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Abstract: The aim of this research was to evaluate the expression and concomitant implications
of LC3A, LC3B, beclin-1, and p62, which are key components of autophagy in human adrenal
gland tumors. Tissue microarray was made for 321 cases of adrenal gland tumor (adrenal cortical
adenoma (ACA): 115, adrenal cortical carcinoma (ACC): 17, and pheochromocytoma (PCC): 189).
Immunohistochemical staining was performed for beclin-1, p62, LC3A, and LC3B, and the results
were compared with the patients’ clinicopathologic parameters. LC3A, LC3B, beclin-1, and LC3B
isolated single positive cells (ISPC) positivity rates were higher in PCC than in adrenal cortical tumor
(ACT), whereas p62 positivity was lower in PCC than in ACT. The proportion of positive LC3B
(ISPC) was higher in ACC than in ACA. In addition, the proportion of cells positive for p62 and
LC3B (ISPC) was significantly higher in PCCs with a GAPP score of ≥3. In univariate Cox analysis,
p62 positivity (p = 0.014) and the presence of p62 (ISPC) (p = 0.001) were associated with shorter
disease-free survival in PCC. Moreover, p62 positivity was predictive of shorter overall survival (OS)
in patients with PCC by multivariate analysis (relative risk, 6.240; 95% CI, 1.434–27.15; p = 0.015).
Differences were found in the expression of autophagy-related proteins according to adrenal gland
tumor types. Compared to ACT, the proportion of LC3A, LC3B, beclin-1, and LC3B (ISPC) positivity
was higher in PCC, whereas p62 positivity was lower. Similarly, p62 positivity in PCC was associated
with patient prognosis of OS.
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1. Introduction

Adrenal gland tumors are typically categorized into adrenal cortical tumors (ACTs),
originating from the adrenal cortex, and pheochromocytomas (PCCs), which occur in the
adrenal medulla. ACT is a relatively rare tumor and is classified into adrenal cortical
adenoma (ACA) and adrenal cortical carcinoma (ACC), with histological differential diag-
nosis between the two being a difficult task. ACC is a particularly rare tumor associated
with extremely poor prognosis due to the absence of effective target modalities and the
fact that most of the tumor biology is still largely unknown. However, the distinction
between benign and malignant PCC based on histological findings is quite challenging,
and malignant PCC can be confirmed only when distant metastasis occurs. Consequently,
there is an unmet clinical need to discover histopathologic features that could predict
prognosis in adrenal gland tumors.

Autophagy is defined as the physiologic process of lysosomal degradation of cellular
components. Autophagy plays an important homeostatic role by removing unnecessary
and/or dysfunctional cellular components and reusing essential cellular components [1–4].
Among the various indicators to evaluate autophagy process, protein markers used to
evaluate the activity of autophagy contain: beclin-1 [5–8], which takes part in nucleation;
LC3 [9–11], which contributes to the formation of the autophagosome by participating
in elongation; p62 [12,13], a scaffold protein that transports ubiquitinated proteins to the
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autophagosome; and BNIP-3 [14], a mitochondrial autophagy (mitophagy) regulator. In-
creasing results indicate that autophagy is related to tumor biology and may act as a tumor
behavior. In the case of high-grade malignant tumors that are characterized by increased
metabolic demand, angiogenesis and/or aerobic glycolysis alone may not be able to meet
the metabolic demand of tumor cells. In these circumstances, malignant cells derive energy
by recycling cytoplasmic components through autophagy as an alternative [15,16]. Mean-
while, unrestrained autophagy can cause progressive consumption of cellular constituents,
leading to cell death [17,18]. Therefore, autophagy can theoretically contribute to both
tumor progression and suppression; however, there is a lack of detailed research about the
expression of autophagy-related proteins in adrenal gland tumors. The aim of this study
was to investigate the expression and implication of key autophagy components, LC3A,
LC3B, beclin-1, and p62, in human adrenal gland tumors.

2. Materials and Methods
2.1. Patient Selection

Patients at Severance Hospital diagnosed with ACT or PCC after completing surgical
removal between January 2000 and December 2013 were consecutively included. Surgical
specimens were reviewed retrospectively by an expert endocrine pathologist (Koo JS and
Kim HM), and histologic evaluation was conducted using H&E–stained slides. Clinical
and pathologic data were also retrospectively collected from the patients’ electronic med-
ical records, which included sex, age at diagnosis, local recurrence, distant metastasis,
patient death, and the length of follow up. This study was approved by the Institutional
Review Board of Yonsei University Severance Hospital (9 March 2021; 4-2021-0028), which
exempted informed consent from patients.

2.2. In Silico Analysis

We searched the gene expression database of normal and tumor tissues (GENT2), a
web-accessible database, to compare beclin-1 and LC3A expression patterns in adrenal
gland tumor and normal tissues in 20 March 2021 (http://gent2.appex.kr/gent2/). Addi-
tionally, we used the web-accessible database cBioPortal in 20 March 2021 (http://www.
cbioportal.org) to investigate MAP1LC3A gene alterations in adrenal gland tumor tissues
(Figure S1).

2.3. Tissue Microarray

For the creation of tissue microarray, typical areas on H&E slides were selected and
the corresponding area was marked on the corresponding paraffin block. Three-millimeter
cores were selected from the marked area and placed into a 6 × 5 recipient block. Two
tissue cores were selected to avoid selection bias. Each core was randomly assigned into a
unique location number linked to clinical and pathologic data.

2.4. Immunohistochemistry

Commercial antibodies used in this study are itemized in Table S1. Immunohistochem-
ical staining was conducted with formalin-fixed, paraffin-embedded tissue sections by an
automatic staining system (Benchmark XT, Ventana Medical System, Tucson, AZ, USA)
according to the manufacturer’s instructions. Negative control tissue was stained in the ab-
sence of primary antibodies and the positive control sample was selected as recommended
and counterstained with Harris hematoxylin.

2.5. Interpretation of Immunohistochemical Staining

Beclin-1, p62, LC3A, and LC3B stained slides were identified via light microscopy and
were assessed semi-quantitatively across the entire tumor area as previously described [19].
Briefly, the staining score was determined as 0: negative or weak expression in less than
1%, 1: focal expression in 1–10%, 2: positive staining in 11–50%, and 3: positive staining in
51–100%. We defined scores of 0–1 as negative, and a score of 2 and 3 as positive.

http://gent2.appex.kr/gent2/
http://www.cbioportal.org
http://www.cbioportal.org
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2.6. Statistical Analysis

Clinical, pathological, and immunohistochemical results were analyzed by SPSS,
version 21.0 (released 2012; IBM Corp., Armonk, NY, USA). To determine statistical signifi-
cance, chi-squared and Fisher’s exact tests were adopted for categorical variables and a
Student’s t-test was used for continuous variables. Kaplan-Meier curves were used to eval-
uate disease-free survival and overall survival. The difference of survival was determined
by log-rank statistics. Multivariate analysis using the Cox proportional hazards model was
applied. Statistical significance was determined as p < 0.05.

3. Results
3.1. Clinicopathologic Characteristics of Patients

For ACT, a total of 132 cases, 115 (87.1%) ACA and 17 (12.9%) ACC, were included.
The clinicopathologic features of ACT patients are presented in Table S2. The clinical factors
with significant differences between ACA and ACC were age (p = 0.048) and tumor size
(p < 0.001). Factors included in the Weiss system were also significantly different between
ACA and ACC (all p < 0.001, Table S2). On the other hand, the clinicopathologic features of
189 cases of PCC are presented in Table S3.

3.2. Expression of Autophagy-Related Proteins in ACT and PCC

In some cases, isolated single positive cells (ISPC) were observed for p62 and LC3B.
Strong cytoplasmic expression was detected in one cell (Figure S2). Statistically significant
differences were noted between ACT and PCC. The proportion of beclin-1 (p < 0.001), LC3A
(p < 0.001), LC3B (p < 0.001), and LC3B (ISPC) (p = 0.010) positivity were higher in PCC
than in ACT, whereas the proportion of p62 positive cells was lower in PCC than in ACT
(p = 0.006) (Table 1 and Figure 1). A comparison of autophagy-related protein expression
between ACA and ACC demonstrated that the proportion of positive LC3B (ISPC) was
higher in ACC than in ACA (p = 0.027, Table 2 and Figure 2). The proportions of cells
positive for p62 (p = 0.017) and LC3B (ISPC) (p = 0.013) were significantly higher in PCCs,
with a GAPP score of ≥3 (Table 3 and Figure 2).

Table 1. Expression of autophagy-related proteins in adrenal cortical tumor and pheochromocytoma.

Parameters Total
n = 321 (%)

Adrenal Cortical
Tumor

n = 132 (%)

Pheochromocytoma
n = 189 (%) p-Value

Beclin-1 <0.001
Negative 218 (67.9) 127 (96.2) 91 (48.1)
Positive 103 (32.1) 5 (3.8) 98 (51.9)

p62 0.006
Negative 199 (62.0) 70 (53.0) 129 (68.3)
Positive 122 (38.0) 62 (47.0) 60 (31.7)

p62 (ISPC) 0.128
Absent 238 (74.1) 92 (69.7) 146 (77.2)
Present 83 (25.9) 40 (30.3) 43 (22.8)
LC3A <0.001

Negative 221 (68.8) 132 (100.0) 89 (47.1)
Positive 100 (31.2) 0 (0.0) 100 (52.9)

LC3B <0.001
Negative 243 (75.7) 116 (87.9) 127 (67.2)
Positive 78 (24.3) 16 (12.1) 62 (32.8)

LC3B (ISPC) 0.010
Absent 272 (84.7) 120 (90.9) 152 (80.4)
Present 49 (15.3) 12 (9.1) 37 (19.6)
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Figure 1. Expression of autophagy-related proteins in adrenal cortical tumor and pheochromocytoma. LC3A, LC3B, be-
clin-1, and LC3B (ISPC) positivity rates were higher in PCC than in ACT, whereas p62 positivity was lower in PCC. 

Figure 1. Expression of autophagy-related proteins in adrenal cortical tumor and pheochromocytoma.
LC3A, LC3B, beclin-1, and LC3B (ISPC) positivity rates were higher in PCC than in ACT, whereas
p62 positivity was lower in PCC.
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Table 2. Expression of autophagy-related proteins in adrenal cortical adenoma and adrenal corti-
cal carcinoma.

Parameters Total
n = 132 (%)

Adrenal Cortical
Adenoma

n = 115 (%)

Adrenal Cortical
Carcinoma
n = 17 (%)

p-Value

Beclin-1 0.381
Negative 127 (96.2) 110 (95.7) 17 (100.0)
Positive 5 (3.8) 5 (4.3) 0 (0.0)

p62 0.294
Negative 70 (53.0) 63 (54.8) 7 (41.2)
Positive 62 (47.0) 52 (45.2) 10 (58.8)

p62 (ISPC) 0.107
Absent 92 (69.7) 83 (72.2) 9 (52.9)
Present 40 (30.3) 32 (27.8) 8 (47.1)
LC3A n/a

Negative 132 (100.0) 115 (100.0) 17 (100.0)
Positive 0 (0.0) 0 (0.0) 0 (0.0)

LC3B 0.101
Negative 116 (87.9) 99 (86.1) 17 (100.0)
Positive 16 (12.1) 16 (13.9) 0 (0.0)

LC3B (ISPC) 0.027
Absent 120 (90.9) 107 (93.0) 13 (76.5)
Present 12 (9.1) 8 (7.0) 4 (23.5)
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Figure 2. Isolated single positive cells (ISPC) of p62 and LC3B stain in adrenal tumors. The ISPC proportion of LC3B was 
higher in ACC than in ACA. The ISPC proportions of p62 and LC3B were significantly higher in PCCs with a GAPP score 
of ≥3 than in PCCs with a GAPP score of <3. Arrows indicate ISPC. 

3.3. Presence/Absence of Clinicopathologic Factors in PCC/ACT and Expression of Autophagy-
Related Proteins 

In ACT, LC3B (ISPC) positivity was associated with atypical mitosis (p = 0.001) and 
clear cell proportion (p = 0.001). In the presence of positive LC3B (ISPC), the proportion of 
atypical mitosis and the incidence of clear cells being < 25% was significantly higher (Fig-
ure 3). In PCC, the number of cells positive for LC3B (ISPC) was significantly associated 
with capsular/vascular invasion (p = 0.014). Furthermore, beclin-1 positivity was associ-
ated with norepinephrine type (p = 0.007), whereas p62 positivity was related to Ki-67 
labeling index (L.I.) >1 (p = 0.012). The capsular/vascular invasion ratio was high in the 
presence of positive LC3B (ISPC). Meanwhile, the ratio of non-norepinephrine type was 
higher when beclin-1 expression was positive, and the ratio of Ki-67 L.I. > 1 was found to 
be higher in the case of cells positive for p62 expression (Figure 3). 

Figure 2. Isolated single positive cells (ISPC) of p62 and LC3B stain in adrenal tumors. The ISPC proportion of LC3B was
higher in ACC than in ACA. The ISPC proportions of p62 and LC3B were significantly higher in PCCs with a GAPP score of
≥3 than in PCCs with a GAPP score of <3. Arrows indicate ISPC.
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Table 3. Expression of autophagy-related proteins in pheochromocytoma according to GAPP score.

Parameters
Total

n = 189 (%)

Pheochromocytoma
p-ValueGAPP Score < 3

n = 138 (%)
GAPP Score ≥ 3

n = 51 (%)

Beclin-1 0.884
Negative 91 (48.1) 66 (47.8) 25 (49.0)
Positive 98 (51.9) 72 (52.2) 26 (51.0)

p62 0.017
Negative 129 (68.3) 101 (73.2) 28 (54.9)
Positive 60 (31.7) 37 (26.8) 23 (45.1)

p62 (ISPC) 0.349
Absent 146 (77.2) 109 (79.0) 37 (72.5)
Present 43 (22.8) 29 (21.0) 14 (27.5)
LC3A 0.747

Negative 89 (47.1) 64 (46.4) 25 (49.0)
Positive 100 (52.9) 74 (53.6) 26 (51.0)

LC3B 0.254
Negative 127 (67.2) 96 (69.6) 31 (60.8)
Positive 62 (32.8) 42 (30.4) 20 (39.2)

LC3B (ISPC) 0.013
Absent 152 (80.4) 117 (84.8) 35 (68.6)
Present 37 (19.6) 21 (15.2) 16 (31.4)

3.3. Presence/Absence of Clinicopathologic Factors in PCC/ACT and Expression of
Autophagy-Related Proteins

In ACT, LC3B (ISPC) positivity was associated with atypical mitosis (p = 0.001) and
clear cell proportion (p = 0.001). In the presence of positive LC3B (ISPC), the proportion
of atypical mitosis and the incidence of clear cells being < 25% was significantly higher
(Figure 3). In PCC, the number of cells positive for LC3B (ISPC) was significantly associated
with capsular/vascular invasion (p = 0.014). Furthermore, beclin-1 positivity was associated
with norepinephrine type (p = 0.007), whereas p62 positivity was related to Ki-67 labeling
index (L.I.) >1 (p = 0.012). The capsular/vascular invasion ratio was high in the presence of
positive LC3B (ISPC). Meanwhile, the ratio of non-norepinephrine type was higher when
beclin-1 expression was positive, and the ratio of Ki-67 L.I. > 1 was found to be higher in
the case of cells positive for p62 expression (Figure 3).

3.4. Impact of the Expression of Autophagy-Related Proteins on Patient Prognosis in PCC/ACT

In the univariate analysis, p62 positivity (p = 0.014) and the presence of p62 (ISPC)
positive cells (p = 0.001) were associated with shorter disease-free survival (DFS) in PCC.
Moreover, p62 positivity (p = 0.023) was associated with shorter overall survival (OS)
(Table 4 and Figure 4). The multivariate Cox analysis revealed that none of the autophagy-
related proteins were significantly associated with DFS, but p62 positivity was predictive
of shorter OS (relative risk, 6.240; 95% CI, 1.434-27.15; p = 0.015, Table 5). There was no
significant relationship between the expression of the assessed autophagy-related proteins
and patient prognosis in ACT (Table 6).
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Figure 3. The presence/absence of clinicopathologic factors and the expression of autophagy-related proteins in adrenal
cortical tumor and pheochromocytoma.

Table 4. Univariate analysis of the impact of expression of autophagy-related proteins in pheochromocytoma on disease-free
survival and overall survival by the log-rank test.

Parameter Number of Patients
/Recurrence/Death

Disease-Free Survival Overall Survival

Mean Survival
(95% CI) Months p-Value Mean Survival

(95% CI) Months p-Value

Beclin-1 0.655 0.112
Negative 91/2/8 150 (139–161) 142 (126–158)
Positive 97/3/3 154 (148–161) 159 (150–167)

p62 0.014 0.023
Negative 128/1/4 156 (154–159) 150 (142–157)
Positive 60/4/7 139 (115–162) 136 (114–157)

p62 (ISPC) 0.001 0.910
Absent 145/1/9 159 (157–162) 144 (134–155)
Present 43/4/2 127 (96–157) 157 (144–170)
LC3A 0.657 0.435

Negative 89/3/4 146 (136–157) 154 (142–166)
Positive 99/2/7 157 (151–162) 142 (129–155)

LC3B 0.529 0.220
Negative 126/4/5 149 (140–158) 155 (145–165)
Positive 62/1/6 157 (151–164) 138 (121–155)

LC3B (ISPC) 0.234 0.410
Absent 151/3/10 154 (147–162) 148 (137–160)
Present 37/2/1 145 (129–162) 151 (139–163)
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was also associated with shorter overall survival (right figure).
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Table 5. Multivariate analysis of disease-free survival and overall-survival of patients with pheochromocytoma.

Included Factor
Disease-Free Survival Overall Survival

Hazard Ratio 95% CI p-Value Hazard Ratio 95% CI p-Value

Histologic pattern 0.738 0.720
Zellballen vs. Non-Zellballen 1.491 0.143–15,351 0.737 0.139–3.912

Cellularity 0.290 0.504
Low, moderate vs. High 3.093 0.382–25.02 1.827 0.312–10.71

Vascular and/or capsular invasion 0.524 0.183
Absent vs. Present 2.125 0.210–21.55 2.854 0.610–13.34

Ki-67 labeling index (%) 0.923 0.112
<1 vs. ≥1 1.598 0.000–21,497 0.124 0.010–1.623

GAPP score 0.892 0.061
0–2 vs. 3–10 1.949 0.000–29,027 13.906 0.884–218.8

p62 0.420 0.015
Negative vs. Positive 2.945 0.123–40.72 6.240 1.434–27.15

p62 (ISPC) 0.081 0.432
Absent vs. Present 8.143 0.771–85.95 0.522 0.103–2.638

Table 6. Univariate analysis of the impact of expression of autophagy-related proteins in adrenal cortical tumors on
disease-free survival and overall survival by the log-rank test.

Parameter Number of Patients
/Recurrence/Death

Disease-Free Survival Overall Survival

Mean Survival
(95% CI) Months p-Value Mean Survival

(95% CI) Months p-Value

Beclin-1 n/a n/a
Negative 127/3/9 n/a n/a
Positive 5/0/0 n/a n/a

p62 0.446 0.056
Negative 70/1/2 107 (104–110) 106 (102–110)
Positive 62/2/7 115 (110–120) 106 (97–115)

p62 (ISPC) 0.138 0.322
Absent 92/1/5 107 (105–109) 103 (99–108)
Present 40/2/4 113 (105–121) 107 (96–118)
LC3A n/a n/a

Negative 132/3/9 n/a n/a
Positive 0/0/0 n/a n/a

LC3B n/a n/a
Negative 116/3/9 n/a n/a
Positive 16/0/0 n/a n/a

LC3B (ISPC) 0.094 0.157
Absent 120/2/7 107 (105–109) 103 (98–107)
Present 12/1/2 108 (88–128) 100 (77–123)

n/a: not available.

4. Discussion

In this study, we evaluated the expression status of autophagy-related proteins in
adrenal gland tumors. Autophagy is regarded as playing a crucial role in the adrenal
gland during physiologic states, since it regulates the growth of adrenal cells in the zona
fasciculata [20]. We found that, compared to ACT, the proportion of cells positive for beclin-
1, LC3A, LC3B, and LC3B (ISPC) was higher in PCC, whereas p62 positivity was lower in
PCC. Furthermore, among these proteins, p62 positivity was revealed to have prognostic
significance in PCC, suggesting that identification of proteins involved in autophagy could
have clinical relevance. This differential protein expression, according to the origin of
adrenal gland tumors, could be relevant to a previous study that reported that autophagy
exerts hormone-producing modulatory effects in steroid-secreting cells in the adrenal
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cortex, but not in the adrenal medulla, wherein the former exhibited characteristics similar
to those of Leydig cells in the testis [21].

In the present study, the proportion of cells positive for LC3B (ISPC) was higher in
ACC than ACA. Additionally, in PCC, it was associated with a GAPP score of over 3,
the presence of atypical mitosis, and capsular/vascular invasion, all of which are clini-
cal features indicating poor patient prognosis. In general, autophagy is understood as a
cellular mechanism that degrades intracellular components and produces amino acids,
nucleotides, fatty acids, sugars, and ATP by recycling proteins and organelles under oxida-
tive stress [22,23]. However, newly emerging literature suggests that autophagy facilitates
tumor progression, survival, and colonization in distant organs [24–28]. The recycling of in-
tracellular components to supply metabolic substrates to overcome the stressful conditions
of hypoxia or malnutrition in cancers is a putative explanation for the abovementioned
phenomena. It was reported that the expression of autophagy-related proteins was higher
in breast cancer with brain metastasis than in a primary breast tumor, corroborating our
hypothesis [29]. Moreover, beclin-1 was reported as a marker of gastric carcinogenesis,
aggressiveness, and a prognostic marker [30]. Our study also found that aggressive features
were related to the expression of autophagy-related proteins. Differently, autophagy could
influence patient prognosis via affecting response to chemotherapy [31]. Interestingly, it
was found that p62 positivity was related to shorter DFS and OS in PCC. In a previous
study, lithium increased autophagy in PC12 cells, resulting in overgrowth of PCC cells,
suggesting the possibility that autophagy-related proteins could be prognostic biomarkers
in adrenal gland tumors [32].

As shown previously, autophagy is known to act as a tumor enhancer and/or tumor
suppressor in various cancers, is also pathogenically implicated in tumor cell growth in
adrenal gland tumors [30]. Nevertheless, because the expression of autophagy-related
proteins in adrenal gland tumors was not reported in the existing literature, a direct
comparison of our findings to a previous study could not be conducted.

Another potential clinical implication of this study is that it paved the way for com-
pounds targeting autophagy as promising therapeutic agents in patients with adrenal gland
tumors [33–36]. A study using rosiglitazone (RGZ), a PPAR-γ agonist, showed that RGZ
was capable of activating the AMPK pathway, leading to enhanced autophagy, reactive
oxygen species formation, as well as upregulating beclin-1 and LAMP-1, a protein involved
in the process of autophagy to induce autophagic cell death in ACC cell lines [37]. How-
ever, a contradictory result was reported in PCC, as the induction of autophagy in the rat
PCC cell line, PC12, improved cell survival [32,38]. Sunitinib is a tyrosine kinase inhibitor
that induces apoptosis and autophagy in PC12 cells by direct inhibition of mTOR [39].
Inhibition of the autophagy process promoted the anti-proliferative and apoptotic effect
of sunitinib, highlighting an inverse effect as compared with ACC [38]. Further, a study
using SW13 cells, which is an ACC cell line, demonstrated that RGZ does not exert any
effect on autophagy; instead, it accompanies the process of cell cycle dysregulation and
the inhibition of cell growth [37], emphasizing that the effect of autophagy is complex and
could largely differ based on the underlying tumor microenvironment. Notably, as there are
increasing attempts to develop therapeutic agents targeting autophagy in cancers [33–36],
it may be possible that these drugs could be used in the treatment of adrenal gland tumors,
the possibility and efficacy of which will be elucidated by further in vitro and in vivo
studies in the future.

The limitation of this study is that the number of patients with ACC was small,
and only a small proportion of patients with PCC (8 among the 189 patients) had under-
gone chemotherapy. Thus, the effect of autophagy-related protein expression in requiring
chemotherapy could not be evaluated. In addition, immunohistochemical staining may not
be sufficient to precisely evaluate the activity of autophagy. Given that the evaluation of
autophagy was only performed using paraffin blocks of adrenal gland tumors, a detailed
investigation utilizing autophagy flux, which enables assessment of the complex, dynamic,
and the multi-sequential process of autophagy, as well as in vitro investigations (i.e., im-
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munofluorescence and cell line studies) is warranted to provide better insights into the role
of autophagy in adrenal gland tumors.

5. Conclusions

The expression of autophagy-related proteins was significantly different between PCC
and ACT. In particular, the expressions of these proteins were associated with aggressive
clinical features and patient prognosis, suggesting that the estimation of these proteins may
be useful in the discrimination of adrenal gland tumors and the identification of patients
with poor prognosis.
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