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There is a growing need to develop novel strategies for the diagnosis of schizophrenia using neuroimaging biomarkers. We
investigated the robustness of the diagnostic model for schizophrenia using radiomic features from T1-weighted and diffusion
tensor images of the corpus callosum (CC). A total of 165 participants [86 schizophrenia and 79 healthy controls (HCs)] were
allocated to training (N= 115) and test (N= 50) sets. Radiomic features of the CC subregions were extracted from T1-weighted,
apparent diffusion coefficient (ADC), and fractional anisotropy (FA) images (N= 1605). Following feature selection, various
combinations of classifiers were trained, and Bayesian optimization was adopted in the best performing classifier. Discrimination,
calibration, and clinical utility of the model were assessed. An online calculator was constructed to offer the probability of having
schizophrenia. SHapley Additive exPlanations (SHAP) was applied to explore the interpretability of the model. We identified 30
radiomic features to differentiate participants with schizophrenia from HCs. The Bayesian optimized model achieved the highest
performance, with an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.89 (95% confidence interval: 0.81–0.98),
80.0, 83.3, and 76.9%, respectively, in the test set. The final model offers clinical probability in an online calculator. The model
explanation by SHAP suggested that second-order features from the posterior CC were highly associated with the risk of
schizophrenia. The multiparametric radiomics model focusing on the CC shows its robustness for the diagnosis of schizophrenia.
Radiomic features could be a potential source of biomarkers that support the biomarker-based diagnosis of schizophrenia and
improve the understanding of its neurobiology.
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INTRODUCTION
Schizophrenia is a highly disabling psychiatric disorder with an
unclear etiology and pathogenesis. A large body of evidence
indicates that a constellation of cognitive, perceptual, and
affective disturbances in schizophrenia originates from aberrations
in neural connectivity among distinct brain regions [1]. However,
despite the current notion of schizophrenia as a disorder of brain
dysconnectivity, its diagnosis is exclusively based on a clinical
description of the observable features of psychopathology.
Therefore, it is crucial to develop novel strategies for the precise
diagnosis of schizophrenia using specific and reliable biomarkers
of brain connectivity.
The corpus callosum (CC) is the largest white matter structure in

the brain, responsible for transferring and integrating a vast
amount of multimodal information across the two hemispheres
[2]. Neuroimaging abnormalities in the CC have been consistently
found in patients with schizophrenia, suggesting the involvement
of aberrant interhemispheric communication via the CC in the
pathogenesis of schizophrenia. Structural magnetic resonance

imaging (MRI) studies have reported morphological alterations in
callosal shape [3, 4] and smaller size of the CC and its subregions
[5, 6] in patients with schizophrenia compared to that of healthy
controls (HCs). Diffusion tensor imaging (DTI), which allows for the
in vivo assessment of microstructural features of the white matter,
revealed myelin and axonal alterations of the CC in patients with
schizophrenia, which cannot be captured by standard MRI [7]. The
latest large-scale collaborative study on white matter abnormal-
ities in schizophrenia showed that a lower fractional anisotropy
(FA) and higher apparent diffusion coefficient (ADC) in the CC are
among the most reliable findings with a large effect size that
differentiated patients with schizophrenia from HCs [8]. However,
none of the neuroimaging measures of the CC are diagnostic of
schizophrenia because similar alterations are found in various
psychiatric disorders, including autism [9, 10] and bipolar disorder
[11]. Furthermore, single-value parameters derived from neuroi-
maging data, which measure the volume, area, or fiber integrity,
do not fully capture the subtle and complex neuropathological
changes in the CC, underlying the development of schizophrenia.
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The pathogenesis of schizophrenia involves microscopic altera-
tions in tissue characteristics of the brain, resulting from multiple
genetic, molecular, and cytoarchitectural factors. Therefore, an
approach that quantifies the spatial distribution of microscopic
tissue heterogeneity, which cannot be assessed with conventional
imaging parameters, would be a promising alternative to improve
the diagnosis of schizophrenia on the basis of neurobiology.
Radiomics is a new, advanced analytic technique that quantifies

and extracts high-dimensional imaging features to aid clinical
decision-making using medical image-based biomarkers [12].
Radiomics aims to discover meaningful “hidden” information
within radiological images, which is inaccessible with single-value
approaches. Radiomics relies on computational techniques to
translate radiologic images into quantitative image descriptors
pertaining to the shape and texture information of a region of
interest (ROI) [13]. Radiomic features include shape, first-order
features, and second-order features. Shape descriptors are
calculated based on the two- and three-dimensional size and
shape of the ROI. On the other hand, first-order and second-order
features are calculated based on signal intensity values within the
ROI by mathematical equations. First-order features reflect the
intensity distribution of an ROI, while second-order features reflect
spatial heterogeneity [14]. Radiomics has a wide potential as a
diagnostic and prognostic biomarker in brain tumors [15] as well as
neurodegenerative diseases, such as Alzheimer’s and Parkinson’s
disease [16, 17]. Recent studies on schizophrenia have also shown
promising results in differentiating patients with schizophrenia
from HCs using a radiomics model with structural MRI of the
hippocampal subfields [18] and resting-state functional connectiv-
ity [19] and in predicting short-term treatment responses after
electroconvulsive therapy in patients with treatment-resistant
schizophrenia, using radiomic features extracted from structural
and diffusion MRI [20]. The clinical utility of these radiomics models
built through machine learning may be limited due to the lack of
interpretability of the “black-box” system. However, this problem

could be addressed using explanatory techniques, such as SHapley
Additive exPlanations (SHAP) that estimate a value of importance
for each radiomic feature in the built model and facilitate informed
clinical decision-making [21].
To the best of our knowledge, there is no study to date that

tests a potential diagnostic model of schizophrenia using radio-
mics based on multiparametric DTI and T1-weighted images (T1)
focusing on the interhemispheric connectivity of the brain. Herein,
we aimed to investigate the ability of a multiparametric radiomics
model to diagnose schizophrenia using MRI of the CC. We
hypothesized that radiomic analysis of the CC would reveal
distinct combinations of neuroimaging features reflecting subtle
and complex alterations in tissue characteristics of the CC, which
would differentiate patients with schizophrenia from HCs.
Furthermore, the interpretability of the diagnostic prediction
made by the multiparametric radiomics model was explored by
the application of SHAP.

MATERIALS AND METHODS
Participants
The participants with schizophrenia were recruited from among those
receiving psychiatric treatment at the Department of Psychiatry, CHA
Bundang Medical Center (Seongnam, Republic of Korea). They were
diagnosed with schizophrenia based on the DSM-IV-TR or DSM-5 criteria
[22, 23]. We only included patients who had no history of other psychiatric
disorders and were antipsychotic-naïve or free of antipsychotics for at least
6 months. HCs were recruited from the local community through online
and print advertisements, and we ensured that they had no personal or
first-relative family history of psychiatric disorders. The exclusion criteria
were (1) a current or past history of neurological or neurodevelopmental
disorders, substance-related problems, or head trauma with loss of
consciousness, (2) left-handedness, and (3) any other contraindications
for undergoing MRI. A total of 165 participants (86 with schizophrenia and
79 HCs) were finally enrolled in this study. The study participants of both
groups were allocated to training (N= 115; 60 with schizophrenia and 55
HCs) and test (N= 50; 26 with schizophrenia and 24 HCs) sets (Table 1).

Table 1. Demographic and clinical profiles of the study participants in the training and test sets.

Training set (N= 115) Test set (N= 50)

Schizophrenia (N= 60) HCs (N= 55) Schizophrenia (N= 26) HCs (N= 24)

Age (y) 34.3 (9.5) 37.1 (8.3) 37.0 (11.2) 40.6 (12.4)

Sex

Male 22 (36.7%) 25 (45.5%) 9 (34.6%) 7 (29.2%)

Female 38 (63.3%) 30 (54.5%) 17 (65.4%) 17 (70.8%)

Number of episodes

First episode 49 (81.7%) 17 (65.4%)

Second episode 6 (10.0%) 4 (15.4%)

Third episodes 5 (8.3%) 5 (19.2%)

Duration of illness (mo) 15.6 (23.7) 25.0 (33.7)

Antipsychotic exposure

Naïve 53 (88.3%) 23 (88.5%)

>6 months free 7 (11.7%) 3 (11.5%)

Duration of antipsychotics before MRI scan (d) 6.2 (6.0) 4.7 (4.9)

Dose of antipsychotics at MRI scan (mg/d)a 504.3 (301.8) 429.5 (220.7)

PANSS

Positive symptoms 29.5 (7.7) 30.4 (5.6)

Negative symptoms 20.9 (7.0) 20.4 (6.3)

General psychopathology 59.6 (14.2) 57.8 (13.5)

There were no significant differences between groups and between sets on any variable.
HCs healthy controls, MRI magnetic resonance imaging, PANSS positive and negative syndrome scale.
aAll participants with schizophrenia were taking atypical antipsychotics and chlorpromazine equivalent doses were calculated.
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The study protocol was reviewed and approved by the Institutional
Review Board of CHA Bundang Medical Center, in accordance with the
latest version of the Declaration of Helsinki and principles of Good Clinical
Practice. Written informed consent was obtained from all study participants
after the study procedures had been fully explained.

MRI data acquisition and preprocessing
T1 and diffusion-weighted images were acquired using a 3.0-Tesla scanner
(GE Signa HDxt; GE Healthcare, Milwaukee, WI, USA) equipped with an
eight-channel phased-array head coil, at CHA Bundang Medical Center
(Seongnam, Republic of Korea). Detailed information on the MRI protocol is
presented in Supplementary Material S1.
The anatomical segmentation of the CC was performed on T1 using the

standard “recon-all” pipeline implemented in the FreeSurfer software
(version 7.1.0; http://freesurfer.net). The CC was automatically segmented
into five subregions: anterior, mid-anterior, central, mid-posterior, and
posterior. Each of the subregional masks was extracted from individual T1.
The preprocessing of DTI data was performed using the Functional MRI of
the Brain’s (FMRIB’s) Diffusion Toolbox, which is a part of FMRIB’s Software
Library (version 6.0; https://fsl.fmrib.ox.ac.uk/fsl/). The DT images under-
went standard preprocessing steps, including brain extraction and
correction for head motion and eddy-current distortion. ADC and FA
maps were created by fitting a tensor model to the corrected diffusion
data. After image resampling to 1-mm isovoxels, the nonuniformity of low-
frequency intensity was corrected with the N4 bias field correction
algorithm. T1 was co-registered to ADC and FA maps by the affine
transformation with normalized mutual information as a cost function.

Radiomic feature extraction
Figure 1 shows the radiomics pipeline of the study. Radiomic feature
extraction from the CC subregions was performed using py-Radiomics
(version 2.0; http://www.radiomics.io/pyradiomics.html) [24], which con-
formed to the Image Biomarker Standardization Initiative [25]. The
radiomic features included 14 shape features, 18 first-order features, and
75 second-order features [such as gray-level co-occurrence matrix (GLCM;
N= 24), gray-level run-length matrix (GLRLM; N= 16), gray-level size zone
matrix (N= 16), gray-level dependence matrix (N= 14), and neighboring
gray tone difference matrix (N= 5); Supplementary Material S3]. A total of
1605 (107 features × 5 subregions of the CC × 3 sequences) radiomic
features were extracted (Supplementary Material S2).

Construction of the radiomics model for the assessment of
discrimination, calibration, and clinical utility
The feature selection and machine learning processes were performed
using Python 3 with the Scikit-Learn library module (version 0.21.2).

All radiomic features were Min-Max normalized. Subsequently, feature
selection was performed to reduce the number of highly correlated features
and avoid overfitting by applying mutual information, which measures the
mutual dependence between variables. The base radiomic classifiers were
constructed using classifier models, such as AdaBoost, Extra Trees, gradient
boosting machine, Gaussian process classification, random forest, and
support vector machine, with tenfold cross-validation. To overcome data
imbalance, each machine learning model was either trained without
oversampling or with random oversampling examples (ROSE) technique
(Supplementary Material S3). Thus, a total of 12 combinations with different
oversampling techniques were trained and validated.
The discrimination performance was evaluated in the training set and

validated in the test set. The predictive performance was quantified by
calculating the AUC, accuracy, sensitivity, and specificity. To improve the
predictive performance and avoid potential overfitting, Bayesian optimiza-
tion was applied in the best performing base classifier, which searches the
hyperparameter space for optimal combinations of the hyperparameters
(Supplementary Material S4).
Discrimination and calibration are two different aspects of the

performance of diagnostic models. Because good discrimination does
not always ensure good calibration, and vice versa, calibration perfor-
mance was also assessed based on the agreement between predicted and
actual rates of schizophrenia in the calibration plot [26]. Calibration plots
were created to determine whether the predicted probability correlated
with the actual probabilities. The Brier score, which is the mean squared
prediction error, was calculated to evaluate the overall performance of the
radiomics model [27]. A Brier score close to 0 indicates a better calibration
and discrimination performance of the model.
Decision curve analysis (DCA) was performed by calculating clinical “net

benefits” at a range of threshold probabilities to validate the clinical utility
of the radiomics model (Supplementary Material S5) [28]. Net benefit differs
from accuracy metrics, such as discrimination and calibration, in that it
incorporates the consequences of decisions made by a model or test [29].

Model interpretability with SHAP
To interpret and understand the radiomic features from the radiomics
model, SHAP was applied, which is a game-theoretic approach to explain
the output of a tree-based machine learning model [21]. SHAP measures
the contribution of each feature of a model to the increase or decrease of
the probability of single output (i.e., the probability of the diagnosis of
schizophrenia in this study; Supplementary Material S6).

Statistical analysis
Demographic and clinical characteristics between participants with
schizophrenia and HCs and between the training and test sets were
compared using the independent t-test for continuous variables and the
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chi-squared test for categorical variables. The diagnostic performance of
the radiomics model was compared with a logistic regression model with
mean ADC and FA values from the CC subregions using AUC. Statistical
procedures were conducted using the Statistical Package for the Social
Sciences, version 26 (IBM Corp., Armonk, NY, USA). Statistical significance
was set at p < 0.05.

RESULTS
Discrimination, calibration, and clinical utility of the radiomics
model
A total of 30 radiomic features (ten from anterior, three from mid-
anterior, three from central, seven from mid-posterior, and seven
from posterior subregions of the CC; 16 from ADC, five from FA,
and nine from T1) were identified to differentiate participants
with schizophrenia from HCs in the best performing classifier
(Table 2). Supplementary Fig. 1 shows the heatmap of significant
radiomic features.
The AUCs of the base classifiers ranged from 0.72 to 0.89 in the

training set and 0.65 to 0.87 in the test set (Supplementary Fig. 2).
The best performing base classifier in the training and test sets
was achieved using the Extra Trees classifier model with ROSE
technique; the AUC, accuracy, sensitivity, and specificity of the
best performing base classifier in the test set were 0.87 [95%
confidence interval (CI): 0.77–0.97], 78.0, 83.3, and 73.1%,
respectively. After the Bayesian hyperparameter tuning, the
optimized model with the best performing classifier (Extra Trees
model with ROSE technique) achieved better predictive perfor-
mance. In the Bayesian optimized model of the training set, the
AUC, accuracy, sensitivity, and specificity were 0.90 (95% CI:
0.85–0.95), 81.7, 85.0, and 78.3%, respectively; in the test set, the
AUC, accuracy, sensitivity, and specificity were 0.89 (95% CI:
0.81–0.98), 80.0, 83.3, and 76.9%, respectively (Fig. 2A). Supple-
mentary Table 1 shows the performance of base classifiers and the
optimized model in the test set.
The calibration plot showed that the predicted outcomes

closely approximated the observed outcomes, indicating a
good agreement between the predicted and actual rates of
schizophrenia in the training and test sets (Fig. 2B). The Brier
score was 0 and 0.16 in the training and test sets, respectively.
The DCA result showed that the radiomics model added more
net benefit compared to the default strategies of treating all or
no subjects or the model with mean ADC and FA values when
the threshold probability was within the range of 0–0.91 in the
training set and 0–0.83 in the test set (Fig. 2C). Since the
radiomics model had a higher net benefit than the strategy
using mean ADC and FA values of the CC subregions within a
reasonable range of threshold probability, it was considered
clinically useful.
An online site has been made available to provide a free

calculator based on the presented radiomics model (https://
nhimc.shinyapps.io/sirano-schizoml/), which enables clinicians to
access and estimate the probability of having schizophrenia.
Representative results of the prediction of five participants (three
patients with schizophrenia and two HCs) from the radiomics
calculator are shown in Supplementary Fig. 3.

Comparison of performance between the radiomics model
and model with mean ADC and FA values
In the training set, the model with mean ADC and FA values from
CC subregions showed an AUC, accuracy, sensitivity, and
specificity of 0.63 (95% CI: 0.55–0.70), 60, 53.3, and 66.7%,
respectively. In the test set, the model showed an AUC, accuracy,
sensitivity, and specificity of 0.66 (95% CI: 0.50–0.82), 70.0, 54.2,
and 84.6%, respectively. The radiomics model showed a sig-
nificantly higher performance than the model with mean ADC and
FA values from CC subregions, in both the training and test sets
(p < 0.001 and p= 0.010, respectively).

Model interpretability with SHAP
The SHAP values for each radiomic feature in the radiomics model
were calculated. The variance importance plot, summary plot,
decision plot, dependence plot, and force plot are shown in Fig. 3.
For each prediction, a positive SHAP value indicates an increase in
the risk of schizophrenia and vice versa. As observed in the
plot, posterior_T1_GLRLM_run entropy, followed by posterior_-
ADC_GLCM_informational measure of correlation 1 (IMC1) and
posterior_ADC_GLCM_correlation features, were the three most
important risk factors.

DISCUSSION
In the present study, we assessed the diagnostic value of radiomic
features extracted from multiparametric MRI of the CC to
differentiate participants with schizophrenia from HCs. The radiomics

Table 2. List of significant radiomic features to differentiate
participants with schizophrenia from HCs.

Subregion Image Feature
category

Feature name

Anterior ADC First-order (7) 10 percentile

90 percentile

Maximum

Mean

Median

Root mean squared

Variance

FA GLDM (1) Large dependence
emphasis

T1 GLRLM (1) Gray-level nonuniformity

GLSZM (1) Size zone nonuniformity

Mid-anterior ADC First-order (3) 90 percentile

Minimum

Interquartile range

Central ADC First-order (1) 90 percentile

FA NGTDM (1) Complexity

GLSZM (1) Zone variance

Mid-posterior ADC First-order (1) Minimum

FA First-order (2) Mean

Root mean squared

T1 First-order (3) Mean absolute deviation

Minimum

Robust mean absolute
deviation

GLRLM (1) Gray-level nonuniformity
normalized

Posterior ADC First-order (2) Range

Variance

GLCM (1) Correlation

Information measure of
correlation 1

T1 First-order (2) Mean absolute deviation

Skewness

GLRLM (1) Run entropy

HCs healthy controls, ADC apparent diffusion coefficient, FA fractional
anisotropy, GLDM gray-level dependence matrix, GLRLM gray-level run-
length matrix, GLSZM gray-level size zone matrix, NGTDM neighboring gray
tone difference matrix, GLCM gray-level co-occurrence matrix.
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Fig. 2 Discrimination, calibration, and clinical utility of the radiomics model for the diagnosis of schizophrenia in the training and test
sets. A Receiver operating characteristics curves in the training and test sets. B Calibration plots of the radiomics model in the training and
test sets. The x-axis represents the model predicted risk of schizophrenia. The y-axis represents the actual diagnosed proportion of
schizophrenia. The gray line represents a perfect prediction by an ideal model, and the blue line represents the performance of the radiomics
model. The closer fit between the diagonal dotted lines and solid lines shows a good prediction of schizophrenia. C Decision curves for the
radiomics model in the training and test sets. The x-axis represents the threshold probability, which refers to a minimum probability of having
a disease that patients require to justify treatment. The y-axis represents the net benefit, determined based on the difference between the
expected benefit and harm associated with the diagnosis and treatment decision. The radiomics model shows superior net benefit in both the
training and test sets within most of the range of threshold probability compared to either default strategies (treat-all or -none) or the model
with mean ADC and FAs. AUC area under the curve, ADC apparent diffusion coefficient, FA fractional anisotropy.
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model with Bayesian optimization, constructed with 30 significant
features from the CC subregions, showed a robust performance with
an AUC of 0.89 in the test set. Moreover, the model showed good
calibration and had a greater net benefit for clinical decision-making
in the diagnosis of schizophrenia. The finalized model was then
implemented in an online interface. The robustness of the radiomics
model was further supported by its significantly higher performance
compared to the model with mean ADC and FA values from the CC
subregions. The model explanation by SHAP suggested that
radiomic features reflecting aberrations in tissue heterogeneity in
the posterior CC were particularly associated with a higher risk of
schizophrenia.
The neuropathology of schizophrenia involves alterations in

the cytoarchitectural and synaptic organizations of the brain,
including a loss and disarray of neurons. Previous postmortem
studies found impaired myelinations of the CC and reduced
numbers of lamina III pyramidal cells from which most CC axons
originate in patients with schizophrenia [30, 31]. In vivo MRI data
may contain biological information reflecting histological features
of the CC in patients with schizophrenia, resulting in changes in
signal intensity on DTI and T1. While T1 relaxation time is a direct
reflection of tissue composition and cytoarchitectural organiza-
tion [32], DTI represents white matter microstructure, including

axonal coherence, fiber density, and myelin integrity [33]. The
radiomics approach enables the comprehensive characterization
of microscopic tissue heterogeneity and extraction of meaningful
biomarkers from both modalities, providing different aspects of
biological information. We found that selected radiomic features
were distributed throughout the CC subregions, with distinct
tissue characteristics in each of them. The majority of selected
radiomic features were first-order features, followed by second-
order features; none of the shape features, such as volume, area,
and length, were included. This indicates that changes in
interrelationships among voxel-based signal intensity as well as
their distributions within the CC subregions, which are reflected
in the first- and second-order features, could aid in differentiating
participants with schizophrenia from HCs. Our findings of
radiomic feature selection demonstrate the high potential of
radiomics in capturing specific information regarding the
neuropathological changes underlying the pathogenesis of
schizophrenia, which cannot be quantified by a single parameter
based on morphometry.
Radiomic analysis is based on modeling, and it offers an

improved discriminatory power by utilizing supervised machine
learning with binary classification. To establish the generalizability
of the radiomics model, it is crucial to test its performance in a

Fig. 3 Model interpretability of the radiomics model for the diagnosis of schizophrenia with SHAP. A Variance importance plot listing the
most significant variables in descending order. The top variables (such as posterior_T1_GLRLM_run entropy, posterior_ADC_GLCM_IMC1, and
posterior_ADC_GLCM_correlation features) contribute more to the model than the bottom ones and thus have higher predictive power.
B Summary plot of feature impact on the decision of the radiomics model and interaction between radiomics features in the model. A positive
SHAP value indicates an increase in the risk of predicting schizophrenia and vice versa. The high value corresponds to a higher risk of
schizophrenia. Each point corresponds to a prediction in each participant. C Decision plot showing how the radiomics model predicts
schizophrenia. Moving from the bottom of the plot to the top, SHAP values for each feature are added to the model’s base value showing how
each feature contributes to the overall prediction of schizophrenia. D An example of the dependence plot of the posterior_T1_GLRLM_run
entropy feature, which is the top-most important feature. The plot shows how there is an approximately linear and negative trend between
“posterior_T1_GLRLM_RunEntropy” and schizophrenia prediction, and that the “posterior_T1_GLRLM_RunEntropy” interacts with “poster-
ior_T1_FirstOrder_MeanAbsoluteDeviation” frequently. E Force plot of a representative case of participants with schizophrenia from the test
set, showing local interpretability. Note that the posterior_T1_GLRLM_RunEntropy largely pushes the model prediction score into the higher
direction from the base value.
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separate validation set [34]. Our radiomics model built with
30 selected radiomic features demonstrated its robustness by
showing a significantly better performance compared to the
model with mean ADC and FA values from the CC subregions, in
the test set. Furthermore, the clinical usefulness of the radiomics
model for the diagnosis of schizophrenia was demonstrated by
the calibration plot and DCA. The calibration plot of the model
showed a good agreement between the predicted and actual
diagnoses of schizophrenia in the test set. The DCA result showed
that the clinical application of the radiomics model for the
diagnosis of schizophrenia is more beneficial than default
strategies or the model using mean ADC and FA values within a
reasonable range of threshold probability. Our result implies that
the radiomics model has a substantial potential to support
evidence-based decision-making in clinical practice by using
objective and reliable neuroimaging biomarkers in the diagnosis
of schizophrenia.
One major pitfall of the radiomics model is the lack of

explainability in the “black-box” system, which limits its use in
clinical practice. It is challenging for the clinicians to determine
how the model arrives at a conclusion and to identify radiomic
features that are critical in decision-making [35]. The advantage of
SHAP is that it identifies certain patterns of complex machine
learning algorithms and provides both global and local interpret-
ability for the radiomics model [21]. We found that run entropy of
GLRLM from T1 of the posterior CC was the most important factor
in differentiating participants with schizophrenia from HCs,
followed by IMC1 and correlation of GLCM from the ADC maps
of the posterior CC. The GLRLM and GLCM are second-order
radiomic features reflecting tissue heterogeneity by calculating
the frequency of occurrence of pairs of voxels with specific values
and a specified spatial relationship in an image [36]. The GLRLM
describes heterogeneity in the distribution of run lengths, whereas
GLCM describes heterogeneity in the distribution of co-occurring
voxel values. Although the neurobiological underpinnings of
radiomic features remain to be elucidated, microscopic aberra-
tions in complex neuronal and glial organizations within the CC
may alter the voxel signal intensities in DTI and T1 [37]. The
posterior CC contains white matter tracts connecting the bilateral
temporal, parietal, and occipital lobes, including multimodal
sensory association cortices [38]. Our findings from SHAP imply
that the disease-defining feature of schizophrenia may be
associated with the “bottom-up” dysfunction in the integration
of multisensory information, leading to cognitive and perceptual
disturbances in patients with schizophrenia [39]. Future research is
warranted to understand the neurobiological meaning of radiomic
features in the pathogenesis of schizophrenia.
This study has a few limitations. First, this is a retrospective

study from a single institution, and the sample size was relatively
small. However, our study is the first to demonstrate the
usefulness of the radiomics model with multiparametric MRI of
the CC in diagnosing schizophrenia. Further studies with a larger
dataset and external validation are needed. Second, although our
participants with schizophrenia were initially antipsychotic-naïve
or free of antipsychotics for at least 6 months, some MRI data were
acquired after the administration of atypical antipsychotics. This
may raise a concern regarding the confounding effect of
antipsychotic medication. However, the influence of antipsycho-
tics on the brain is controversial, and the mean duration of
antipsychotic medication is very short in this study (5.7 ± 5.7 days).
Third, the causality of changes in radiomic features of the CC
subregions cannot be determined due to the cross-sectional
nature of this study. However, given that the majority of
participants with schizophrenia were in the early phase of their
disorder, our findings may provide some clues to understand the
early pathogenesis of schizophrenia.
In conclusion, the multiparametric radiomics model using

selected features from the CC may offer a novel approach to

improve the diagnosis of schizophrenia with good clinical
applicability. Radiomic features extracted from neuroimaging data
could be a potential source of biomarkers that support the
objective diagnosis of schizophrenia and improve the under-
standing of its neurobiology. We expect that the estimation of
microscopic tissue characteristics using radiomics and diagnostic
modeling will promote the quality of clinical practice in managing
patients with schizophrenia.
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