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ABSTRACT 

Development of radiomics model for prognosis prediction in gastric 

cancer 

 

Jaeseung Shin 

 

Department of Medicine 

The Graduate School, Yonsei University 

 

(Directed by Professor Yong-Min Huh) 

 

Purpose : Preoperative therapy has gained wide interest in advanced gastric 

cancer patients due to its potential advantages of improved disease control. 

Selection of high risk patients based on preoperative staging is crucial to choose 

the candidates for neoadjuvant therapy. To evaluate the added value of the 

radiomic signature for predicting recurrence-free survival (RFS) of locally 

advanced gastric cancer using preoperative contrast-enhanced abdominal 

computed tomography (CT), compared with the clinical prediction model. 

Methods : Our institutional review board approved this retrospective study and 

waived the requirement for patient consent. The present study included 349 

patients who underwent curative resection for locally advanced gastric cancer in 

2010 without neoadjuvant therapies as training cohort. External validation cohort 

with 61 patients was collected from another hospital. Clinical factors which were 

available in the preoperative setting including conventional CT staging and 

endoscopic data were obtained and a total 438 of radiomic features were extracted 

from the preoperative CT. To predict RFS, the radiomic model was developed 

using penalized Cox regression with a least absolute shrinkage and selection 

operator with ten-fold cross-validation. Internal and external validations were 
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performed using a bootstrapping method (n=1000) for each validation. The 

incremental values of radiomic features were evaluated by using the integrated 

area under the receiver operating characteristic curve (iAUC). 

Results : With the final 410 patients (58.2±13.0 years-old; 268 female), the 

radiomic model consisted of seven selected features. The clinical model included 

two independent factors, CT Borrmann type 4 and extramural nodular infiltration, 

The merged model was built using both clinical and radiomic features. In both of 

the internal and the external validation, the integrated area under the receiver 

operating characteristic curve values of both the radiomic model (0.714 [95% 

confidence interval(CI) 0.667, 0.759], P<0.001 in internal validation; 0.652 [95% 

CI 0.628, 0.674], P=0.010 in external validation) and the merged model (0.719 

[95% CI 0.674, 0.764], P<0.001; 0.651 [95% CI, 0.630, 0.673], P=0.014) were 

significantly higher than those of the clinical model (0.616 [95% CI, 0.570, 0.663]; 

0.59 4[95% CI 0.544, 0.636]). 

Conclusion : The radiomics signature based on preoperative CT images is a 

possible preoperative imaging biomarker that can improve RFS prediction of the 

preoperative clinical profile in LAGC. The ability of radiomic signatures to 

identify high-risk LAGC patients may be helpful in selecting appropriate 

candidates for neoadjuvant therapy. 

 

 

 

 

 

 

 

Keywords : radiomics, computed tomography, gastric cancer, prognosis 

prediction 
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I. INTRODUCTION 

Gastric cancer is the fourth most common cancer and third leading cause 

of cancer-related death worldwide, accounting for an estimated annual 723,100 

deaths1,2. Complete R0 resection of tumor with subsequent adjuvant 

chemotherapy has been established as an effective treatment for patients with 

locally advanced gastric cancer (LAGC)3. However, recurrence after complete 

resection occurs in up to 30%–40% of patients within 5 years4-6. Recently, 

neoadjuvant chemotherapy is widely recommended in international western 

guidelines for advanced gastric cancer patients because of its potential benefits, 

including early treatment of micrometastases, delivery of higher dose 

chemotherapy before surgery, and an improved down-staging change of the 

primary tumor3. Higher R0 resection rate and survival can be achieved with 

neoadjuvant chemotherapy followed by curative surgery7,8. As evidence 

supporting neoadjuvant chemotherapy accumulates, identification of patients as 

neoadjuvant candidates becomes important. 

Computed tomography (CT) is the modality of choice for preoperative 

clinical staging of gastric cancer; however, studies have reported limitations 
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regarding staging accuracy and risk stratification9. Due to intrinsic limitations of 

CT spatial resolution in distinguishing gastric wall layers, tumor staging is 

suboptimal. Preoperative CT-based node staging is also limited because size-

based differentiation of small lymph nodes (LNs) with micrometastasis from 

large reactive LNs is difficult10. Hence, there is a growing need to use biomarkers 

in conjunction with abdominal CT to predict the prognosis of LAGC. 

Radiomics has emerged as a promising tool for discovering new imaging 

biomarkers by converting digital medical images into high-dimensional 

quantitative features such as shape, histogram and texture that captures tumor 

heterogeneity11-13. Its potential capacity to capture useful information and to 

increase the diagnostic and prognostic power has shown in lung, prostate, brain, 

liver, colorectal cancer14. In gastric cancer, several radiomics studies has been 

performed based to reveal CT texture parameters as noninvasive predictive 

factor15-17. Previous study by Giganti et al.15 investigated the association between 

CT texture analysis and overall survival and showed preoperative CT texture 

features as prognostic factor for risk stratification in gastric cancer. However, 

those studies were limited by the small sample size and lack of validation. 

Recently, a large retrospective study18 demonstrated that the radiomics signature 

had good performance in predicting prognosis and survival benefit of adjuvant 

chemotherapy. However, the study included a considerable number of gastric 

cancer cases with early stage or distant metastasis, which limited the risk 

stratification of patients with LAGCs who are subject to preoperative 

chemotherapy. 

 This study aimed to develop and validate a radiomics-based prognostic 

model for recurrence-free survival (RFS) using preoperative contrast-enhanced 

CT in LAGC. Moreover, we assessed the value added by radiomic signatures 

when integrated with clinical profiles in the preoperative setting and whether the 

radiomics model can perform risk stratification for tumor recurrence. 
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II. MATERIALS AND METHODS 

 This retrospective study was approved by the institutional review board 

of Severance hospital (Seoul, Korea, Protocol no. 4-2019-0062), with a waiver 

for informed consent.  

 

1. Patients and data acqusitions 

From January 1, 2010 to December 31, 2010., we retrospectively 

searched a total of 426 consecutive patients with locally advanced gastric cancer 

(pT2–4) who underwent curative surgery without neoadjuvant therapy at Sinchon 

Severance hospital. Patients who had double primary cancer (n = 10), endoscopic 

clipping (n = 6), histology other than adenocarcinoma (n = 1), history of previous 

endoscopic mucosal resection (n = 3), and less than 6 months follow-up (n = 18) 

were excluded. Patients with insufficient preoperative CT images with slice 

thickness more than 5 mm (n = 6) or pixel size larger than 1.0 mm  1.0 mm (n 

= 8) were also excluded due to poor CT quality.  

For external validation, 83 consecutive patients with the same enrollment 

criteria were collected from Kangnam Severance hospital. Patients who had 

double primary cancer (n = 2), less than 6 months follow-up (n = 12), endoscopic 

clipping (n = 5), and history of previous endoscopic mucosal resection (n = 1) 

were excluded. After CT image analysis, 25 and two patients in the training and 

validation cohorts were excluded respectively, due to no identifiable lesion on 

their CT scans, respectively. The final training and validation cohorts consisted 

of 349 and 61 patients, respectively (Figure 1). 
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Figure 1. Flowchart for patient selection in training cohort and validation 

cohort 

 

 Clinical, laboratory, endoscopic, and pathological data were retrieved 

from patients’ electronic medical records, including age, gender, serum levels of 

carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9, tumor 

location, tumor size, differentiation, Lauren type, and TNM stage. The TNM 

staging was reclassified according to the eighth edition of the American Joint 

Committee on Cancer/ Union for International Cancer Control staging system. 

The following clinical factors were integrated in the preoperative clinical model: 

Age (≤60 vs. >60 years); Sex (male vs. female); levels of serum 

carcinoembryonic antigen (< 5 vs. ≥5 U/ml) and carbohydrate antigen 19-9 (< 

37 vs. ≥ 37 U/ml); endoscopy result including tumor location (upper vs. middle 

vs. lower), histological grade from biopsy tissue (well or moderate vs. poorly 

differentiated), Borrmann type (type 4 vs. others). 
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After surgical resection, all patients were followed up for 6.5 to 109.2 

months (median follow-up: 71.5 months) through December 2018 according to 

the institutional protocol19. Follow-up data (follow-up duration and survival) 

were collected from hospital records for patients who were lost during follow-up. 

The follow-up duration was measured from the time of surgery to the last follow-

up date, and information regarding the survival status at the last follow-up was 

collected. The recurrence free survival (RFS) was defined as the time to 

recurrence at any site (event) or the last follow-up date (censored).  

 

2. CT image acquisition and image analysis 

CT scans were performed with a 16- or 64-channel multidetector CT scanner 

(Somatom Sensation 16 and Sensation 64; Siemens Medical Solutions, Forchhein, 

Germany; and Lightspeed VCT, GE Healthcare, Milwaukee, WI, USA). Images 

were acquired from the diaphragm level to the symphysis pubis with detector 

collimations of 16  0.75 mm (Somatom Sensation 16, Simens Medical 

Solutions), 64  0.6 mm (Somatom Sensation 64, Simens Medical Solutions), or 

64  0.625mm (Lightspeed VCT, GE healthcare). Other scanning parameters 

were as follows: tube current 160 mAs (Somatom Sensation 16 and Sensation 64, 

Siemens Medical Solutions) and 100 – 300 mAs of Automated tube current 

modulation with a noise index of 15 (AutomA; Lightspeed VCT, GE Healthcare); 

tube voltage 120 kVp; table speed, 24 mm per rotation; and gantry rotation time, 

0.5 seconds. The details regarding the acquisition parameters of CT image are 

presented in Table 1. For gastric distention, either gas distention with two packs 

of effervescent granules or water distention with 1 L of water was introduced. 

Scanning was performed during portal phases, as determined with bolus tracking 

and automated triggering technique after intravenous administration of 120 – 150 

mL of nonionic contrast materials (300 mgI/mL) using an automatic injector at a 

rate of 4 ml/second. The amount of contrast medium per patient was determined 
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by the total body weight. Axial and coronal images were reconstructed with 3-

mm-thick sections and a 3 mm interval with filtered back projection algorithm. 

From the Picture Archiving and Communication System (Centricity, GE Medical 

Systems, Milwaukee, WI, USA), portal venous phase CT images were retrieved 

for qualitative image review and radiomic feature extraction because the tumor 

tissue was well differentiated from the adjacent normal gastric tissue. 

 

Table 1. Details of CT acquisition Parameters 

Parameters Sensation 16 Sensation 64 Lightspeed VCT 

No. of channels 16 64 64 

Section collimation* 16  0.75 64  0.6 64  0.625 

Slice thickness (mm) 3 3 3 

Pitch 1 0.6 0.9840 

Tube current (mAs)† 160 160 100–300‡ 

Rotation time (sec) 0.5 0.5 0.5 

Table speed (mm per 
rotation) 

24.0 24.0 24.0 

Tube voltage (kV) 120 120 120 

Kernel B30f/B31f Standard 

Matrix 512  512 512  512 512  512 

Following CT scanners were used: Sensation 16 and Sensation 64 (Siemens 

Healthineers); and Lightspeed VCT (GE Healthcare).  
*Number of detector rows times section thickness (mm) 
†Reference milliampere-seconds 
‡AutomA was set between 100 and 300 mA with a noise index of 15.  

 

Preoperative CT images were independently reviewed by two board-certified 

abdominal radiologists with more than 10 years of subspecialty experience, who 

arrived at a consensus in cases with discrepancy. The CT imaging characteristics 

analyzed were tumor depth, lymph node (LN) status, tumor size, and Borrmann 

type. Tumor depth on CT (CT-Depth) was categorized into two groups, nodular 

or less than nodular extramural infiltration groups—one of the major 

discriminating factors for predicting recurrence of AGC in a previous study20. LN 
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involvement on CT (CT-LN) was categorized into two groups, N0 – 1 and N2 – 

3, as multidetector CT might be useful for selecting candidates for neoadjuvant 

therapy with ≥ pN2 disease21. LNs were considered metastatic if they had a short-

axis diameter > 8 mm. Tumor size (CT-Size) was measured as the longest 

diameter on the axial or coronal plane. Tumors were classified as CT-Type4 when 

infiltrative stomach cancer showed no definite ulceration or mass formation on 

preoperative CT20. 

 

3. Radiomics feature extraction 

A radiologist selected one axial image among the CT images that depicted 

the largest area of the lesion, under the inspection of an abdominal radiologist. 

The CT images were resampled by pixel spacing 1.0 mm  1.0 mm using the 

BSpline interpolator of Insight Segmentation and Registration Toolkit (ITK) 

package (https://www.itk.org). A free-form region of interest (ROI) was drawn 

along the margins of the tumor using semi-automatic methods aided by the CT 

attenuation threshold, measured using an open-source application, Medical Image 

Processing, Analysis, and Visualization (MIPAV) (https://mipav.cit.nih.gov). 

Each selected image and ROI were thoroughly checked by another abdominal 

radiologist with 16-year subspecialty experience. Disagreements about the ROI 

were resolved by consensus-based discussion. The radiologists were blinded to 

the clinical and histopathologic data, except for information on the diagnosis of 

gastric cancer and the general location of the tumor (upper, middle, lower, or 

whole) based on findings of the preoperative endoscopy, since we were not 

evaluating the detection ability. 

Pyradiomics (version 2.0.0), the open-source python package, was used to 

extract radiomics features, including shape-based features, first-order features, 

and texture features (Appendix 1). Gray value discretization was performed to a 

fixed bin width of 10 bins. No normalization was performed in PyRadiomics. 



- 10 - 

 

First-order statistics describe the distribution of pixel intensities within an CT 

image such as energy, entropy and kurtosis. Texture features were extracted using 

Gray Level Co-occurrence Matrix (GLCM) Features, Gray Level Size Zone 

Matrix (GLSZM) Features, Gray Level Run Length Matrix (GLRLM) Features, 

Gray Level Dependence Matrix (GLDM) Features.The GLCM and GLRLM 

features were extracted for each direction separately, after which the average 

value over all directions was returned as the extracted feature value, with no 

weighting in calculation. Feature descriptions can be found in the PyRadiomics 

documentation (PyRadiomics feature definitions: 

https://pyradiomics.readthedocs.io/en/latest/features.html) 

Wavelet transformation decouples textural information by decomposing the 

original image in low and high frequencies. The original CT image was 

decomposed into four decompositions (low-high, high-high, high-low, low-low 

subbands) using two-dimensional coiflet wavelets. For the wavelet-filter, 

stationary wavelet transform was applied using the “coif1” (coiflet-1) wavelet 

function. Each image was filtered using either a high band-pass filter or low 

bandpass filter in x and y directions, yielding 4 different combinations of 

decompositions. First order features, GLCM features, GLRLM features, GLSZM 

features, and GLDM features were extracted from each original (unfiltered) as 

well as filtered images. 

Finally, 438 tumor imaging quantifying features were obtained (94 features 

from original image and 86  4 features from the wavelet transformed images).  

 

4. Inter-observer and inter-slice agreement for selected features 

To exclude the possibility of interobserver variability affecting the ROI, 

another radiologist with 5 years of subspecialty experience drew ROIs in 30 

randomly selected lesions to analyze interobserver reproducibility. The 

radiologists were blind to the clinical and histopathological data except for a 
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general location of the tumor based on the preoperative endoscopic finding, since 

the present study did not aim to evaluate the detection ability. Interobserver 

agreement was evaluated by the intraclass correlation coefficient (ICC) with the 

95% confidence interval (CI) based on a two-way random effect model. 

 As only one slice with the largest section of the lesion was selected to 

draw ROI, inter-slice agreement amoung extracted features was anlaysed with 30 

randomly chosen images for three consecutive slices including the largest section 

in the middle. The inter-slice ICC among the consecutive slices were calculated. 

The features with both inter-observer and inter-slice ICC greater than 0.75, which 

were suggested to be categorized into good to excellent reproducibility22, were 

included in subsequent analyses. 

 

5. Feature selection and radiomics signature building 

The least absolute shrinkage and selection operator method (LASSO) Cox 

regression model23 was used to select the most prognostically useful features. 

Then, a multiple-feature based radiomics signature, namely the radscore, was 

constructed for predicting survival in the training cohort. The method uses an L1 

penalty to shrink some regression coefficients to exactly zero. LASSO has been 

extended and broadly applied to the Cox proportional hazard regression model 

for survival analysis with high-dimensional data. We selected λ via 1-SE 

(standard error) criteria, i.e., the optimal λ is the largest value for which the partial 

likelihood deviance is within one SE of the smallest value of partial likelihood 

deviance. Ten-fold cross-validation in the training set was performed to to 

optimize hyperparameters for model generalizability. 

 

6. Construction of various models 

All available clinical factors in the preoperative setting were included in the 

clinical model building. In the training cohort, the clinical model for predicting 

RFS was built using the multivariable Cox proportional hazards model with a 
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backward stepwise approach based on the Akaike information criteria. The 

following clinical factors are integrated in preoperative clinical model: age, sex, 

CEA (<5 or ≥5 U/ml), CA 19-9 (<37 or ≥37 U/ml), conventional CT features (CT 

size, CT-depth [nodular extramural infiltration or not], CT-LN [N0 – 1 or N2 – 

3], CT Borrmann type 4), endoscopy result (tumor location 

[Upper/middle/lower/whole], Histological grade from biopsy tissue [Well or 

moderate / Poorly diffentiated], Borrmann type 4). The radiomic model was built 

using radscore in a univariate Cox model. The radomic score was incorperated 

into the clinical model to build merged clinico-radiomic (merged) model in 

preoperative setting to evaluate the potential value of the radscore. The 

performances of the three models were evaluated in the external validation cohort. 

 

7. Radscore-based risk stratification 

The potential association of radscore with RFS was assessed in training and 

validation cohorts using Kaplan-Meier survival analysis. The patients were 

stratified into high- and low-radscore groups, using a maximally selected log-

rank statistic-based threshold24. The threshold value determined in the training 

cohort was applied to the validation cohort. Differences in survival distributions 

between the two groups were compared using log-rank tests. Subgroup analyses 

according to CT-Size, CT-LN, CT-Depth, CT-Type4, and adjuvant chemotherapy 

were performed to determine if there was any survival difference between the 

high- and low-radscore groups. 

 

8. Assessment of incremental value of radiomics signature in individual 

RFS estimation 

To demonstrate the incremental value of the radiomics signature to 

preoperative clinical risk factors for individualized assessment of RFS, a 

nomogram of the merged model was developed in the training cohort. To compare 

the predicted survival with the actual survival, calibration curves were generated. 
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To quantify the discrimination performance, the integrated area under the receiver 

operating characteristic curves (iAUC) were compared between the addition of 

radiomics and clinical parameters. The iAUC is a weighted mean of the AUC 

over a follow-up period to measure the model’s performance in survival 

prediction. To quantify the improvement of usefulness added by the radiomics 

signature, a net reclassification improvement (NRI) calculation was also applied25. 

Finally, a decision curve analysis determined the clinical usefulness of the 

radiomics nomogram by quantifying the net benefits at different threshold 

probabilities26. 

 

9. Statistical analysis 

Continuous variables were described using mean ± standard deviation and/or 

median with interquartile range and compared using independent t-tests. 

Categorical variables were compared using chi-squared or Fisher’s exact tests. 

RFS was assessed by the Kaplan-Meier method, and differences in survival 

distributions between groups were compared using log-rank tests. The 

multivariate Cox proportional hazards model with backward stepwise approach 

was used to identify independent clinical prognostic factors for RFS. Outcomes 

were expressed as hazard ratios and 95% CIs. To quantify the discrimination 

performance, iAUC values and their differences between models were calculated 

using a bootstrapping method (resampled 1000 times) in training (for internal 

validation) and validation cohorts (for external validation). 95% CIs for iAUC 

values and differences were computed by the percentile method39. The iAUC 

difference was considered statistically significant if the 95% CI of the iAUC 

difference did not include zero. A P-value of <0.05 was considered statistically 

significant. Statistical analyses were performed using open source R software 

(version 3.3.2, https://www.r-project.org/, Supplementary materials). In addition, 

the radiomics quality score11 was evaluated to assess the overall quality of the 

study in a standardized form. Overall workflow of the present study was 
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presented in Figure 2. 

 

Figure 2. Workflow of the present study 

 

The “glmnet” and “survival” package was used to perform the LASSO Cox 

regression and survival analysis, respectively. The ”rms” package was used to 

perform multivariate Cox regression and generate nomograms, and calibration 
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plots. The “survival ROC” package was used to perform the time-dependent 

receiver operating characteristic (ROC) curve analysis. The iAUC values were 

calculated by using the “riskset ROC” package. The calculation of net 

reclassification improvement was performed with the “survIDINRI” package. 

Decision curve analysis was performed with the function of “dca.R”.  

 

 

III. RESULTS 

 The total radiomics quality score11 was 15 (adherence rate 15/36, 41.7%) 

in 16 domains (Appendix 2). 

 

1. Study population Characteristics 

A total of 410 patients (mean age, 58.2 ± 13.0 years; 268 men) was 

included in the final study population, with 349 patients (mean age, 58.3 ± 12.6 

years; 232 men) in the training cohort and 61 patients (mean age, 57.3 ± 15.0 

years; 40 men) in the validation cohort (Figure 1). There was no significant 

difference between training and validation cohorts in recurrence, sex, age, 

carcinoembryonic antigen, carbohydrate antigen 19-9, T stage, N stage, 

differentiation, Lauren classification, and lymphovascular invasion. Nodular 

extramural infiltration in CT showed significant difference between the two 

cohorts (Table 2). 
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Table 2. Demographic and Clinical Characteristics of Patients in the 

Training and Validation cohort 

 
Training 

(n=349) 

Validation 

(n=61) 
p-value 

Recurrence (%) 95 (27.2) 21 (33.3) 0.249 

Sex (female, %) 117 (33.5) 25 (41.0) 0.259 

Age (mean ± SD) 58.3 ± 12.6 57.3 ± 15.0 0.601 

CEA (elevated, %) 33 (9.5) 4 (6.6) 0.466 

CA 19-9  35 (10.0) 9 (13.8) 0.271 

Conventional CT 

features 
   

Size (mean ± SD) 47.3 ± 24.9 50.0 ± 19.8 0.347 

Tumor depth 

: Nodular extramural 
(n, %) 

138 (39.5) 12 (19.7) 0.003 

cN2 – 3 (n, %) 80 (22.9) 9 (14.8) 0.153 

Borrmann type 4 (n, %) 31 (8.9) 8 (13.1) 0.299 

Endoscopy data    

Differentiation   0.801 

Well/moderate 126 (36.1) 21(34.4)  

Poorly/undifferentiated 223 (63.9) 40 (65.6)  

Location   0.127 

Upper 57 (16.3) 14 (23.0)  

Middle 103 (29.5) 10 (16.4)  

Lower 180 (51.6) 34 (55.7)  

Whole 9 (2.6) 3 (4.9)  

Borrmann type 4 (n, %) 11 (3.1) 4 (6.6) 0.191 

Surgical pathology data    

T stage   0.607 

T2 94 (26.9) 10 (16.4)  

T3 113 (32.4) 21 (34.4)  

T4a 140 (40.1) 30 (49.2)  

T4b 2 (0.6) 0 (0.0)  
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N stage   0.785 

N0 126 (32.6) 20 (32.7)  

N1 70 (22.0) 10 (16.4)  

N2 70 (20.1) 12 (19.7)  

N3a 55 (16.5) 12 (19.7)  

N3b 28 (8.8) 7 (11.5)  

Differentiation   0.066 

Well/moderate 122 (35.0) 14 (23.0)  

Poorly/undifferentiated 227 (65.0) 47 (77.0)  

Lauren classification   0.119 

 Intestinal 175 (50.1) 24 (39.3)  

 Diffuse/mixed 174 (49.8) 37 (60.7)  

LV invasion 154 (44.1) 26 (42.6) 0.827 

Borrmann type 4 (n, %) 25 (7.2) 7 (11.5) 0.246 

SD, Standard deviation; CEA, Carcinoembryonic antigen; LV invasion, 

lympho-vascular invasion 

 

In the training cohort, recurrences occurred in 95 of 349 patients (27.2%) 

and the 1-, 2-, and 5-year cumulative global RFS rates were 92.2%, 85.7%, and 

75.1% (95% CI [89.4, 95.1], [82.1, 89.5], [70.6, 80.0]), respectively. In the 

validation cohort, recurrences occurred in 21 of 61 patients (33.3%) and the 1-, 

2-, and 5-year cumulative global RFS rates were 86.0%, 76.5, and 64.1% (95% 

CI [77.5, 95.5], [66.1, 88.6], [52.2, 78.6]), respectively (Figure 3). 

In the final study population of 410 patients, R0 gastrectomy with D2 

lymphadenectomy was successfully performed with 140 (34.1%) total 

gastrectomy and 270 (64.1%) subtotal gastrectomy. TNM stage III patients 

represented 49.5% (203/410) while TNM stage II and I represented 36.8% 

(151/410) and 14.4% (59/410), respectively. Overall, 74.1% of the patients 

received adjuvant chemotherapy (stage III, 94.6%; stage II, 68.2%; stage I, 

15.3%;). 
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2. Interobserver and interslice agreement  

The interobserver and interslice intraclass correlation coefficient (ICC) 

ranges were 0.491–1.000, and 0.360–0.965, respectively (Appendix 1). Therefore, 

240 features with ICC>0.75 on both interobserver and interslice reproducibility 

were used for the further analysis. 

 

3. Feature selection and radiomics signature building  

In the LASSO Cox regression model, a value of tuning parameter λ = 

0.077 with log (λ) = -2.58 was selected by cross-validation to minimize partial 

likelihood deviance values among the 240 features. The optimal tuning parameter 

resulted in seven non-zero coefficients (Table 3, Figure 2). The radscore was 

calculated by following equation:  

Radscore = (-8.661705*original_shape_Sphericity)  

+ (-1.974956*original_glcm_Imc1)  

+ (1.033112*original_glcm_Imc2)  

+ (-0.517325*original_glszm_SmallAreaEmphasis)  

+ (1.670901*wavelet.LH_glcm_Idmn)  

+ (5.198918*10-5 wavelet.LH_gldm_GrayLevelNonUniformity) 

+ -9.272848*10-9*wavelet.HL_glszm_LargeAreaHighGrayLevelEmphasis) 

 

Table 3. Selected features on the LASSO Cox regression model 

Selected Variables coefficient 

original_shape_Sphericity                      -8.661705 

original_glcm_Imc1 -1.974956 

original_glcm_Imc2 1.033112 

original_glszm_SmallAreaEmphasis -0.517325 

wavelet.LH_glcm_Idmn 1.670901 

wavelet.LH_gldm_GrayLevelNonUniformity 5.198918*10-5 

wavelet.HL_glszm_LargeAreaHighGrayLevelEmphasis -9.272848*10-9 
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Figure 3. Texture feature selection using the least absolute shrinkage and 

selection operator (LASSO) Cox regression model. (A) Tuning parameter (λ) 

selection in the LASSO model used 10-fold cross-validation via minimum criteria. 

The partial likelihood deviance curve was plotted versus log (λ). Dotted vertical 

lines were drawn at the optimal values by using the minimum criteria and 1 

standard error of the minimum criteria (the 1-SE criteria). A λ value of 0.077, 

with log (λ) of -2.58 was chosen (1-SE criteria) according to 10-fold cross-

validation. (B) LASSO coefficient profiles of the 240 texture features. A 

coefficient profile plot was produced against the log (λ) sequence. A vertical line 

was drawn at the value selected using 10-fold cross-validation, where optimal λ 

resulted in seven nonzero coefficients. 
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Correlation matrix of the selected radiomics features was shown in 

Figure 4. Correlation coefficients were ranged -0.92 to 0.6. 

 

 
Figure 4. Correlation matrix of the selected radiomics features.  

GLNonUni, GrayLevelNonUniformity; HL, Hihg-low pass filter; Idmn, Inverse 
difference moment normalized; IMC, informational measure of correlation; 

LAHGLEmph, LargeAreaHighGrayLevelEmphasis; LH, Low-high pass filter; 

SAEmph, SmallAreaEmphasis; wv, wavelet 
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Histograms for the radscore in training and validation cohort were 

shown in Figure 5.  

 

Figure 5. Histograms for the radscore in the training and validation cohort 

 

The defined radscore showed significant difference by tumor recurrence 

in both training and validation cohort (log-rank test, p < 0.001). The optimum 

cutoff generated by a maximally selected log-rank statistic were 1.116 (Figure 6). 

Accordingly, patients were classified into a low-radiomics score group (radscore 

< 1.116) and a high-radiomics score group (radiomics score ≥ 1.116).  

 

Figure 6. Optimal cutoff selection of radscore (1.116) for high and low risk 

for tumor recurrence, generated by a maxiamlly selected lor-rak statistic. 



- 22 - 

 

4. Construction and validation of prediction models  

Performance of the clinical, radiomics, and merged models were evaluated. 

Among preoperative clinical factors, Tumor depth on CT (CT-Depth) and Tumors 

classified as Borrmann type 4 on CT (CT-Type 4) were identified as independent 

factors for predicting RFS using backward stepwise approach (Table 4). 

 

Table 4. Preoperative clinical factors for predicting tumor recurrence-free 

survival  

Clinical 

feature 

 Univariate analysis Multivariate analysis* 

HR (95% CI) P value HR (95% CI) P value 

Age ≤ 60 Reference    

> 60 1.326 (0.875 

– 2.012) 

0.184 

Sex Male Reference    

Female 1.189 (0.773 

– 1.828) 

0.431 

CEA < 5 U/ml  Reference    

≥ 5 U/ml 1.557 (0.828 

– 2.927) 

0.169 

CA 19-9 < 37 U/ml  Reference    

≥ 37 U/ml 2.143 (1.189 

– 3.863) 

0.011† 

CT-Size ≤ 4cm Reference    

> 4cm 2.469 (1.513- 

4.030) 

<0.001

† 

CT-Depth Nodular 

extramural 

infiltration (-) 

Reference  Reference   

 Nodular 

extramural 

2.103 (1.385 

– 3.194) 

<0.001

† 

1.899 (1.237 – 

2.915) 

0.003† 
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infiltration (+) 

CT-LN 

status 

cN0 or cN1  Reference    

cN2 or cN3 1.696 (1.079 

– 2.666) 

0.022† 

CT-

Borrmann 

type 

Type 1,2, or 3 Reference  Reference  

Type 4 2.646 (1.539 

– 4.549) 

<0.001

† 

2.174 (1.247 – 

3.789) 

0.006† 

Endoscopy-

Location 

Upper Reference    

Middle 2.059 (0.938 

– 4.518) 

0.072 

Lower 2.057 (0.973 

– 4.349) 

0.059 

Whole 5.155 (1.686 

– 15.764) 

0.004† 

Endoscopy-

Histological 

grade 

Well or 

moderate.  

Reference    

Poorly 

differentiated 

1.328 (0.841 

– 2.097) 

0.224 

Endoscopy-

Borrmann 

type 

Type 1,2, or 3 Reference    

Type 4  1.884 (0.764 

– 4.645) 

0.169 

HR, hazard ratio; CI, confidence interval; CEA, carcinoembryonic antigen; CA, 

cancer antigen 
* The multivariate regression model was built using backward stepwise 

approach with Akaike information criteria. 

† Statistically significant 

 

The radscore prognostic accuracy on time-dependent ROC curves as 

measured by area under the curves at 1, 2, and 5 years were 0.719, 0.748, and 

0.733 in training and 0.795, 0.824, and 0.878, in validation cohorts, respectively 

(Figure 7). 
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Figure 7. Survival receiver operating characteristic curves at 1, 2, and 5 

years with the radscore, (A) in training cohort and (B) in validation cohort 

 

The iAUC values for RFS prediction in the internal validation were: 

0.616, 95% CI [0.570, 0.663] in clinical; 0.714, 95% CI [0.667, 0.759] in 

radiomic; and 0.719, 95% CI [0.674, 0.764] in merged models. In external 

validation, the iAUC values were: 0.584, 95% CI [0.544, 0.636] in clinical; 0.652, 

95% CI [0.628, 0.674] in radiomic; and 0.651, 95% CI [0. 630, 0.673] in merged 

models, respectively (Table 5). 
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Table 5. Model performances measured by iAUC for prediction of 

recurrence-free survival 

 Internal validation External validation 

Model iAUC 

(95% CI) 

iAUC 

Difference*  

P value iAUC 

(95% CI) 

iAUC 

Difference*  

P 

value 

Clinical 0.616  

(0.570, 

0.663) 

- - 0.594  

(0.544, 

0.636) 

- - 

Radiomic 0.714  

(0.667, 

0.759) 

0.098  <0.001† 0.652  

(0.628, 

0.674) 

0.056 0.010† 

Clinico-

radiomic 

0.719  

(0.674, 

0.764) 

0.102  <0.001† 0.651  

(0.630, 

0.673) 

0.057  0.014† 

iAUC, the integrated area under the receiver operating characteristic curve; CI, 

confidence interval  

* comparison with clinical model 

† Statistically significant 

 

5. Radscore performance evaluation and risk stratification 

The patients were classified into low- and high-risk groups based on radscore 

cutoffs (1.116) selected from the training set using maximally selected log-rank 

statistics. In both training and validation cohorts, high-risk patients showed 

significantly lower RFS than low-risk patients. RFS hazard ratios, hazard ratios 

were 4.209 (95%CI [2.787, 6.357], p<0.001) and 22.061 (95%CI [5.571, 87.36], 

p<0.001) in training and validation cohorts, respectively (Figure 8). 
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Figure 8. Kaplan-Meier curves and risk tables for recurrence-free survival 

(RFS) from (A) the training (n = 349) and (B) validation (n = 61) cohorts. 

Patients were stratified on the basis of the cutoff (radscore = 1.116) to maximize 

log-rank statistic. The radscore significantly stratified the patients into low- and 

high-risk groups for RFS in the training cohort (p < 0.001) and the validation 

cohort (p < 0.001). Shaded areas represent 95% confidence intervals. 
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 Figure 9 shows estimates of the baseline survival function in training 

cohort and validation cohort 

 

Figure 9. Estimates of the baseline survival function in (A) training cohort and 

(B) validation cohort. 

 

To assess the ability of radiomics to predict early recurrence, patients who 

underwent follow-up for more than two years were divided into two groups based 

on recurrence within two years. There was a significant difference in the radiomic 

scores between these two groups in both training (0.96 ± 0.50 vs. 0.56 ± 0.59; 

p<0.001) and validation cohorts (1.20 ± 0.41 vs. 0.76 ± 0.33; p=0.014). When 

patients were dichotomized according to CT-Size, CT-Depth, and CT-Type4, and 
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adjuvant chemotherapy, the Kaplan-Meier curves of the high- and low-radscore 

groups showed a p value <0.05 in the validation group (Figures 10 – Figure 13). 

However, the Kaplan-Meier curves for RFS of the high- and low-radscore groups 

were not significantly different in the CT-LN (+) group of the validation cohort 

(p=0.233) (Figure 14). 

 

Figure 10. Kaplan-Meier survival analysis of recurrence-free survival 

according to the radiomics score classifier in CT-Size subgroups. (A) Training 

cohort, size < 4 cm on CT (n = 136). (B) Training cohort, size ≥ 4 cm on CT (n = 

213). (C) Validation cohort, size < 4 cm (n = 27). (D) Validation cohort, size ≥ 4 

cm on CT (n = 34). 
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Figure 11. Kaplan-Meier survival analysis of recurrence-free survival 

according to the radiomics score classifier in CT-depth subgroups. (A) 

Training cohort, extramural nodular infiltration (-) on computed tomography (CT) 

(n = 211). (B) Training cohort, extramural nodular infiltration (+) on CT (n = 138). 

(C) Validation cohort, extramural nodular infiltration (-) (n = 49). (D) Validation 

cohort, extramural nodular infiltration (+) on CT (n = 12). 
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Figure 12. Kaplan-Meier survival analysis of recurrence-free survival 

according to the radiomics score classifier in CT-type4 subgroups. (A) 

Training cohort, Borrmann type 4 (-) on computed tomography (CT) (n = 318). 

(B) Training cohort, Borrmann type 4 (+) on CT (n = 31). (C) Validation cohort, 

Borrmann type 4 (-) (n = 53). (D) Validation cohort, Borrmann type 4 (+) on CT 

(n = 8). 
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Figure 13. Kaplan-Meier survival analysis of recurrence-free survival 

according to the radiomics score classifier in adjuvant chemotherapy 

subgroups. (A) Training cohort, Adjuvant chemotherapy (-) on computed 

tomography (CT) (n = 110). (B) Training cohort, Adjuvant chemotherapy (+) on 

CT (n = 239). (C) Validation cohort, Adjuvant chemotherapy (-) (n = 9). (D) 

Validation cohort, Adjuvant chemotherapy (+) on CT (n = 52). 
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Figure 14. Kaplan-Meier survival analysis of recurrence-free survival 

according to the radiomics score classifier in CT-LN subgroups. (A) Training 

cohort, lymph node (LN) stage 0 or 1 on CT (n = 269). (B) Training cohort, LN 

stage 2 or over on CT (n = 80). (C) Validation cohort, LN stage 0 or 1 on CT (n 

= 52). (D) Validation cohort, LN stage 2 or over on CT (n = 9). 

 

6. Incremental value of radiomics score in individual RFS estimation 

The radiomics nomogram for RFS at 1, 2, and 5 years is presented in Figure 

15. The calibration curves of the nomograms at 5 years are shown in Figure 16, 

with moderate agreement among the estimations with the nomogram of the 

merged model and actual observations in the training and validation cohorts. 

Compared to clinical model, a higher overall net benefit of the radiomics 

nomogram was identified in the decision curve analysis across the majority of the 

range of reasonable threshold probabilities (Figure 17). NRI (Figure 18) also 
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showed a better recurrence risk prediction in the merged model compared to the 

clinical model (NRI [95% CI] 0.350 [0.224, 0.463], p < 0.001, in training cohort; 

0.350 [0.224, 0.463], p = 0.02, in validation cohort) 

 

Figure 15. Radiomics nomogram for recurrence free survival (RFS) at 1, 2 

and 5 years. 

 

 

Figure 16. Calibration curve at 5 years after curative surgery of locally 

advanced gastric cancer (A) in training cohort and (B) in validation cohort. 
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Figure 17. Decision curve analysis for the clinical, radiomics, and merged 

model (A) in training cohort and (B) in validation cohort. The y-axis measures 

the net benefit, summing the true positive results and subtracting false positive 

results weighted by a factor of relative harm from an undetected cancer and 

unnecessary treatment. 

 

 

Figure 18. Curve for net reclassification improvement of the merged model 

compared to the clinical model (A) in training cohort (NRI [95% CI] 0.350 

[0.224, 0.463], p < 0.001) and (B) in validation cohort (NRI [95% CI] 0.350 

[0.224, 0.463], p = 0.02).  



- 35 - 

 

Examples of patients with high and low risk by the radscore are shown in Figure 

19. 

  

Figure 19.  Patients with locally advanced gastric cancer whose recurrence 

risk was stratified into high and low risk (the radscore cutoff 1.116) (A) CT 

images on portal venous phase, (B) tumor segmentation in a 52-year-old woman 

with nodular extramural infiltration on CT whose radscore was 0.98, low risk 

group. Preoperative carcinoembryonic antigen (CEA) and cancer antigen (CA) 

19-9 was within the normal limit. Surgical pathology revealed tumor-node-

metastasis (TNM) stage IIb with T4a and N0. There was no tumor recurrence 

during 96 months after surgery. (C) CT images on portal venous phase, (D) tumor 

segmentation in a 67-year-old man without nodular extramural infiltration on CT 

whose radscore was 1.66, high risk group. Preoperative CEA and CA 19-9 was 

within the normal limit. Surgical pathology revealed TNM stage IIIc with T4a 

and N3a. Liver metastasis occurred at 12 months after surgery. 
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IV. DISCUSSION 

To predict prognosis for RFS in patients with LAGC using preoperative 

CT, we identified the radscore consisting of seven radiomic features and verified 

its value through external validation. In preoperative setting, the radscore was an 

independent prognostic factor in both training and validation cohorts and showed 

good RFS predicting performance in LAGC and outperformed the clinical model 

alone. The merged model showed significantly higher prognostic performance 

than the clinical model, indicating that the radiomic model added value to the 

clinical model-based prediction. The results support the clinical application of 

radiomics in providing additional information for LAGC-treatment decision-

making in the preoperative setting, without any additional invasive procedure. 

Moreover, the high performance of radiomic model on risk-stratification may 

help in selecting candidates for investigational treatments.  

Even though pathologic TNM stage is still the most reliable prognostic 

factor for long-term outcomes of gastric cancer27,28, such data can only be 

obtained after the completion of surgery. Preoperative treatment could alter the 

pathologic stage, therefore, development of non-invasive biomarkers that provide 

guidance for adjusting the therapeutic approach is essential for LAGC. Several 

studies have recently highlighted the prognostic potential of texture analysis or 

radiomics in patients with gastric cancer15,18,29. A large-scale retrospective study 

demonstrated that radiomics signature has more prognostic value than 

clinicopathological features18. However, their study population included a 

considerable proportion of patients with early stage gastric cancer or distant 

metastatic stage. Early gastric cancer is known to have an excellent prognosis 

without needing chemotherapy and the AGC with distant metastasis is known to 

require systemic chemotherapy without resection surgery30,31. We targeted LAGC 

since a variety of treatments have been proposed but gray zones persist in 

treatment determination. Our study revealed that radiomics had higher prognostic 

performance than the clinical model, suggesting that radiomics could be a 
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practical imaging biomarker for patients with LAGC in a preoperative setting. 

However, the merged model did not perform better than the radiomics model. 

This might be attributed to the possibility that most characteristics of the clinical 

model (mainly based on conventional imaging characteristics), were already 

reflected in the radscore. 

The usefulness of neoadjuvant chemotherapy in LAGC is still 

controversial. Large-scale phase III trials in Europe have reported that 

perioperative chemotherapy has survival benefits over surgical treatment 

alone32,33. However, in majority of cases in these studies, a proper 

lymphadenectomy was not performed during the surgery. Furthermore, a lack of 

information about initial tumor staging before treatment could lead to selection 

bias10. In Korea and Japan, D2 lymphadenectomy is generally performed along 

with gastrectomy in resectable advanced gastric cancer, therefore the usefulness 

of neoadjuvant chemotherapy has not been concluded yet30,31. This controversy 

could be resolved through risk stratification, i.e., by identifying gastric cancer 

cases with a high risk of recurrence. In our study, the radscore was not only 

successfully dichotomized into high- and low-risk groups, but also verified by 

external validation. Therefore, the radscore could offer guidance for therapeutic 

strategies depending on recurrence risk, thereby improving the clinical outcome. 

Particularly, LAGC patients classified as high-risk based on the radscore may be 

ideal candidates for neoadjuvant treatment, given that its potential benefits 

outweigh the morbidity risk and higher treatment cost. However, since patients 

with neoadjuvant treatment were not included in this study, its efficacy could not 

be assessed using the radscore. Further study is required to evaluate the 

correlation between the radscore and response to neoadjuvant therapy.  

We evaluated the characteristics and applicability of the radscore in 

various clinical conditions. The radscore showed successful risk stratification in 

each subgroup dichotomized according to tumor size, tumor depth, or Borrmann 

types on preoperative CT. This indicates that the radscore could provide a more 
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sophisticated risk stratification independent of known clinical prognostic factors. 

The radscore might help predict prognosis of LAGC, regardless of the outcome 

of current preoperative clinical staging. Interestingly, the radscore could 

significantly distinguish patients into two risk groups, only in the clinically LN 

negative subgroup, but not in the clinically LN positive subgroup. However, the 

number of patients with LN stage 2 or over on CT in the validation cohort was 

too small (n = 9) to have statistical power. Moreover, clinical N staging by 

preoperative CT is very limited in LAGC patients10, even though relatively 

satisfactory sensitivity and specificity have been reported for ≥ pN2 stage21, 

which was used as the cutoff in our study. Although the targets of radiomics were 

limited to primary tumors, and since metastatic LN was not included in this 

radiomics analysis, it is needed further study to confirm the prognostic power of 

the radscore in the LN positive group. 

Among the seven features in the radscore, the sphericity, which is 

selected from the shape features, quantifies the roundness of the shape of the 

tumor region relative to a circle. Any lesion with low sphericity could be 

associated with a flat or infiltrative tumor, which has been regarded as Borrmann 

type 4. Two GLCM-related features in the radscore, informational measure of 

correlation 1 (IMC1) and IMC2, measure the complexity of the texture patterns22. 

Selected Small-Area-Emphasis of GLSZM features measures the distribution of 

small size zones, with a greater value indicative of smaller size zones and finer 

textures22. These GLCM and GLSZM features have specific mathematical 

formula measuring different aspects of textural heterogeneity within the tumor, 

e.g. tissue necrosis. These GLCM- or GLSZM-based texture features reflecting 

the interaction between neighboring pixels have shown better quantification of 

tumor texture and heterogeneity than histogram-based features34. In addition, 

three features from the wavelet decompositions of original images are also 

included in our radscore. By focusing on different frequency ranges within the 
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tumor, features from wavelet decompositions might be able to reveal the 

characteristics of tumors that did not appear in the original image. 

This study has several limitations. First, it was a retrospective study with 

a relatively small sample size; however, the number was similar to those in 

previous radiomic studies35,36. Moreover, external validation with cohort from the 

spatially separate hospital was performed to overcome this limitation. Future 

study with a larger sample for both training and validation is required for a robust 

prediction model. Second, the recurrence rate in the training cohort was 27.2%, 

imbalanced data. Any approach to rebalance the dataset was not performed to 

preserve representative of the clinical situation. In addition, in this study, LASSO 

Cox regression was performed to build the radscore, instead of machine learning 

technique. Third, the proportion of cases with nodular infiltration on CT was 

different between the training and validation cohorts, presumably due to different 

scale and clinical settings of the two spatially separate hospitals. Nevertheless, 

the radscore showed significant risk stratification in both cohorts. Fourth, since 

only patients who did not receive neoadjuvant chemotherapy were included, the 

benefits of neoadjuvant therapy in high versus low radscore groups could not be 

evaluated. Further study in a large prospective cohort, randomized by 

neoadjuvant chemotherapy status is needed to integrate this technology into 

clinical practice. Fifth, clustering for radiomics features to remove redundancy 

was not performed before model building and highly correlating features (Figure 

4), such as IMC1 and IMC2, were included. These features were linear combined 

in the radscore and the effect of redundancy might be small. Sixth, images from 

different machines or manufacturers of CT were included in the training cohort 

and fourteen patients were excluded with poor quality of CT. To minimize 

variability from different CT scanners, we used a uniform acquisition protocol 

and resampled the images into the same pixel spacing. Moreover, the validation 

was performed on the cohort from a different hospital. Standardized protocol for 

different CT scanners is required for future study and application of radiomics 
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prediction model in clinical setting. Seventh, feature extraction was performed 

from a single slice with the largest lesion, similar to the previous study18. 

Although tumor evaluation on a single CT section might not be representative of 

the entire tumor characteristics37, previous studies reported that two-dimensional 

features showed prognostic performance comparable with three-dimensional 

segmentations in non-small cell lung cancer and rectal cancer38,39. However, there 

is still controversy whether two-dimensional segmentation can replace 

recommended three-dimensional segmentation which allows comprehensive 

assessment of whole tumor. Lastly, the tumors were outlined semi-automatically, 

which may be time-consuming and user-dependent in terms of selecting the slice 

containing the largest area of the tumor and region of interest placement. To 

reduce variability in these processes, only features with excellent inter-slice and 

inter-reader ICCs were included for analysis. In future studies, automated 3D 

tumor segmentation based on deep learning would allow further automation of 

the workflow, minimize user bias, and enable larger studies. 

 

V. CONCLUSION 

The radiomics signature based on preoperative CT images is a possible 

preoperative imaging biomarker that can improve RFS prediction of the 

preoperative clinical profile in LAGC. The ability of radiomic signatures to 

identify high-risk LAGC patients may be helpful in selecting appropriate 

candidates for neoadjuvant therapy. 
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APPENDICES 

Appendix 1. List of radiomic features extracted from the computed tomography images and Inter-slice and Inter-reader 

intraclass coefficient correlation. 

Feature family Feature class Inter-slice ICC  Inter-reader ICC 

Original Wavelet-filtered Original Wavelet-filtered 

LH HL HH LL LH HL HH LL 

Shape Features 

(2D) (8 features) 

Elongation 0.924 - - - - 0.809 - - - - 

Major axis  0.928 - - - - 0.848 - - - - 

Minor axis  0.984 - - - - 0.922 - - - - 

Maximum 2D 

diameter (column) 

0.934 - - - - 0.900 - - - - 

Maximum 2D 

diameter (row) 

0.982 - - - - 0.832 - - - - 

Maximum 2D 

diameter (slice) 

0.920 - - - - 0.835 - - - - 

Sphericity 0.975 - - - - 0.875 - - - - 

Surface area 0.967 - - - - 0.909 - - - - 

First order features 

(18 features) 

Energy 0.971 0.968 0.968 0.967 0.974 0.911 0.910 0.909 0.909 0.912 

Total energy 0.971 0.968 0.968 0.967 0.974 0.911 0.910 0.909 0.909 0.912 
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 Entropy* 0.691 0.949 0.979 0.995 0.727 0.810 0.828 0.863 0.918 0.793 

Minimum -0.065 0.924 0.961 0.843 -0.104 0.004 0.747 0.731 0.801 0.010 

Maximum 0.980 0.362 0.668 0.898 0.971 0.843 0.482 0.418 0.746 0.827 

10th percentile 0.358 0.963 0.978 0.994 0.387 0.712 0.773 0.814 0.965 0.731 

90th percentile 0.993 0.891 0.994 0.992 0.995 0.933 0.930 0.891 0.926 0.922 

Mean 0.845 0.944 0.980 0.804 0.842 0.891 0.817 0.814 0.630 0.892 

Median 0.914 0.914 0.965 0.722 0.919 0.907 0.638 0.645 0.393 0.905 

Interquartile range 0.776 0.921 0.977 0.998 0.776 0.756 0.752 0.831 0.963 0.751 

Range 0.050 0.821 0.930 0.910 0.009 0.118 0.709 0.622 0.824 0.131 

Mean absolute 

deviation 

0.536 0.962 0.982 0.998 0.552 0.750 0.800 0.807 0.941 0.759 

Robust mean absolute 

deviation 

0.764 0.930 0.982 0.998 0.769 0.772 0.764 0.836 0.961 0.778 

Root mean squared 0.867 0.942 0.980 0.802 0.882 0.897 0.816 0.815 0.616 0.902 

Skewness 0.174 0.891 0.879 0.849 0.199 0.345 0.734 0.765 0.646 0.367 

Kurtosis† 0.006 0.953 0.941 0.913 0.007 0.020 0.838 0.699 0.741 0.022 

Variance 0.792 0.960 0.983 0.995 0.821 0.793 0.831 0.877 0.920 0.789 

Uniformity‡ 0.134 0.968 0.978 0.998 0.143 0.414 0.790 0.715 0.927 0.433 

Gray level co- Autocorrelation 0.005 0.942 0.966 0.855 -0.001 0.034 0.697 0.664 0.721 0.035 
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occurrence matrix 

features (GLCM) 

(22 features) 

Joint average 0.055 0.913 0.955 0.820 0.018 0.124 0.730 0.731 0.741 0.123 

Cluster Prominence 0.001 0.983 0.974 0.998 0.001 -0.002 0.700 0.534 0.749 -0.001 

Cluster Shade 0.008 0.978 0.975 0.886 0.008 0.016 0.758 0.635 0.360 0.019 

Cluster Tendency 0.139 0.972 0.977 0.998 0.144 0.455 0.803 0.729 0.906 0.453 

Contrast 0.412 0.967 0.984 0.998 0.383 0.700 0.847 0.751 0.950 0.695 

Correlation 0.753 0.955 0.981 0.980 0.736 0.580 0.832 0.867 0.855 0.569 

Difference average 0.810 0.980 0.989 0.998 0.790 0.890 0.892 0.864 0.959 0.866 

Difference entropy 0.844 0.972 0.980 0.997 0.865 0.905 0.881 0.855 0.940 0.891 

Difference variance 0.211 0.936 0.967 0.998 0.249 0.450 0.759 0.635 0.915 0.548 

Joint energy§ 0.864 0.970 0.983 0.995 0.877 0.786 0.829 0.883 0.926 0.747 

Joint entropy 0.785 0.956 0.981 0.996 0.772 0.839 0.864 0.884 0.937 0.750 

Informational measure 

of correlation 1 

0.820 0.964 0.968 0.956 0.857 0.775 0.795 0.820 0.513 0.766 

Informational measure 

of correlation 2 

0.858 0.934 0.972 0.972 0.839 0.836 0.800 0.831 0.609 0.838 

Inverse difference 

moment 

0.954 0.988 0.991 0.998 0.961 0.895 0.900 0.901 0.953 0.869 

Inverse difference 

moment normalized 

0.706 0.878 0.937 0.738 0.807 0.645 0.766 0.737 0.447 0.691 
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Inverse difference 0.949 0.987 0.991 0.998 0.953 0.895 0.899 0.901 0.952 0.874 

Inverse difference 

normalized 

0.564 0.887 0.945 0.784 0.683 0.618 0.793 0.746 0.645 0.681 

Inverse variance 0.931 0.980 0.985 0.996 0.956 0.912 0.883 0.814 0.944 0.872 

Maximum probability‖ 0.861 0.978 0.992 0.996 0.885 0.666 0.815 0.880 0.936 0.623 

Sum entropy 0.706 0.931 0.972 0.994 0.709 0.758 0.797 0.871 0.910 0.734 

Sum of squares¶ 0.155 0.971 0.979 0.998 0.159 0.484 0.796 0.727 0.933 0.487 

Gray level run 

length matrix 

features (GLRLM) 

(16 features) 

Short run emphasis 0.967 0.985 0.989 0.997 0.968 0.839 0.870 0.900 0.941 0.843 

Long run emphasis 0.978 0.990 0.989 0.995 0.974 0.849 0.865 0.917 0.922 0.842 

Gray level non-

uniformity 

0.983 0.972 0.968 0.962 0.985 0.943 0.923 0.911 0.903 0.944 

Gray level non-

uniformity normalized 

0.764 0.956 0.977 0.994 0.804 0.807 0.829 0.865 0.904 0.798 

Run length non-

uniformity 

0.966 0.975 0.977 0.988 0.960 0.904 0.915 0.914 0.936 0.900 

Run length non-

uniformity normalized 

0.967 0.986 0.991 0.997 0.969 0.840 0.871 0.895 0.944 0.840 

Run percentage 0.975 0.989 0.991 0.997 0.973 0.853 0.879 0.903 0.938 0.844 

Gray level variance 0.101 0.968 0.976 0.998 0.126 0.323 0.789 0.707 0.914 0.385 
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Run variance 0.983 0.990 0.989 0.992 0.977 0.851 0.841 0.915 0.894 0.828 

Run entropy 0.596 0.926 0.959 0.972 0.590 0.710 0.774 0.758 0.760 0.687 

Low gray level run 

emphasis 

-0.053 0.850 0.938 0.525 0.097 0.382 0.437 0.631 0.444 0.421 

High gray level run 

emphasis 

0.000 0.940 0.965 0.868 -0.006 0.027 0.697 0.662 0.733 0.029 

Short run low gray 

level emphasis 

-0.009 0.840 0.928 0.557 0.123 0.396 0.412 0.632 0.415 0.439 

Short run high gray 

level emphasis 

0.003 0.937 0.964 0.913 -0.001 0.032 0.690 0.654 0.779 0.035 

Long run low gray 

level emphasis 

-0.178 0.893 0.958 0.516 -0.011 0.338 0.554 0.694 0.571 0.337 

Long run high gray 

level emphasis 

0.000 0.953 0.967 0.599 -0.017 0.028 0.747 0.692 0.555 0.018 

Gray level size 

zone matrix 

features (GLSZM) 

(16 features) 

Small area emphasis 0.850 0.961 0.907 0.895 0.930 0.802 0.733 0.719 0.672 0.828 

Large area emphasis 0.973 0.943 0.992 0.940 0.966 0.740 0.698 0.712 0.770 0.803 

Gray level non-

uniformity 

0.980 0.979 0.980 0.992 0.982 0.939 0.926 0.914 0.942 0.942 

Gray level non- 0.624 0.944 0.965 0.874 0.728 0.789 0.756 0.822 0.686 0.788 
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uniformity normalized 

Size-zone non-

uniformity 

0.954 0.989 0.983 0.996 0.931 0.896 0.928 0.929 0.950 0.861 

Size-zone non-

uniformity normalized 

0.868 0.962 0.924 0.906 0.935 0.802 0.725 0.732 0.687 0.822 

Zone percentage 0.962 0.987 0.990 0.996 0.967 0.895 0.868 0.878 0.952 0.859 

Gray level variance 0.044 0.949 0.967 0.969 0.086 0.137 0.740 0.681 0.810 0.263 

Zone variance 0.975 0.940 0.992 0.940 0.965 0.705 0.686 0.704 0.769 0.758 

Zone entropy 0.753 0.904 0.928 0.903 0.730 0.732 0.678 0.661 0.763 0.732 

Low gray level zone 

emphasis 

-0.026 0.842 0.937 0.593 0.100 0.423 0.462 0.661 0.439 0.438 

High gray level zone 

emphasis 

-0.005 0.938 0.961 0.864 -0.009 0.019 0.694 0.659 0.714 0.024 

Small area low gray 

level zone emphasis 

0.130 0.797 0.888 0.576 0.172 0.456 0.412 0.651 0.445 0.474 

Small area high gray 

level zone emphasis 

0.009 0.931 0.954 0.868 0.009 0.035 0.686 0.642 0.707 0.047 

Large area low gray 

level zone emphasis 

-0.011 0.917 0.859 0.493 -0.063 0.510 0.404 0.461 0.635 0.289 
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Large area high gray 

level zone emphasis 

0.007 0.971 0.988 0.940 -0.011 0.108 0.681 0.865 0.814 0.060 

Gray level 

dependence matrix 

features (GLDM) 

(14 features) 

Small dependence 

emphasis 

0.950 0.989 0.987 0.997 0.959 0.890 0.857 0.871 0.954 0.854 

Large dependence 

emphasis 

0.980 0.989 0.990 0.996 0.977 0.821 0.873 0.909 0.932 0.821 

Gray level non-

uniformity 

0.983 0.972 0.964 0.960 0.986 0.942 0.916 0.910 0.903 0.943 

Dependence non-

uniformity 

0.968 0.979 0.973 0.970 0.956 0.907 0.919 0.915 0.917 0.895 

Dependence non-

uniformity normalized 

0.985 0.993 0.990 0.990 0.976 0.847 0.875 0.875 0.870 0.816 

Gray level variance 0.135 0.968 0.978 0.998 0.143 0.415 0.792 0.715 0.928 0.434 

Dependence variance 0.986 0.989 0.980 0.982 0.986 0.702 0.830 0.851 0.806 0.706 

Dependence entropy 0.702 0.884 0.959 0.992 0.704 0.674 0.669 0.791 0.894 0.669 

Low gray level 

emphasis 

-0.055 0.851 0.939 0.513 0.092 0.365 0.429 0.615 0.463 0.407 

High gray level 

emphasis 

0.002 0.941 0.966 0.868 -0.004 0.030 0.698 0.663 0.735 0.031 
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Small dependence low 

gray level emphasis 

0.275 0.802 0.806 0.753 0.257 0.492 0.365 0.647 0.462 0.512 

Small dependence 

high gray level 

emphasis 

0.046 0.938 0.959 0.979 0.037 0.083 0.695 0.616 0.880 0.091 

Large dependence low 

gray level emphasis 

-0.231 0.902 0.961 0.534 -0.122 0.307 0.589 0.675 0.562 0.148 

Large dependence high 

gray level emphasis 

0.008 0.959 0.971 0.584 -0.017 0.036 0.759 0.705 0.523 0.020 

ICC, Intraclass correlation coefficient; LL, Low-Low pass filter; LH, Low-High pass filter; HH, High-High pass filter; LL, 

Low-Low pass filter 

* Defined by image biomarker standardization initiative (IBSI) as Intensity Histogram Entropy 

† The IBSI feature definition implements excess kurtosis, where kurtosis is corrected by -3, yielding 0 for normal 
distributions. The PyRadiomics kurtosis is not corrected, yielding a value 3 higher than the IBSI kurtosis. 

‡ Defined by IBSI as Intensity Histogram Uniformity 

§ Defined by IBSI as Angular Second Moment. 

‖ Defined by IBSI as Joint maximum 
¶ Defined by IBSI as Joint Variance 
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Appendix 2. Radiomics quality score  

RQS criteria Points  

1 Image protocol 

quality 

Well-documented image protocols (for example, 

contrast, slice thickness, energy, etc.) and/or usage of 

public image protocols allow 

reproducibility/replicability  

+ 1 (if protocols are well-

documented)  

+ 1 (if public protocol is used)  

 

+1 

2 Multiple 

segmentations 

Segmentation by different 

physicians/algorithms/software, perturbing 

segmentations by (random) noise, segmentation at 

different breathing cycles. Analyse feature robustness to 

segmentation variabilities  

+ 1 +1 

3 Phantom study 

on all scanners 

Detect inter-scanner differences and vendor-dependent 

features. Analyse feature robustness to these sources of 

variability  

+ 1 0 

4 Imaging at 

multiple time 

points 

Collect images of individuals at additional time points. 

Analyse feature robustness to temporal variabilities (for 

example, organ movement, organ expansion/ shrinkage)  

+ 1 0 

5 Feature 

reduction or 

adjustment for 

multiple testing  

Decreases the risk of overfitting. Overfitting is inevitable 

if the number of features exceeds the number of samples. 

Consider feature robustness when selecting features  

- 3 (if neither measure is 

implemented) + 3 (if either measure 

is implemented)  

 

+3 

6 Multivariable 

analysis with 

non-radiomics 

features  

(for example, EGFR mutation) - is expected to provide a 

more holistic model. Permits correlating/inferencing 

between radiomics and non radiomics features 

+1 +1 

7 Detect and Demonstration of phenotypic differences (possibly +1 0 
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discuss 

biological 

correlates  

associated with underlying gene–protein expression 

patterns) deepens understanding of radiomics and 

biology 

8 Cut-off analyses  Determine risk groups by either the median, a previously 

published cut-off or report a continuous risk variable. 

Reduces the risk of reporting overly optimistic results  

+1 +1 

9 Discrimination 

statistics  

 

Report discrimination statistics (for example, C-statistic, 

ROC curve, AUC) and their statistical significance (for 

example, p-values, confidence intervals). One can also 

apply resampling method (for example, bootstrapping, 

cross-validation) 

+ 1 (if a discrimination statistic and 

its statistical significance are 

reported) + 1 (if a resampling 

method technique is also applied)  

 

+1 

10 Calibration 

statistics  

Report calibration statistics (for example, Calibration-

in-the-large/slope, calibration plots) and their statistical 
significance (for example, P-values, confidence 

intervals). One can also apply resampling method (for 

example, bootstrapping, cross-validation)  

+ 1 (if a calibration statistic and its 

statistical significance are reported) 
+ 1 (if a resampling method 

technique is also applied)  

 

+1 

11 Prospective 

study registered 

in a trial database 

Provides the highest level of evidence supporting the 

clinical validity and usefulness of the radiomics 

biomarker 

+ 7 (for prospective validation of a 

radiomics signature in an 

appropriate trial)  

0 

12 Validation  The validation is performed without retraining and 

without adaptation of the cut-off value, provides crucial 

information with regards to credible clinical 

performance 

- 5 (if validation is missing)  

+ 2 (if validation is based on a 

dataset from the same institute)  

+ 3 (if validation is based on a 

dataset from another institute)  

+ 4 (if validation is based on two 

datasets from two distinct institutes)  

+3 
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+ 4 (if the study validates a 

previously published signature)  

+ 5 (if validation is based on three 

or more datasets from distinct 

institutes)  

 

13 Comparison to 

‘gold standard’  

 

Assess the extent to which the model agrees with/is 

superior to the current ‘gold standard’ method (for 

example, TNM-staging for survival prediction). This 

comparison shows the added value of radiomics 

+2 +2 

14 Potential clinical 

utility   

 

Report on the current and potential application of the 

model in a clinical setting (for example, decision curve 

analysis). 

+2 0 

15 Cost-

effectiveness 

analysis  

Report on the cost-effectiveness of the clinical 

application (for example, QALYs generated)  

 

+1 0 

16 Open science 

and data   

 

Make code and data publicly available. Open science 

facilitates knowledge transfer and reproducibility of the 

study 

+ 1 (if scans are open source) + 1 (if 

region of interest segmentations are 

open source) + 1 (if code is open 

source) + 1 (if radiomics features 

are calculated on a set of 

representative ROIs and the 
calculated features and 

representative ROIs are open 

source)  

+1 

   Total points (36 = 100%) 15 (41.7%) 
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Appendix 3. Checklist for reporting on radiomics studies by image biomarker 

standardization initiative guideline (Reference: Zwanenburg A, et al. The Image 

Biomarker Standardization Initiative: Standardized Quantitative Radiomics for 

High-Throughput Image-based Phenotyping. Radiology 2020;295:328-38). 

Topic Modality Item  Description Page 

Patient 

Region of interest   1 Describe the region of interest 

that is being imaged. 

9 

Patient preparation   2a Describe specific instructions 

given to patients prior to image 

acquisition, e.g. fasting prior to 

imaging. 

7 

    2b Describe administration of drugs 

to the patient prior to image 

acquisition, e.g. muscle 

relaxants. 

7 

    2c Describe the use of specific 

equipment for patient comfort 

during scanning, e.g. ear plugs. 

N/A 

Radioactive tracer PET, 

SPECT 

3a Describe which radioactive 

tracer was administered to the 

patient, e.g. 18F-FDG. 

N/A 

  PET, 

SPECT 

3b Describe the administration 

method. 

N/A 

  PET, 

SPECT 

3c Describe the injected activity of 

the radioactive tracer at 

administration. 

N/A 

  PET, 

SPECT 

3d Describe the uptake time prior to 

image acquisition. 

N/A 

  PET, 

SPECT 

3e Describe how competing 

substance levels were 

controlled. 

N/A 

Contrast agent   4a Describe which contrast agent 

was administered to the patient. 

7 

    4b Describe the administration 

method. 

7 

    4c Describe the injected quantity of 

contrast agent. 

7 

    4d Describe the uptake time prior to 

image acquisition. 

7 
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    4e Describe how competing 

substance levels were 

controlled. 

N/A 

Comorbidities   5 Describe if the patients have 

comorbidities that affect 

imaging. 

N/A 

Acquisition 

Acquisition 

protocol 

  6 Describe whether a standard 

imaging protocol was used, and 

where its description may be 

found. 

7, 8 

Scanner type   7 Describe the scanner type(s) and 

vendor(s) used in the study. 

7, 8 

Imaging modality   8 Clearly state the imaging 

modality that was used in the 

study, e.g. CT, MRI. 

7, 8 

Static/dynamic 

scans 

  9a State if the scans were static or 

dynamic. 

7 

  Dynamic 

scans 

9b Describe the acquisition time per 

time frame. 

N/A 

  Dynamic 

scans 

9c Describe any temporal 

modelling technique that was 

used. 

N/A 

Scanner calibration   10 Describe how and when the 

scanner was calibrated. 

N/A 

Patient instructions   11 Describe specific instructions 

given to the patient during 

acquisition, e.g. breath holding. 

N/A 

Anatomical motion 

correction 

  12 Describe the method used to 

minimise the effect of 

anatomical motion. 

N/A 

Scan duration   13 Describe the duration of the 

complete scan or the time per 

bed position. 

7 

Tube voltage CT 14 Describe the peak kilo voltage 

output of the X-ray source. 

7, 8 

Tube current CT 15 Describe the tube current in mA. 7, 8 

Time-of-flight PET 16 State if scanner time-of-flight 

capabilities are used during 

acquisition. 

N/A 

RF coil MRI 17 Describe what kind RF coil used 

for acquisition, incl. vendor. 

N/A 
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Scanning sequence MRI 18a Describe which scanning 

sequence was acquired. 

N/A 

  MRI 18b Describe which sequence variant 

was acquired. 

N/A 

  MRI 18c Describe which scan options 

apply to the current sequence, 

e.g. flow compensation, cardiac 

gating. 

N/A 

Repetition time MRI 19 Describe the time in ms between 

subsequent pulse sequences. 

N/A 

Echo time MRI 20 Describe the echo time in ms. N/A 

Echo train length MRI 21 Describe the number of lines in 

k-space that are acquired per 

excitation pulse. 

N/A 

Inversion time MRI 22 Describe the time in ms between 

the middle of the inverting RF 

pulse to the middle of the 

excitation pulse. 

N/A 

Flip angle MRI 23 Describe the flip angle produced 

by the RF pulses. 

N/A 

Acquisition type MRI 24 Describe the acquisition type of 

the MRI scan, e.g. 3D. 

N/A 

k-space traversal MRI 25 Describe the acquisition 

trajectory of the k-space. 

N/A 

Number of 

averages/ 

excitations 

MRI 26 Describe the number of times 

each point in k-space is sampled. 

N/A 

Magnetic field 

strength 

MRI 27 Describe the nominal strength of 

the MR magnetic field. 

N/A 

Reconstruction 

In-plane resolution   28 Describe the distance between 

pixels, or alternatively the field 

of view and matrix size. 

7, 8 

Image slice 

thickness 

  29 Describe the slice thickness. 7, 8 

Image slice spacing   30 Describe the distance between 

image slices. 

7, 8 

Convolution kernel CT 31a Describe the convolution kernel 

used to reconstruct the image. 

7, 8 

  CT 31b Describe settings pertaining to 

iterative reconstruction 

algorithms. 

7, 8 
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Exposure CT 31c Describe the exposure (in mAs) 

in slices containing the region of 

interest. 

7, 8 

Reconstruction 

method 

PET 32a Describe which reconstruction 

method was used, e.g. 3D 

OSEM. 

N/A 

  PET 32b Describe the number of 

iterations for iterative 

reconstruction. 

N/A 

  PET 32c Describe the number of subsets 

for iterative reconstruction. 

N/A 

Point spread 

function modelling 

PET 33 Describe if and how point-

spread function modelling was 

performed. 

N/A 

Image corrections PET 34a Describe if and how attenuation 

correction was performed. 

N/A 

  PET 34b Describe if and how other forms 

of correction were performed, 

e.g. scatter correction, randoms 

correction, dead time correction 

etc. 

N/A 

Reconstruction 

method 

MRI 35a Describe the reconstruction 

method used to reconstruct the 

image from the k-space 

information. 

N/A 

  MRI 35b Describe any artifact 

suppression methods used 

during reconstruction to 

suppress artifacts due to 

undersampling of k-space. 

N/A 

Diffusion-weigh ted 

imaging 

DWI-

MRI 

36 Describe the b-values used for 

diffusion-weigh ting. 

N/A 

Image registration 

Registration method   37 Describe the method used to 

register multi-modality imaging. 

N/A 

Image processing-

data conversion 

    

SUV normalisation PET 38 Describe which standardised 

uptake value (SUV) 

normalisation method is used. 

N/A 

ADC computation DWI-

MRI 

39 Describe how apparent diffusion 

coefficient (ADC) values were 

calculated. 

N/A 
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Other data 

conversions 

  40 Describe any other conversions 

that are performed to generate 

e.g. perfusion maps. 

N/A 

Image processing-postacquisition processing 

Anti-aliasing   41 Describe the method used to deal 

with anti-aliasing when down-

sampling during interpolation. 

N/A 

Noise suppression   42 Describe methods used to 

suppress image noise. 

N/A 

Post-reconstruc tion 

smoothing filter 

PET 43 Describe the width of the 

Gaussian filter (FWHM) to 

spatially smooth intensities. 

N/A 

Skull stripping MRI 

(brain) 

44 Describe method used to 

perform skull stripping. 

N/A 

Non-uniformity 

correction  

MRI 45 Describe the method and 

settings used to perform non-

uniformity correction. 

N/A 

Intensity 

normalisation 

  46 Describe the method and 

settings used to normalise 

intensity distributions within a 

patient or patient cohort. 

10 

Other post-

acquisition 

processing methods 

  47 Describe any other methods that 

were used to process the image 

and are not mentioned separately 

in this list. 

9, 10 

Segmentation 

Segmentation 

method 

  48a Describe how regions of interest 

were segmented, e.g. manually. 

9 

    48b Describe the number of experts, 

their expertise and consensus 

strategies for manual 

delineation. 

9 

    48c Describe methods and settings 

used for semi-automatic and 

fully automatic segmentation. 

9 

    48d Describe which image was used 

to define segmentation in case of 

multi-modality imaging. 

N/A 

Conversion to mask   49 Describe the method used to 

convert polygonal or mesh-

based segmentations to a voxel-

based mask. 

N/A 

Image processing-image interpolation 
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Interpolation 

method 

  50a Describe which interpolation 

algorithm was used to 

interpolate the image. 

9 

    50b Describe how the position of the 

interpolation grid was defined, 

e.g. align by center. 

9 

    50c Describe how the dimensions of 

the interpolation grid were 

defined, e.g. rounded to nearest 

integer. 

9 

    50d Describe how extrapolation 

beyond the original image was 

handled. 

N/A 

Voxel dimensions   51 Describe the size of the 

interpolated voxels. 

9 

Intensity rounding CT 52 Describe how fractional 

Hounsfield Units are rounded to 

integer values after 

interpolation. 

N/A 

Image processing-ROI interpolation 

Interpolation 

method 

  53 Describe which interpolation 

algorithm was used to 

interpolate the region of interest 

mask. 

9 

Partially masked 

voxels 

  54 Describe how partially masked 

voxels after interpolation are 

handled. 

N/A 

Image processing-

resegmentation 

    

Re-segmentation 

methods 

  55 Describe which methods and 

settings are used to re-segment 

the ROI intensity mask. 

N/A 

Image processing-discretization 

Discretisation 

method 

  56a Describe the method used to 

discretise image intensities. 

10 

    56b Describe the number of bins 

(FBN) or the bin size (FBS) used 

for discretisation. 

10 

    56c Describe the lowest intensity in 

the first bin for FBS 

discretisation.  

10 

Image processing-image transformation 
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Image filter   57 Describe the methods and 

settings used to filter images, 

e.g. Laplacian-of-Gaussian. 

10 

Radiomics feature computation 

Biomarker set   58 Describe which set of image 

biomarkers is computed and 

refer to their definitions or 

provide these. 

App-

endix 

IBSI compliance   59 State if the software used to 

extract the set of image 

biomarkers is compliant with the 

IBSI benchmarks.  

App-

endix 

Robustness   60 Describe how robustness of the 

image biomarkers was assessed, 

e.g. test-retest analysis. 

13, 14 

Software 

availability 

  61 Describe which software and 

version was used to compute 

image biomarkers. 

13, 14 

Radiomics feature computation-texture parameters 

Texture matrix 

aggregation 

  62 Define how texture-matrix based 

biomarkers were computed from 

underlying texture matrices. 

App-

endix 

Distance weighting   63 Define how CM, RLM, 

NGTDM and NGLDM weight 

distances, e.g. no weighting. 

App-

endix 

CM symmetry   64 Define whether symmetric or 

asymmetric co-occurrence 

matrices were computed. 

App-

endix 

CM distance   65 Define the (Chebyshev) distance 

at which co-occurrence of 

intensities is determined, e.g. 1. 

App-

endix 

SZM linkage 

distance 

  66 Define the distance and distance 

norm for which voxels with the 

same intensity are considered to 

belong to the same zone for the 

purpose of constructing an SZM, 

e.g. Chebyshev distance of 1. 

App-

endix 

DZM linkage 

distance 

  67 Define the distance and distance 

norm for which voxels with the 

same intensity are considered to 

belong to the same zone for the 

purpose of constructing a DZM, 

e.g. Chebyshev distance of 1. 

App-

endix 
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DZM zone distance 

norm 

  68 Define the distance norm for 

determining the distance of 

zones to the border of the ROI, 

e.g. Manhattan distance. 

App-

endix 

NGTDM distance   69 Define the neighbourhood 

distance and distance norm for 

the NGTDM, e.g. Chebyshev 

distance of 1. 

N/A 

NGLDM distance   70 Define the neighbourhood 

distance and distance norm for 

the NGLDM, e.g. Chebyshev 

distance of 1. 

N/A 

NGLDM coarseness   71 Define the coarseness parameter 

for the NGLDM, e.g. 0. 

N/A 

Machine learning and radiomics analysis 

Diagnostic and 

prognostic 

modelling 

  72 See the TRIPOD guidelines for 

reporting on diagnostic and 

prognostic modelling. 

12 

Comparison with 

known factors 

  73 Describe where performance of 

radiomics models is compared 

with known (clinical) factors. 

13 

Multicollinearity   74 Describe where the 

multicollinearity between image 

biomarkers in the signature is 

assessed. 

20 

Model availability   75 Describe where radiomics 

models with the necessary pre-

processing information may be 

found. 

18 

Data availability   76 Describe where imaging data 

and relevant meta-data used in 

the study may be found. 

N/A 

N/A, Not applicable 
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Appendix 4. Coefficient paths for lasso-penalized Cox proportional hazard 

regression models. The features with highlighted paths have non-zero coefficients 

in the model with the optimal λ value as determined by ten-fold cross-validation. 

The top plots show the coefficient path scaled to reflect log(λ) on the x-axis (top 

left: full path, top right: zoomed in to only show the selected features). The bottom 

plots show the coefficient paths relative to the L1-norms of the estimated 

coefficient vector (left) and to the fraction of the null partial log-likelihood 

deviance explained (right). The dotted vertical lines indicate the λ values with 

minimal deviance and with the largest λ value within one standard deviation of 

the minimal deviance.  

 

(Reference: Sill M, Hielscher T, Becker N, Zucknick M. c060: Extended 

Inference with Lasso and Elastic-Net Regularized Cox and Generalized Linear 

Models. 2014 2014;62:22 Journal of Statistical Software). 
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ABSTRACT (IN KOREAN) 

 

위암 환자 예후 예측을 위한 라디오믹스 모형 개발 

 

<지도교수 허용민> 

 

연세대학교 대학원 의학과 

 

신재승 

 

목적: 진행성 위암 환자에서 수술 전 항암화학요법은 예후 개선에 대

한 가능성으로 인해 많은 관심을 불러 일으키고 있다. 수술 전 병기 

결정을 기반으로 위험도가 높은 환자를 선별하는 것은 수술 전 항암

화학요법 여부를 선택하는 데 중요하다. 임상 예측 모델과 비교하여 

수술 전 조영증강 복부 전산화단층촬영을 이용한 라디오믹스 모델이 

국소 진행 위암의 무재발 생존 기간을 더 잘 예측할 수 있는지 평가

하고자 하였다. 

방법: 2010년에 신촌 세브란스 병원에서 수술 전 항암화학요법치료를 

받지 않고, 국소 진행성 위암으로 수술적 절제술을 받은 349명의 환

자를 모형 훈련군으로 후향적으로 분석하였고, 같은 기준으로 강남 

세브란스에서 수술 받은 환자 61명을 검증군으로 사용하였다. 기존의 

CT 병기 및 내시경 데이터를 포함한 수술 전 검사에서 얻을 수 있는 

임상 적 인자들을 얻었고 수술 전 CT에서 총 438 개의 라디오믹스 

변수를 추출하였다. 10배 교차 유효성 검사를 사용한 LASSO 회귀분석

을 통해 변수를 선택하고, 라디오믹스 점수를 정의하였다. 내부 및 외
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부 검증은 각각 부트스트랩 방법(1000회 실시)를 통해 수행되었고, 라

디오믹스 모형의 예측력 향상은 통합 수신자 조작 특성 곡선

(integrated receiver operating curve)을 통해 곡선 아래 면적(iAUC, 

integrated area under the curve)을 계산하여 비교되었다. 

결과: 최종 410명 (58.2±13.0 세, 여성 268명)의 환자군이 최종 연구에 

포함되었다. 라디오믹스 모형 구성에는 7가지 특성이 선택되었고, 임

상 모형은 CT에서의 Borrmann 4형과 결절형 침윤 여부가 포함되었다

병합 모형은 임상 정보와 라디오믹스 점수를 모두 포함하여 구성되었

다. 내부 및 외부 검증 모두에서 라디오믹스 (iAUC [95 % 신뢰 구간], 

0.714 [0.667, 0.759], P<0.001, 내부검증; 0.652 [0.628, 0.674], P=0.010, 외부

검증)과 병합 모형(0.719 [0.674, 0.764], P<0.001, 내부검증; 0.651 [0.630, 

0.673], P=0.014, 외부검증)이 각각 임상 모형 (0.616 [0.570, 0.663], 내부

검증; 0.594 [0.544, 0.636], 외부검증)과 비교했을 때 통계적으로 유의하

게 무재발 생존 기간 예측이 향상되었다. 

결론: 조영증강 전산화단층촬영 영상을 기반으로 한 라디오믹스 모형

은 수술 전 임상 정보와 통합되어 무재발 생존 기간을 더 잘 예측할 

수 있으며 수술 전 영상 생체표지자로서 가능성을 가지고 있다. 따라

서 라디오믹스 모형을 통해 재발 고위험군을 분류한다면, 진행성 위

암 환자에서 수술 전 항암화학요법 여부를 결정하는데 도움을 줄 수 

있다. 

 

 

 

 

핵심되는 말: 라디오믹스, 조영증강 전산화단층촬영, 진행성 위암, 예

후 예측 


