quick approach to perfusion defects 
and enables quantitative analysis of the volume of perfusion 
defects. The quantitative assessment of pulmonary perfusion 
strongly correlates with pulmonary perfusion scintigraphy 
and single-photon emission CT (SPECT) images [28,29].

Many small-scale studies have reported the diagnostic 
value of DECT for the detection of acute PE. The reported 
sensitivity and specificity range from 60% to 90% and 88% 
to 99%, respectively [24,25,27,29-32]. In chronic PE, DECT 
has 96–100% sensitivity and 76–96% specificity using 
SPECT or scintigraphy as a reference [33,34].

Recent studies have focused on the added values of 
DECT over CT pulmonary angiography (CTPA) [26,35]. In 
their study, the diagnostic accuracy of CTPA (85.5–90.4%) 
improved for both readers with a combination of color-
coded lung-perfused blood volume images (95.6–97.6%) 
with high interobserver and intraobserver agreements (Table 
1) [35]. Moreover, the addition of DECT to CTPA improved 
the detection of peripheral intrapulmonary clots [35]. Small 
peripheral clots are occasionally difficult to distinguish 
from the surrounding segmental or subsegmental pulmonary 
arteries on MDCT. However, DECT is useful for identifying 
regional iodine perfusion defects due to small clots (Fig. 1). 
In a recent large-scale retrospective study involving 1035 
consecutive patients, a DECT iodine map helped to detect 
small (segmental or subsegmental) pulmonary emboli in 1% 
of additional patients [26]. In addition, the DECT technique 
can improve the image quality even with a small amount 
of contrast agent (Fig. 2). Using monoenergetic image 
reconstruction, the vessel attenuation and contrast-to-noise 
ratio can be improved [36]. This means that when using 
DECT in PE imaging, the amount of iodine contrast can be 
reduced, while still maintaining adequate image quality 
with a high diagnostic confidence.

A recent study reported that deep learning-based 
automatic lung lobe segmentation and quantitative lobar 
or zonal perfusion analyses are useful in PE detection, 
although the study had a small sample size of 88 patients 
[37]. Further large-scale studies are needed to assess 
whether deep learning-based quantitative lobar perfusion 
parameters can provide complementary diagnostic or 
prognostic information in patients with PE undergoing DECT.

Ventilation CT Using DECT in PE 

Many studies have reported the usefulness of xenon-

enhanced ventilation CT in patients with pulmonary disease 
[38-40]. Ventilation/perfusion imaging using DECT can 
visualize the ventilation/perfusion match or mismatch 
in patients with suspected PE. Xenon is a radiodense gas 
with a high atomic number of 54, similar to iodine (atomic 
number: 53). It exhibits photoelectric absorption properties 
similar to iodine and can therefore be isolated from lung 
tissues using the material decomposition method. 

A previous study performed DECT ventilation/perfusion 
imaging in 32 patients with suspected PE. Of the 32 
patients, six reported mild adverse events (i.e., shortness 
of breath, mild dizziness, and limb numbness). DECT lung 
ventilation/perfusion imaging was successfully conducted 
in 10 patients with PE, and a PE-related ventilation/
perfusion mismatch was found in eight patients. The 
authors concluded that DECT lung ventilation/perfusion 
imaging could provide high-spatial-resolution information 
on morphological and functional ventilation/perfusion of 
the lungs in patients with suspected PE [41].

However, because the atomic number of xenon is close to 
that of iodine, xenon cannot be distinguished from iodine. 
Therefore, perfusion and ventilation imaging using iodine 
and xenon cannot be performed using a single imaging 
procedure. In their study, 5 minutes after the xenon-
enhanced DECT imaging examination, dual-energy CTPA was 
performed [41]. Therefore, in another study, alternative 
inhaled contrast agents were suggested for simultaneous 
ventilation-perfusion imaging for PA-occlusive diseases. 
In a preclinical study, a ventilation-perfusion evaluation 
method using krypton (atomic number: 34) and iodine was 
suggested [42]. Although ventilation scans obtained with 
xenon or krypton are limited to use in research, they have 
the potential to become a non-invasive tool for examining 
the anatomical structures of the lungs and lung ventilation. 

DECT for Differentiation of PE and PA Sarcoma

PA sarcoma is a rare type of malignancy that arises 
from the intima or media of the PA and is frequently 
misdiagnosed as a PE because clinical symptoms and 
radiological findings are often similar. Early diagnosis and 
radical resection of PA sarcomas are crucial for survival. 
Therefore, it is important to clinically differentiate PA 
sarcomas from PE. CT is an imaging modality that allows 
for the differential diagnosis of PA sarcoma and PE. It 
can help differentiate PA sarcoma from PE by visualizing 
extraluminal tumor extension, expansion of the involved 
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arteries, or a low-attenuation filling defect of the proximal 
or main PA. However, these findings might not appear in 
early-stage PA sarcoma, and in cases of extensive PE, the 
imaging findings can be similar. Because a dual-energy 
technique allows iodine to be differentiated from other 
materials, DECT can help differentiate PE and PA sarcoma by 
detecting subtle lesion enhancements (Fig. 3). A previous 
study compared quantitative parameters of DECT between 
19 PE and six PA sarcoma cases and found no difference 
in CT Hounsfield units (HU) (PE vs. PA sarcoma: 45.5 ± 
15.9 HU vs. 47.1 ± 9.2 HU; p = 0.776), but a significant 
difference in the iodine concentration measured on an 
iodine map (PE vs. PA sarcoma: 0.6 ± 0.4 mg/mL vs. 1.5 ± 

0.6 mg/mL; p = 0.001) [43]. These findings showed the 
possibility that quantification of iodine values using DECT 
could help differentiate PE from PA sarcoma. Generally, 
fluorodeoxyglucose (FDG) PET-CT is a useful method to 
distinguish PA sarcoma from PE based on FDG uptake with 
a difference in the maximum standard uptake value [44-
47]. However, PE can have varying uptake, which results in 
difficulties in differentiating it from PA sarcoma [48,49]. 
DECT has the added roles of specific tissue characterization, 
clear anatomical delineation, and simultaneous evaluation 
of lung perfusion [43].

Fig. 2. A 30-year-old female diagnosed with acute pulmonary thromboembolism. 
A. The conventional image with 100 kVp showing a focal filling defect in the right lower subsegmental artery. B. A monoenergetic image with 60 
keV better depicting a subsegmental thrombus in the right lower lobe.

A B

Fig. 1. A 76-year-old female diagnosed with acute pulmonary thromboembolism. 
A. CT angiography showing a focal filling defect in the right upper lobar pulmonary artery (arrow) due to acute pulmonary thromboembolism and 
bilateral pleural effusion. B. The fusion image of CT angiography and a color-coded iodine map showing a thrombus in the right upper pulmonary 
artery as well as a corresponding wedge-shaped perfusion defect in the right upper lobe. 

A B
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DECT in Assessing Severity and Predicting the 
Prognosis of Patients with PE

Risk stratification is important in patients with PE 
because optimal management, monitoring, and therapeutic 
strategies depend on prognosis. Many CT parameters 
have been proposed as potential predictors of PE severity 
and clinical outcomes [14,15,32,50,51]. Among them, 
the quantitative CT parameter of right ventricular (RV) 
dysfunction, or an abnormally increased ratio between 
the RV and left ventricular (LV) diameter in transverse 
CT sections, is proposed as a strong predictor of adverse 
clinical outcomes in patients with acute PE [15].

Recently, DECT has been performed for severity 
assessment and prediction of clinical outcomes in patients 
with PE [52,53]. Several studies have shown the feasibility 
of DECT to assess perfusion defects in pulmonary blood 
volume (PBV) caused by PE [35,37]. Although data are 
limited regarding the functional relevance of perfusion 
changes detected with DECT, a few studies have shown a 
higher rate of right-heart strain among patients with acute 
PE presenting with a greater extent of perfusion defects on 
DECT. Previous studies have also shown that the extent of 
perfusion defects on DECT correlates with adverse clinical 
outcomes among patients with PE [52,53]. 

The perfusion defect score calculated using DECT has 
been suggested as a new imaging biomarker for severity 
assessment in patients with PE. In a previous study, 
perfusion defect scores based on DECT scans were used to 
assess the severity of PE in 30 patients, and the scores 
were found to correlate well with the RV/LV diameter ratio 
(r = 0.69, p < 0.001) and PA obstruction score (r = 0.87, 

p < 0.001) [54]. In another study involving 55 patients 
with PE [55], perfusion defect scores calculated using 
DECT significantly correlated with the CTPA obstruction 
score and RV/LV ratio (r = 0.62 and 0.60, respectively, 
p < 0.001) and effectively differentiated between the 
low- and intermediate-risk groups (p = 0.011) [55]. 
Recently developed software provides a quick automated 
quantification of pulmonary perfused blood volume, which 
correlates well with the severity of PE [56].

A pilot study suggested that the volume of the lung with 
perfusion defects measured using DECT may be used not 
only as a surrogate marker, but also as a prognosticator 
of right heart strain in patients with acute PE [52,53]. 
Another study involving 60 patients with PE reported that 
the extent of perfusion defects measured on a DECT iodine 
map is a predictor of adverse clinical outcomes (death or 
intensive care treatment within 60 days). A multicenter 
retrospective study involving 115 patients with suspected 
PE without a detectable thromboembolic clot found that 
the volume of the lung with perfusion defects is a predictor 
of patient prognosis [57].

Based on previous studies, quantitative DECT parameters 
have the potential to be used as prognostic markers in 
acute PE (Fig. 4) [52,53]. However, existing studies were 
performed with small groups of participants and lacked the 
additional effectiveness of perfusion defect quantification 
with DECT compared to the CT ventricular diameter ratio, 
which is a well-established and widely used prognostic 
indicator. In addition, the value of quantitative DECT 
parameters for prognosis and risk stratification in acute PE 
is controversial. A recent study involving 172 patients with 
acute PE demonstrated that while the RV/LV ratio predicted 

Fig. 3. A 58-year-old female with pulmonary artery sarcoma. 
A. A coronal contrast enhanced CT image showing an intraluminal mass with an eccentric filling defect in the right main pulmonary trunk. B. On 
a coronal color-coded iodine (water) image from dual-energy CT, the mean iodine concentration within the region of interest is 2.6 mg/mL. 
C. A coronal PET image showing focal fluorodeoxyglucose uptake in the intraluminal mass and right upper paratracheal lymph nodes. 

A B C
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30-day mortality (hazard ratio, 3.8; p = 0.002) and PE-
related death (hazard ratio, 18.1; p < 0.001), perfusion 
defects detected using DECT had no added benefit for 
predicting 30-day mortality over the RV/LV ratio [58]. We 
conducted a propensity score-matched study to compare 
the predictive value of quantitative DECT parameters and 
CT ventricular diameter ratio in patients with acute PE. The 
propensity-matched study population included 240 patients 
with acute PE in the CTPA group and 240 patients with 
acute PE in the DECT group. According to the results, lung 
perfusion defects measured with DECT had no added benefit 
over the CT RV/LV ratio alone for prediction of death within 
30 days (C-statistics: 0.80, 0.83, p = 0.097) [59]. Currently, 
the data do not prove any additional benefit of functional 
lung assessment with DECT to predict death from PE [59]. 
Therefore, larger trials with longer follow-up periods should 
be performed to estimate the potential influence of DECT 
findings on treatment strategies to optimize the treatment 
and outcome of patients with acute PE.

DECT and Chronic PE and Chronic 
Thromboembolic Pulmonary Hypertension 
(CTEPH)

If acute PE does not dissolve over time, it can result in 
chronic PE. Once emboli attain a chronic organized status, 
secondary hemodynamic changes develop, eventually 
causing chronic pulmonary hypertension, followed by right 
heart failure. This progressive course can be corrected using 
surgical pulmonary thromboendarterectomy. Therefore, 
differentiating between acute and chronic emboli is 
important when pulmonary emboli are detected on CT 

images.
Chronic PE has a different perfusion pattern from acute PE 

because systemic collateral circulation increases to sustain 
lung tissues distal to the occluded pulmonary arteries (Fig. 
5). DECT is useful for demonstrating different perfusion 
patterns between acute and chronic PE. In a previous 
study, two-phase DECT was performed in 42 patients with 
PE, and iodine-related attenuation (IRA) change ratios 
were calculated using the formula 100% x ([IRA of delayed 
phase] - [IRA of PA phase])/(IRA of PA phase). IRA change 
ratios for patients with acute PE and those with chronic 
PE were -3.14% and 191.9% (p < 0.001), respectively, 
indicating that delayed enhanced patterns were observed 
in chronic PE segments. This may be because extensive 
systemic collateral formation occurs in chronic PE via the 
bronchial arteries [60]. These results demonstrated that 
DECT can display iodine distribution to reflect perfusion 
patterns [61].

In addition to evaluating parenchymal perfusion 
defects, DECT data are useful for the detection and tissue 
characterization of intravascular thrombotic material using 
the material decomposition method, thus differentiating 
between acute and chronic PE. Kim et al. [62] compared 
HU, iodine-related HU (HU from monochromatic 70 keV 
images, HU from mass spectroscopy imaging), and iodine 
concentration of embolism between 15 patients with acute 
PE and 11 patients with chronic PE. They found that chronic 
PE had a significantly higher mean HU, iodine-related HU, 
and IC compared to acute PE. This may be because the 
fibrotic components of a chronic thrombus have a greater 
vascular supply compared to acute thrombi. 

Chronic thromboembolic pulmonary hypertension 

Fig. 4. A 34-year-old male with acute pulmonary embolism. 
A. A color-coded iodine map showing multifocal perfusion defects in both upper lobes due to pulmonary thromboembolisms. B. A map obtained 
with a volume analysis software showing a perfusion defect volume, measured from -1024 to -1 Hounsfield units, of 324.15 cm3 and a relative 
perfusion defect volume of 10.24%.

A B
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(CTEPH) develops in 2–4% of patients with acute PE [63-
68]. Thromboembolic materials in the pulmonary vascular 
bed trigger vasoconstriction and remodeling [63,69], and 
progressive pulmonary hypertension and right heart failure 
can occur [69]. The prognosis of CTEPH is poor. Therefore, 
accurate diagnosis and prompt treatment are important for 
a better prognosis [63,68]. DECT can play a potential role 
in the diagnosis and treatment of CTEPH. It is useful for 
evaluating perfusion patterns and differentiating between 
CTEPH and PA hypertension. The authors found that 96.6% 
of segments from 19 patients with PA hypertension showed 
patchy perfusion defects (heterogeneous perfusion defects 
with intervening areas of preserved perfusion), while 12 
patients with CTEPH usually showed patchy (58.5% of 
segments) or embolic-type (37.5% of segments) perfusion 
defects (wedge-shaped, pleural perfusion defects in the 
affected segment) on the iodine maps of DECT [70]. DECT 
is also useful for the severity assessment of CTEPH and 
evaluation of the treatment response in CTEPH (Fig. 6). 
Severity assessment and treatment are crucial for CTEPH 
because untreated CTEPH leads to a poorer prognosis 
compared to acute PE. A previous study reported that PBV 
scores obtained using DECT significantly correlated with 
PA pressure and pulmonary vascular resistance, and lung 
PBV scores are useful noninvasive estimators of CTEPH 
[71]. DECT can be used to measure an increase in lung 
perfusion following balloon pulmonary angioplasty (BAP) in 
patients with CTEPH [71]. The authors examined the clinical 
significance of PBV using DECT in eight patients with CTEPH 
undergoing BPA. They found increases in lung PBV values in 
the BPA-treated area and significant positive correlations 

with improvement in whole-lung PBV. This study suggests 
that DECT may be a useful noninvasive tool for assessing 
the treatment outcome of BAP. 

Technical Consideration and Radiation Dose in 
DECT

In terms of radiation dose, initial studies reported that 
DECT was associated with higher radiation exposure than 
single-energy CT [72]. However, many studies have reported 
that DECT does not require the additional dose required 
for conventional CT [16,40,73]. A previous phantom study 
reported that the radiation doses of DECT pulmonary 
angiography were 2.61 mSV and 2.69 mSV for 140/80 kVp 
and Sn 140/100 kVp, respectively, which were similar to the 
2.70-mSV dose for the standard 120-kVp protocol chest CT 
[73]. A two-phase imaging method may increase radiation 
dose. However, dose-reduction techniques, such as selective 
photon-shield usage and tube-current modulation, would be 
useful for minimizing the increase in radiation dose [61,74]. 
With the development of third-generation DECT, new levels 
of dual-energy voltage combination and thicker thin filters 
with a more precise spectral separation of X-rays allow 
lower radiation exposure with preserved image quality for 
CTPA examination than that with second-generation DECT or 
single-energy CT [75-77].

As mentioned above, many studies have used the 
perfusion defect size on DECT as a surrogate marker that 
represents disease severity or prognosis. However, the size 
of the perfusion defect varies depending on various factors 
(e.g., amount, concentration, injection rate of contrast 

Fig. 5. A 60-year-old male diagnosed with chronic pulmonary thromboembolism. 
A. CT angiography image showing organized thrombi in both the main pulmonary arteries. B. In the pulmonary artery phase, a fusion image of 
CT angiography and color-coded iodine map showing organized thrombi in both main pulmonary arteries (arrows) with a wedge-shaped perfusion 
defect in the right upper lobe. C. On the delayed-phase image, the area with a previous perfusion defect in the right upper lobe is enhanced due 
to the systemic collateral supply in chronic pulmonary thromboembolism.
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media, tube voltage, scan delay time, and machine). In 
addition, quantitative measurements are another major 
issue in DECT imaging because there are no standardized 
analytical methods or parameters in DECT. Therefore, several 
values need to be validated for applications, and some 
values are difficult to analyze. 

As such, a scanning protocol should be considered. 
Currently, there is no standardized scanning protocol for 
evaluating perfusion defects on DECT. Several studies have 
proposed an image acquisition and contrast injection 
protocol to evaluate pulmonary disease using DECT [21,78]. 
Usually, an 80-kVp image is recommended for the lower 
tube voltage to better demonstrate small endoluminal 
clots [21,78]. To use contrast agents, a high-concentration 
iodine-based contrast material (> 300 mg/mL) is 
recommended to differentiate iodine from other materials. 
To inject the contrast media, the region of interest is 
usually placed in the main PA, and the bolus tracking 

method is used. To evaluate the PA and lung parenchyma 
in a single scan, the delayed scan time should be longer 
(4–7 seconds). The scan direction should be caudocranial 
to avoid streaky artifacts caused by high-concentration 
contrast agents in the superior vena cava or upper thoracic 
veins. The use of saline chasers helps reduce artifacts 
and improve image quality. If chronic PE is suspected, a 
delayed-phase scan can be added to evaluate the perfusion 
pattern, but there is a concern regarding additional 
radiation exposure.

To achieve optimal parenchymal enhancement, the iodine 
injection technique, delay time for image acquisition, 
direction of CT data acquisition, and reduction of artifacts 
should be considered. We recommend the use of high-
concentration iodine-based contrast agents, prolonged 
delayed scan time, caudocranial scanning direction, and 
single-phase scanning. 

Fig. 6. A 74-year-old female with chronic pulmonary embolism. 
A. CT angiography showing an eccentric chronic thrombus in the right lower pulmonary artery. B. The fusion image of CT angiography and color-
coded iodine map showing a large eccentric chronic thrombus in the dilated right lower lobar pulmonary and multifocal perfusion defects in both 
lungs. C, D. After pulmonary endarterectomy, the organized thrombus was removed. The follow-up CT angiography image showing the contrast-
enhanced right lower pulmonary artery after removal of the organized thrombus. An iodine map image demonstrates improved pulmonary 
perfusion on both lungs. 
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Diagnostic Pitfalls of DECT

Familiarizing clinicians with diagnostic pitfalls of DECT 
perfusion imaging is important to avoid misdiagnosis. An 
iodine map of the lung parenchyma allows for the fast 
detection of perfusion defects and has high inter-reader 
agreement (Fig. 7). However, an iodine map must be 
interpreted with caution because iodine maps selectively 
demonstrate iodinated contrast material within the lung 
parenchyma, not true perfusion [32]. In addition, PE 
does not always cause perfusion defects in an iodine map 
[20,25,34,79]. Although the rate of perfusion defects on 
PBV for occlusive PE is relatively high (82–95%), the rate 
of perfusion of non-occlusive PE defects may be as low as 
6–9% [20,25,34], and other lung diseases can also cause 
perfusion defects [80]. 

Streaky and beam-hardening effects around the rib, 

metallic materials, and around the high-concentration 
contrast agent in vessels cause false perfusion defects in an 
iodine map. The thoracic vein, superior vena cava, and right 
cardiac chambers are common locations for heterogeneous 
artifacts in blood flow images. The right middle lobe and 
left lingular segment, which abut the cardiac border, also 
cause heterogeneous artifacts due to cardiac motion (Fig. 8). 
These should not be mistaken for true lesions.

Future Directions for Diagnosis of PE with DECT 
Using Artificial Intelligence

Artificial intelligence (AI) has received considerable 
attention in the field of radiology [81]. AI can also be used 
to diagnose PE [82]. In the early research of Blackmon 
et al. [83], they developed a computer-aided detection 
algorithm for PE using machine learning; this algorithm 

Fig. 7. A 50-year-old male suddenly complained of dyspnea after removal of a central venous catheter on day 5 after distal 
pancreatectomy and splenectomy. 
A. Chest X-ray on day 4 after the operation showing the normal position of the central venous catheter through the right internal jugular vein. 
B, C. Abdominal CT on day 4 after the operation showing dependent atelectasis without embolic lesions (B). Chest CT image after dyspnea is 
presented (C). Multifocal air is suspected in the right middle pulmonary arteries (arrows in C), which was not noted in the previous abdominal 
CT (arrows in B), and hypoattenuations in both anterior lungs can be seen. D. The fusion image of CT angiography and a color-coded iodine map 
showing large perfusion defects in the anterior portion of both lungs, which could have been caused by pulmonary air embolism. CT = computed 
tomography

A B C D

Fig. 8. A 73-year-old male diagnosed with chronic pulmonary thromboembolism.
A, B. A gray scale (A) and a fusion image iodine map (B) shows that the right middle lobe and left lingular segment (arrows) which abut the 
cardiac border also cause heterogeneous artifacts due to cardiac motion.
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improved the sensitivity of PE detection for inexperienced 
readers. In a recent study, Liu et al. [84] adapted deep-
learning algorithms to detect and calculate the clot 
burden of acute PE using MDCT. They showed that deep-
learning algorithms could detect acute PE with good 
performance and efficiently calculate the clot burden to 
reduce clinicians’ workload. AI is useful for difficult tasks, 
such as the detection of small peripheral clots or automatic 
quantification of clot burden and RV/LV diameter ratio, 
which have been shown to be prognostic factors for acute 
PE. There are few studies on the application of AI in DECT 
imaging for PE. A recent study reported that deep learning-
based automatic lung lobe segmentation and quantitative 
lobar or zonal perfusion analyses are useful in PE detection, 
although the study had a small sample size of only 88 
patients [84]. Further large-scale studies applying AI to 
DECT images of PE are worthwhile. AI will serve to detect 
and characterize the emboli and predict patient prognosis 
by deep learning-based quantification of defect volume 
using DECT as a complementary diagnostic tool

CONCLUSION

DECT is useful for detecting PE, assessing the severity 
of PE, and predicting prognosis. The technical and 
diagnostic pitfalls of DECT have been overcome with 
the standardization of protocols and advancements in 
CT technology. According to current guidelines, DECT is 
not regarded as a routine diagnostic procedure in the 
evaluation of PE. However, DECT has been recommended as 
an alternative tool for V/Q scanning in patients suspected 
of having CTEPH if appropriate expertise and resources are 
available on-site [7]. 

By adjusting image acquisition and post-processing 
methods based on clinical experience, the application of 
the dual-energy technique for the evaluation of PE could be 
expanded.
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