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ABSTRACT 

 

Identification of biomarkers in food allergy using metabolomics 

 

Haerin Jang 

 

Department of Medical Science 

The Graduate School, Yonsei University  

 

(Directed by Professor Kyung Won Kim) 

 

 Food allergy (FA) is affecting an increasing proportion of 

children, with its emergence to an important health concern. The natural 

history of childhood FA occasionally involves a spontaneous resolution 

of symptoms after years of adversity. However, the mechanism behind 

the resolution of FA is not studied in-depth. This study aims at 

identifying biomarkers for the development and prognosis of FA through 

a metabolomics approach.  

 The metabolomic profile of 20 children with FA and 20 healthy 

control subjects were studied using liquid-chromatography coupled with 
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mass spectrometry. Serum samples for FA are collected from both the 

time of diagnosis and resolution to identify the change in metabolite 

levels. We conducted a comparative analysis to discover metabolites 

associated with FA and FA resolution. With the integration of genotype 

data, we conducted a metabolite QTL analysis to analyze associated 

pathways. 

 Patients with FA exhibited a unique metabolomic profile 

compared to control subjects. A marked increase of sphingolipid 

metabolites and a decrease in acylcarnitine metabolites were associated 

to FA. In resolving FA subjects, a significantly high level of omega-3 

metabolites were observed. The level of omega-3 metabolites decreased 

with FA resolution as compared to an increase over the same period in 

persistent FA. Also, platelet-activating factor, and 

lysophosphatidylcholine levels were significantly associated to FA 

resolution.  

 Several lipid metabolites are closely related to FA and FA 

resolution in children. These results suggest potential predictive 

biomarkers and provides insight in disease mechanisms of childhood FA.  

---------------------------------------------------------------------------------------- 

Key words: food allergy, metabolomics, omega-3, biomarker, childhood 
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I. INTRODUCTION 

 

1. Food allergy 

Food allergy (FA) is a disease where allergic reactions repeatedly occur 

after consuming certain foods. Symptoms involve tingling or itching in the 

mouth, rashes or hives of the skin, angioedema, difficulty swallowing, shortness 

of breath, or gastrointestinal symptoms such as abdominal pain and diarrhea1. In 

severe cases, anaphylaxis may occur, which results in trouble breathing or 

speaking and can lead to life-threatening situations. Immediate medical 

treatment is required in most cases, and if not treated properly it can be fatal2. 

However, the current standard treatment of FA is allergen avoidance but this 
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does not change the natural course of FA3. 

FA is affecting an increasing proportion of people, with the prevalence 

increasing especially in developed countries. The prevalence of FA is especially 

high in Australia, the United States, and Europe with a prevalence of close to 

10% in all ages4. In children, the prevalence of FA has also been high, with a 

prevalence of 8.0% in the United States5. Children experiencing severe 

reactions are 38.7% of those with FA5, indicating that a high proportion of 

patients are at risk of anaphylaxis. In Korean children, the prevalence is 

relatively low at about 4% in school children but it has increased in the recent 

years6.  

Common causative allergens are cow’s milk, hen’s egg, peanuts, tree nuts, 

soy, wheat, and fruits7. Particular proteins found in each food causes the 

immune system to overreact, even when it is consumed in small amounts. The 

severity of FA is commonly associated with the allergen or number of different 

food allergen one reacts to8. Some food allergies cause cross-reaction to other 

proteins that are similar to allergy causing-proteins. This commonly occurs in 

pollen-food allergy syndrome where one is allergic to multiple foods due to the 

similarity in protein structure9.  

The mechanism of IgE-mediated FA can be explained in two steps. When 

a food allergen is introduced to the body for the first time, it binds to receptors 

on tissue basophils and mast cells and stimulates the production of 

allergen-specific IgE. This process is called “initial sensitization”. Following 
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this process, the introduction of the food allergen induces an immediate 

hypersensitivity in which specific IgE antibodies bound to mast cells and 

basophils activate a chemical cascade and trigger a release of mediator 

molecules. Histamine is a distinctive mediator, which causes an immediate 

pathophysiological response in the blood vessel and several organs. 

Prostaglandins and leukotrienes are also involved in this response, causing 

clinical reactivity and allergic symptoms. Non-IgE medicated FA is less 

common and its reaction is more likely to be related to T cells instead of 

leukocytes10.  

Several risk factors are associated with FA. First, a family history or 

coexistence of allergic diseases, including asthma, eczema, or allergic rhinitis, 

increases the risk of FA11. Young children who are sensitized to food allergens 

are also more likely to develop allergic rhinitis and asthma12. Also, age is a 

contributing risk factor. FA is more common in children, especially toddlers and 

infants. FA mostly begins in the first two years of life and either continue 

through adulthood or resolve during childhood and adolescence13.  

The natural history of childhood FA occasionally involves a spontaneous 

resolution of symptoms after years of adversity. Many patients with FA will 

naturally outgrow their symptoms, with resolution occurring at different ages13. 

Many factors contribute to resolution including the causative allergen and 

severity of symptoms. Food allergens such as cow’s milk and hen’s egg are 

outgrown often during childhood or adolescence, whereas peanut and tree nut 
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allergies more often persist through adulthood, rarely resolving with time14.   

The mechanism behind the resolution of FA is not studied in-depth, 

possibly due to heterogeneous phenotypes and the point of resolution being 

unclear. Multiple factors are known to be involved and there has been 

controversy on the predicting factors, one being the decrement of 

allergen-specific IgE levels13. However, this does not happen in all cases15. 

Some patients become tolerant even with a persistently elevated 

allergen-specific IgE level. Thus, the loss of specific IgE is not a necessary 

factor for FA resolution. Serial testing is needed to determine if a FA is resolved. 

In vitro tests and skin prick tests are most common, and oral food challenges are 

the most determinant, but oral food challenges have great risk of anaphylaxis 

and full emergency equipment is required.  

 

2. Omics analysis 

 Recent omics studies have shown great potential in revealing the 

missing link between the genome and disease phenotypes16. Omics researches 

aim at a systems approach, where a collective characterization of biological 

molecules shows the full picture. Common molecules quantified and analyzed 

are DNAs, RNAs, proteins, and metabolites, which translate to genomics, 

transcriptomics, proteomics, and metabolomics. It is becoming more and more 

common to integrate different types of omics data on a large scale as 

computational techniques allow further investigation.  
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 Metabolomics is the study of metabolites, or small biochemical 

molecules within cells, biofluids, tissues, or organisms17. The metabolome is the 

whole of the metabolites in a biological system. Metabolites are produced and 

modulated by enzyme-mediated reactions and contribute to crucial cellular 

functions. Metabolomics provides a direct and sensitive measure of disease 

phenotype at the molecular level18. It is downstream of the genome, after the 

transcriptome and proteome. Hence it reflects both the genetic basis and 

environmental changes. Many low-weight biochemicals, including 

hydrocarbons, amino acids, and lipids are measured using metabolomics.  

 Metabolomics employs analytical methodologies such as liquid 

chromatography-mass spectrometry analysis to either identified or unknown 

compounds. It identifies the mass profile of each metabolite within samples. 

The peak area of each metabolite determined is used to define the concentration 

differences between different biological samples being measured. When 

unknown metabolites are identified, it is called “untargeted metabolomics” and 

is used to identify a large range of metabolites19. Methods used in metabolomics 

continue to evolve and improve, yet there is no standardized method for 

analysis.  

 Metabolomics is used in hypothesis-generating studies, where the 

metabolome for diseased or specific individuals are screened to find predictive 

biomarkers or mechanistic explanations. Improvements in analytical equipment 

and data analysis software have driven the development of metabolomic 



 

 

8 

 

research. It has been used in studies for many complex diseases, such as 

diabetes20, cardiovascular diseases21, and Alzheimer’s disease22, producing 

promising results. Most of these studies have been interpreted using its 

relevance to the gut microbiome, genome, and environmental factors.  

 There have been several attempts to perform metabolomic studies on 

allergic diseases. Metabolomic approaches have identified several metabolites 

that differ by disease severity and phenotype in various biofluids. One pilot 

study identified volatile organic compound markers of childhood asthma in 

exhaled breath, where 8 compounds could distinguish asthmatic children from 

healthy children with high accuracy23. In another study, metabolic profiles were 

used to classify “non-severe profilin-allergic patients” to mild and moderate 

phenotypes24. They discovered that arachidonic acid precursors were increased, 

suggesting a possible explanation regarding consumption due to the synthesis of 

inflammatory mediators. 

 However, in FA, there are only limited studies that perform 

metabolomic analysis on human samples. There have been reports on 

differences in baseline metabolite state between patients with peanut allergy and 

tolerant patients25. Also, children with FA were shown to have lower levels of 

sphingolipid, and ceramides26. In a mouse model study, an arachidonic acid 

metabolite, prostaglandin D2 in urine was correlated with the severity of oral 

allergy symptoms27. 

 Compared to metabolomics, genomic research for FA has been done 
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more actively with multiple genome-wide association studies and candidate 

gene studies. FLG, HLA, IL10, IL13 are most often mentioned as genes 

associated with FA28. Many of these genes are also associated with other 

allergic diseases, such as atopic eczema and asthma29. Despite promising results, 

genetic studies of FA have their limitations. There are few studies with adequate 

sample size and analysis with multiple testing correction. However, results 

show that there is a common root behind allergic diseases that may contribute to 

the inflammation state.  

 Integrated omics studies are becoming more and more common in 

complex diseases16. There is a potential for use in patient subgrouping, 

associating omics-based molecular measurements with clinical outcomes, or 

understanding the biological system under diseases. Integrated approaches 

combine individual omics data, sequentially or simultaneously, to understand 

the interplay of molecules30. Compared to seeing only one type of data, this 

provides a holistic view that may result in higher accuracy of prediction or 

describing disease phenotype. For example, an integrated study of 

metabolomics and transcriptome yielded molecular perturbations underlying 

prostate cancer. This research suggests that integrated studies of omics data 

have the potential to improve diagnosis and treatment in clinical settings. 31  

 

3. Research purpose 

 This study aims at identifying biomarkers for the development and 
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prognosis of FA through an integrated metabolomics and genomics approach. 

We use liquid-chromatography coupled with mass spectrometry to identify 

metabolites in serum samples from children with FA. We then conduct a 

comparative analysis with healthy controls to discover metabolites that are 

associated with FA. Also, to discover metabolites associated with FA resolution, 

those with resolving FA symptoms are compared to those with persistent 

symptoms. Serum samples of FA patients are collected from both the time of 

diagnosis and resolution to identify the change in metabolite levels. Since 

metabolites are influenced by the genome and the environment, this will further 

our knowledge of the epidemiological mechanism of FA and its resolution. 
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II. MATERIALS AND METHODS 

 

1. Study population and sample collection 

 A total of 40 subjects were included in this study: 20 children with 

FA and 20 healthy control subjects. All children with FA had confirmed 

symptoms of hen’s egg, with several children also having FA reactions to 

multiple food allergens. FA reactions include tingling or itching in the mouth, 

hives, swelling of the face, mouth or other body areas, wheezing, shortness of 

breath, nausea, vomiting, abdominal pain and diarrhea. All FA subjects had 

confirmed allergic sensitization, defined by specific IgE levels of greater than 

0.7 kU/L to egg white and at least one of the following food or airborne 

allergens: milk, peanut, soybean, wheat, Dermatophagoides pteronyssinus, 

Dermatophagoides farinae, Alternaria species, or Blattella germanica. 

Resolution of FA was defined as the resolution of symptoms from all food 

allergens that have previously caused FA reactions, often confirmed by oral 

food challenges. If symptoms persisted in at least one food allergen, it was 

defined as persistent FA. 

 Serum samples were collected from FA children at both the time of 

diagnosis and at follow-up, hence resulting in 20 pairs of samples for the FA 

subjects. Follow-up was after confirmed FA resolution or matching time 

progress in persistent patients. Serum samples were stored at -20℃ until 

metabolite profiling was performed. Whole blood was also collected from the 
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40 subjects for genotype analysis at the same time point. Control subjects did 

not have any history of allergic disease or evidence of allergic sensitization. All 

children were recruited from Severance Children’s Hospital, Seoul, Korea, and 

the study was approved by the institutional review board of Severance Hospital 

(Seoul, Korea; IRB no. 4-2019-1271). All subjects were unrelated and written 

informed consent was provided by them or their parents. 

 

2. LC-MS profiling 

 Metabolome analysis was performed in 60 samples of human serum 

using liquid chromatography-tandem mass spectrometry (LC-MS) in two modes 

for cationic and anionic metabolites. Each 100 μL sample was mixed with 300 

μL of 0.1% formic acid in methanol containing internal standards and 

centrifuged (9,100 x g, 4℃, 10 mins). Then, 250 μL of supernatant and 550 μL 

of 0.1% formic acid in water were mixed and filtrated by using SPE columns 

(MonospinC18, 5010-2170, GL Sciences Inc., Tokyo, Japan). The filtrate was 

purified by 0.1% formic acid solution and 0.1% formic acid-25% methanol 

solution. Then, purified lipid metabolite was dissolved by 200 μL of 0.1% 

formic acid in methanol immediately before measurement. Peaks detected in 

LC-MS analysis were extracted using automatic integration software 

(MultiQuant, AB Sciex) to obtain peak information including m/z, retention 

time (RT), and peak area. The peak area was then converted to relative peak 

area.  
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 From the mass spectrometric data acquisition, 344 metabolites were 

identified from multiple classes (including free fatty acid (FFA), acylcarnitine 

(AC), oxylipin, lysophosphatidylcholine (LPC), lysophosphatidylethanolamine 

(LPE), lysophosphatidyllinositol (LPI), lysophosphatidylserine (LPS), 

lysophosphatidylglycerol (LPG), lysophosphatidic acid (LPA), 

platelet-activating factor (PAF), acylethanolamine (AEA), sphinganine, 

sphingosine, ganglioside (GM, GD, GT), glucosylceramide, lactosylceramide, 

ceramide-1P, and steroids). These metabolites were further classified based on 

the number of total acyl chain carbon atoms and double-bond contents and 

annotated as follows: [Lipid class] [Number of acyl chain carbon 

atoms]:[Number of double bonds in fatty acid moieties]. For quality control, we 

removed metabolites that were not quantified in over 10% of the samples.  

 

3. Metabolome analysis 

 Missing values for the metabolite data were imputed using the 

k-nearest neighbor (KNN) algorithm. It uses the values of the neighbors and 

obtains a weighted average of their values to fill in the unknowns. The median 

of the 10 nearest neighbors was used for computation. The probabilistic 

quotient normalization (PQN) method was used for normalization of the 

metabolite data. PQN is commonly used in metabolomics data for its robustness 

and accuracy in data with a large number of metabolites. It is based on the 

calculation of a probable dilution factor by looking at the distribution of the 
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quotients of the amplitudes of a test spectrum by those of a reference 

spectrum32.  

 To observe data patterns and identify any outliers, principal component 

analysis (PCA), sparse partial least squares-discriminant analysis (sPLS-DA), 

and orthogonal partial least squares-discriminant analysis (orthoPLS-DA) were 

performed using Metaboanalyst33. Only the initial data was used in this process 

to find distribution patterns at the early stage. PLS-DA is a supervised form of 

discriminant analysis, where class labels are introduced to the algorithm. It is 

used to identify class differences from a multivariate dataset34. This overcomes 

the limitation of using PCA in metabolomic data, where within-group variation 

can be bigger than between-group variation. 5 components were used to control 

the sparseness of the sPLS-DA model and 5-fold cross-validation was used. 

sPLS-DA and orthoPLS-DA are extensions of PLS-DA which maximizes the 

explained variables. Each analysis was performed on 2 different group 

classifications; ‘FA-control’, ‘persistent FA-resolving FA’. Subjects with 

continued FA reactions to any allergen were classified as persistent FA, while 

resolving FA was defined as resolution from all food allergens.  

 Correlation between each metabolite and the total IgE level or age was 

sought by computing the Pearson’s correlation coefficient using 

log-transformed metabolite data. Metabolites significantly associated with 

either total IgE levels or age were excluded from further analysis. The initial 

data of each group were compared using Welch’s two-sample t-test with normal 
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distributions and the Mann-Whitney U test was used instead for non-normal 

distributions. A p-value under 0.05 was considered statistically significant. For 

HDoHE metabolites that were significantly associated with FA resolution, the 

change in metabolite levels between initial data and follow up data was assessed. 

Also, heatmaps were built and hierarchical clustering was performed using 

Metaboanalyst to identify patterns in significant metabolites. Euclidean distance 

measure and Ward clustering algorithm were used on the normalized data for 

the heatmaps. Data were analyzed using R version 3.3 (R Foundation for 

Statistical Computing, Vienna, Austria) and SAS version 9.4 (SAS Institute Inc, 

Cary, NC, U.S.A). 

 

4. Genotyping 

 Genotyping was performed using Infinium Omni5Exome-4 Bead Chip 

(Illumina Inc., San Diego, CA, USA) on whole blood samples. For quality 

control, single-nucleotide polymorphisms (SNPs) were excluded if missing 

rates were higher than 5%, Hardy-Weinberg equilibrium p-values were lower 

than 10-5, missing rates between cases and controls were significantly different 

(p-value < 0.001), or minor allele frequencies were lower than 1%. With the 

SNPs after quality control, SNPs that have reported association to FA in 

previous studies were chosen for further analysis. Suaini et al.28 provided a list 

of 112 SNPs that were previously published in either genome-wide studies or 

targeted gene studies of FA. These were curated from cross‐sectional studies, 
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case‐control studies, prospective, retrospective longitudinal studies (cohorts and 

case‐control studies), family linkage studies, sibling‐pair studies, and 

randomized control trials on FA. SNPs in linkage disequilibrium (LD) with 

those 112 SNPs were identified using SniPA35 proxy search using a threshold of 

r2 > 0.8. We used PLINK36 to extract the SNPs and the SNPs in LD from the 

whole-genome SNP data. From the 350 SNPs, 91 SNPs were included in the 

Infinium Omni5Exome-4 Bead Chip and passed quality control. Fisher’s exact 

test was used to test association with each phenotype and also with PAF 

metabolite levels. A p-value under 0.05 was considered statistically significant. 

 

5. Metabolite QTL 

 Metabolite levels are known to be heritable and might be controlled by 

multiple genes, which qualifies the use of metabolite quantitative trait loci 

(metabolite QTL) analysis. There are several gene loci known to have an 

association with allergic inflammation and FA. However, little is known about 

how the biological pathways represented by these genes affect the metabolic 

signature and disease phenotypes. Like the mechanism behind gene expression 

quantitative trait (eQTL) loci analysis, metabolite QTL discovers novel genetic 

risk variants that are associated with specific metabolites. Metabolite QTL 

analysis was conducted using the R-package Matrix eQTL. This package 

searches for an association between each SNP and residual metabolite levels by 

modeling the additive effects of genotypes in the least-squares model37. It 
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performs a separate test for each metabolite–SNP pair and corrects for multiple 

comparisons by calculating the false discovery rate (FDR). From the significant 

metabolite QTL pairs, the genes associated with HDoHE metabolites were used 

for pathway analysis conducted with the Reactome Pathway Database. This 

procedure provides a comprehensive understanding of the molecular 

mechanisms that cause complex diseases38.  

 

6. Quantification of metabolites 

 80 subjects were chosen for the quantification of selected metabolites. 

Among the 80 subjects for quantification, 5 subjects with FA were also included 

in the previous metabolomics analysis. This cohort consisted of 50 FA subjects 

and 30 healthy controls. Inclusion criteria were identical to the metabolomics 

analysis. A total of 80 serum samples were used to quantify the concentration of 

2 lipid metabolites. Serum levels of prostaglandin H2 (PGH2) and PAF were 

measured using an enzyme-linked immunosorbent assay (ELISA) kit (Abbexa 

Biologics, Arlington, Texas, USA) according to the manufacturers’ protocols. 

Groups were compared using Welch’s two-sample t-test with parametric 

statistics and Mann-Whitney U test for nonparametric statistics. A p-value 

under 0.05 was considered statistically significant.  
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III. RESULTS 

 

1. Characteristics of study subjects 

 The demographics of the study subjects and disease attributes are 

summarized in Table 1. The mean age of FA subjects were slightly higher than 

control subjects were not statistically significant. The median age of FA 

subjects was 2.74 while for control, it was 2.70. The standard deviation of the 

age of FA subjects and control subjects was 2.30 and 2.28 respectively, showing 

a variation in subject age. The proportion of male subjects were similar between 

the groups. Total serum IgE levels were available for all subjects with a higher 

number in FA, which is a common characteristic of FA patients. In addition to 

the higher mean level, the variance within the group was also larger with a 

standard deviation of 1059.48 kU/L. The mean follow-up period between the 

blood sample collections for FA subjects was 16.5 months, with most children 

between ages 4 and 5. Among the children with FA, 7 subjects had only egg 

allergy, while 4 subjects had 2 food allergens and 8 subjects had more than two 

food allergies. All subjects experience urticarial after food ingestion, and 55% 

of subjects experienced angioedema as a food-related symptom. 35% of 

subjects had a history of anaphylaxis with symptoms ranging from shortness of 

breath, vomiting, diarrhea and low blood pressure. 
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Table 1. Subject characteristics 

 
FA (n=20) Control (n=20) p-value 

Age, years 2.74 ± 2.30 2.70 ± 2.28 0.95 

Male, n (%) 11 (55) 10 (50) 0.75 

Total serum IgE, kU/L 676.49 ± 1059.48 17.72 ± 14.73 0.01 

Follow-up period (months) 16.5 ± 7.4   

FA resolution, n (%)* 10 (55.6)   

Egg allergy resolution, n (%)* 7 (38.9)   

Multiple food allergies, n (%)
+

 12 (63.2)   

AD comorbidity, n (%) 10 (50)   

Food-related symptoms    

Urticaria, n (%) 20 (100)   

Angioedema, n (%) 11 (55)   

Anaphylaxis, n (%) 7 (35)   

FA, food allergy; IgE, immunoglobulin E; AD, atopic dermatitis. 

Data given as number (%) or mean (± standard deviation), as appropriate 

p-value calculated with chi-squared test for categorical values and Welch’s 

t-test for continuous values. 

+Percentage calculated with a total of 18 FA subjects due to limited information 

on FA resolution. 

*Percentage calculated with a total of 19 FA subjects due to limited information 

on multiple allergies. 
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 Children with FA were grouped using 3 different standards; FA 

resolution, egg allergy resolution, and multiple allergies. FA and egg allergy 

resolution were assessed using hospital records up to June 2020. Those with no 

symptoms, local or systemic, after consumption of the culprit food, were 

considered as resolution. Over half the FA subjects experience resolution in at 

least one food, while those with the resolution of egg allergy were less. 18 FA 

subjects had definite information on FA resolution because the other 2 subjects 

had indefinite reactions to food allergens. Also, there was 1 subject with unclear 

information on the number of allergic foods with definite symptoms. We 

removed those subjects for the respective analysis.  
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2. Metabolic profiling  

  A total of 344 metabolites were identified from LC-MS profiling. 

After removing metabolites that had over 10% missing values, 292 

metabolites were included in further analysis. The data distribution pattern 

after normalization is shown in Figure 1. The distribution of the data before 

normalization is skewed to the left, but after normalization, it is close to a 

normal bell curve. 
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Figure 1. Data distribution results of metabolite data after normalization. 

The density plot after probabilistic quotient normalization shows an 

approximate bell curve. The box and whisker plots shows only the first 50 

metabolites while the density plots are based on all data. Plots drawn using 

Metaboanalyst.  
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 PCA results for the metabolite data are shown in Figure 2. The first 

dimension explains over 40% of the variation within the data set while the 

second dimension explains approximately 12% of the variation. Although the 

first and second dimensions explain over half the variation within the data, the 

two groups were not separated. However, because the original data does not 

follow a strict multivariate normal distribution and the whole variation is not 

present in the plots, it is hard to make definite conclusions about the results. 

Also, PCA often considers low variance components in the data as noise. 

However, considering the nature of metabolomics data, the slight difference in 

metabolites can have a great biological impact. Also, the PCA plots prove that 

there are no severe outliers within the data. 
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Figure 2. 2D Principal component analysis (PCA) plots with metabolite 

levels for FA and FA resolution. Unsupervised multivariate analysis of 

LC-MS data with (A) FA (yellow) and healthy controls (blue). (B) 

Unsupervised multivariate analysis with persistent FA (yellow), resolving 

FA(blue), and healthy controls (gray), FA; food allergy, Dim; dimension.  
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 The results in Figure 3 for sPLS-DA and ortho PLS-DA show data 

patterns in supervised models. Compared to the FA samples, a higher variance 

was observed in the controls. The weight of each component in the sPLS-DA 

models was low with 16.5% and 13% for FA and 9.5% and 8.4% for FA 

resolution. The variance explained by the first two components were higher in 

FA. Resolving FA and persistent FA were relatively well separated, with 

boundaries barely overlapping. Ortho PLS-DA showed better separation results. 

An outlier was observed in the control group but it was not removed for further 

analysis.  
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Figure 3. Partial least squares discriminant analysis (PLS-DA) plots with 

metabolite levels for FA and FA resolution. Supervised multivariate analysis 

of LC-MS data was applied. Scores scatter plot of model on FA (green) and 

healthy controls (red) with (A) sPLS-DA and (B) ortho PLS-DA and on 

persistent FA (green) and resolving FA (red) with (C) sPLS-DA and (D) ortho 

PLS-DA. Center scaling was used for the models. Plots drawn using 

Metaboanalyst. FA; food allergy. 
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3. Metabolites in correlation with age and total IgE levels 

   Table 2 shows the metabolites that are significantly correlated (p < 

0.01) with age or total IgE levels. 15 and 9 metabolites had a significant 

correlation with age and total IgE levels. Most metabolites had a negative 

correlation with age and a positive correlation with total IgE level. These 

metabolites were removed from further analysis.  
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Table 2. Pearson’s correlation between metabolite levels and age or total 

IgE levels  

 

Correlation 

Coefficient 

Correlation 

p-value 

Age   

FFA(10:0) -0.40572 0.009393 

FFA(12:0) -0.41384 0.007942 

Glucosylceramide(d18:1/14:0) -0.48004 0.001721 

GM3(d18:1/12:0) -0.42841 0.005816 

GM3(d18:1/14:0) -0.55314 0.000214 

Lactosylceramide(d18:1/16:0) 0.572128 0.000115 

Lactosylceramide(d18:1/24:1) 0.411492 0.00834 

Lactosylceramide(d18:1/24:2) 0.407275 0.009099 

LPS(18:1) -0.41726 0.007391 

LPS(20:3) -0.47532 0.001938 

LPS(20:4) -0.49013 0.001326 

LPS(22:4) -0.56264 0.000157 

LPS(22:6) -0.43521 0.005006 

Sphingosine-1P(d16:1) -0.45419 0.003241 

TXB2 -0.53315 0.000397 

Total IgE   

AC(19:0) -0.41678 0.007466 

AC(22:5) 0.439473 0.00455 

LPC(16:1) 0.63386 0.0000113 

LPC(22:5) 0.641033 0.0000083 

LPE(16:1) 0.583873 0.0000765 

LPE(20:5) 0.44593 0.003928 

LPE(22:5) 0.750858 0.00000002 

PAF(20:5) 0.661117 0.0000034 

PGD3 0.430175 0.005596 

FFA; free fatty acid, GM3; monosialodihexosylganglioside, LPS; 

lysophosphatidylserine, TXB2; thromboxane B2, AC; acylcarnitine, LPC; 

lysophosphatidylcholine, LPE; lysophosphatidylethanolamine, PAF; platelet 

activating factor, PGD3; prostaglandin D3, IgE; Immunoglobulin E. 
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4. Metabolites associated with FA and FA resolution  

  Pairwise comparison of children with FA and healthy control subjects 

revealed 15 metabolites significantly different (p-value < 0.05) between the 

groups. Figure 4 shows 12 of these metabolites with box plots to show the 

metabolite level differences. All sphingolipid metabolites were higher in FA. 

Five acylcarnitine metabolites with high carbon numbers and low double 

bonds were significantly associated with FA. For all five acylcarnitines, a 

common trend was observed, with a lower level in FA compared to control. 

Prostaglandin H2, a precursor for many other prostanoids, was higher in the 

control group. 
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Figure 4. Metabolites significantly associated with FA. Metabolite levels 

were measured in children with FA (n=20) and healthy controls (n=20) by 

LC-MS. Sphingolipid metabolites, lysophosphatidyl metabolites and 

acylcarnitine metabolites are grouped together. The level of metabolites for the 

FA group and control group are significantly different (p < 0.05). LPG; 

lysophosphatidylglycerol, LPA; lysophosphatidic acid, AC; acylcarnitine, 

PGH2; prostaglandin H2. 
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 Figure 5 shows metabolites significantly associated with FA resolution. 

Four different omega-3 metabolites, hydroxydocosahexaenoic acids (HDoHE), 

were highly associated with FA resolution, with a lower metabolite level 

observed in persistent FA for all cases. The level of omega-3 metabolites in the 

resolving FA group was an average 1.66 times higher compared to the persistent 

FA group. On the other hand, several lysophosphatidylcholines were higher in 

the resolving FA group with a consistent trend. Also, the level of PAF(16:1) 

was higher in persistent FA with a fold change of 1.2.  
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Figure 5. Metabolites significantly associated with FA resolution. Metabolite 

levels were measured in children with resolving FA (n=10) and persistent FA 

(n=8) by LC-MS. Omega-3 metabolites and lysophosphatidylcholine 

metabolites are grouped together. The level of metabolites for the resolving FA 

group and persistent FA group are significantly different (p < 0.05). HDoHE; 

hydroxydocosahexanoic acid, LPC; lysophosphatidylcholine, LPE; 

lysophosphatidylethanolamine, PAF; platelet-activating factor 
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To further examine the omega-3 metabolites, we compared the initial 

serum samples to the follow-up samples in order to observe changes through 

FA resolution. Figure 6 shows the four hydroxydocosahexanoic acids (HDoHE) 

metabolites significantly associated with FA resolution in the initial samples. In 

persistent FA, the metabolite level generally increases at follow up. However, in 

resolving FA, the levels show a decreasing trend. This trend is observed in all 

four HDoHE metabolites. The average fold change from initial to follow up in 

persistent FA was 1.38, 1.42, 1.77, 1.34 as compared to -1.47, -1.49, -1.44, 

-1.40 in resolving FA for 10-HDoHE, 13-HDoHE, 17-HDoHE, 7-HDoHE, 

respectively.  
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Figure 6. Omega-3 metabolite level changes between initial time point and 

follow-up. Metabolite levels were measured in 10 subjects with persistent FA 

and 7 subjects with resolving FA. In resolving FA, the follow up time point is 

after confirmed resolution of FA symptoms. HDoHE; hydroxydocosahexanoic 

acid.  
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 Figure 7 shows heat maps drawn with the 15 and 11 metabolites 

significantly associated with FA and FA resolution, respectively. Hierarchical 

clustering applied to the metabolites shows that metabolites within the same 

metabolite class exhibit a similar level within samples. For example, in Figure 

7A, glucosylceramide metabolites and acylcarnitines are clustered in the same 

group. Also, in Figure 7B, all the HDoHE metabolites, 17-HDoHE, 10-HDoHE, 

13-HDoHE, 7-HDoHE, are clustered in the same group and show similar levels. 

Figure 7A also shows a pattern difference between resolving FA and persistent 

FA, with HDoHE metabolites high in resolving FA and several 

lysophosphatidic metabolites high in persistent FA. However, the distinction 

was not as clear with the FA phenotype.  
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Figure 7. Heatmap with hierarchical clustering on metabolites significantly 

associated with FA and FA resolution. Heatmap with metabolites associated 

with (A) FA and (B) FA resolution. Both rows and columns are clustered using 

Euclidean distance measure and Ward clustering algorithm. Plots drawn using 

Metaboanalyst. diHETE; dihydroxyicosatetraenoic acid, PGH2; prostaglandin 

H2, AC; acylcarnitine, LPA; lysophosphatidic acid, LPC; 

lysophosphatidylcholine, LPG; lysophosphatidylglycerol, LPE; 

lysophosphatidylethanolamine, PAF; platelet activating factor, LPS; 

lysophosphatidylserine, HDoHE; hydroxydocosahexaenoic acid. 
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5. Association to FA related SNPs 

  From the 91 SNPs related to FA in previously published GWAS 

studies, 10 SNPs were associated (p < 0.05) with FA in our study subjects 

(Table 3). Nine of the SNPs were in linkage disequilibrium and located on the 

Platelet Activating Factor Acetylhydrolase 1b Regulatory Subunit 1 

(PAFAH1B1) gene. It is located on chromosome 17 and encodes an 

acetylhydrolase which catalyzes platelet-activating factors. Two SNPs were 

associated with serum PAF levels. SNPs were located on the Indoleamine 

2,3-Dioxygenase 2 (IDO2) gene and NLR Family Pyrin Domain Containing 3 

(NLRP3) gene.  
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Table 3. SNPs significantly associated with FA phenotype or PAF levels  

SNP Position* Alleles MAF p-value Gene 

FA 

rs4790356 17:2682935 A>G 0.163339 0.02337 PAFAH1B1 

rs4790355 17:2680682 G>A 0.202077 0.02337 PAFAH1B1 

rs4790353 17:2675354 G>A 0.216254 0.02337 PAFAH1B1 

rs2317297 17:2673797 C>A 0.174121 0.02337 PAFAH1B1 

rs3213697 17:2670564 C>G 0.107628 0.02337 PAFAH1B1 

rs3213696 17:2670358 C>G 0.107628 0.02337 PAFAH1B1 

rs12450722 17:2658859 G>A 0.117612 0.02337 PAFAH1B1 

rs3785957 17:2657875 T>C 0.107827 0.02337 PAFAH1B1 

rs8077351 17:2642179 A>G 0.072085 0.02337 PAFAH1B1 

rs17389644 4:122576542 G>A 0.119609 0.04808  

PAF 

rs2955903 8:40015785 G>A 0.370607 0.03978 IDO2 

rs4925654 1:247432755 A>G 0.177915 0.04021 NLRP3 

*Position is based on GRCh38, MAF (minor allele frequency) based on 

1000Genomes. 
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6. Metabolite QTL analysis  

  Metabolite QTL was done on 7-HDoHE, 10-HDoHE, 13-HDoHE, 

17-HDoHE to identify 4, 29, 34, 25 metabolite-SNP pairs, respectively. Table 

4 shows the Reactome pathway analysis results from the genes at the SNP 

locations. Several pathways significantly associated were affiliated to cell-cell 

communication and citric acid cycle metabolism. Also, 6 pathways were 

related to the cell cycle.  
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Table 4. Reactome pathway analysis results for HDoHE metabolite-SNP 

pairs in metabolite QTL results  

Pathway Parent pathway p-value 

Regulation of cytoskeletal remodeling and 

cell spreading by IPP complex 

components 

Cell-Cell 

communication 
0.004448 

Activation of RAC1 
Developmental 

Biology 
0.007219 

Cell-extracellular matrix interactions 
Cell-Cell 

communication 
0.009984 

Citric acid cycle (TCA cycle) Metabolism 0.012191 

Pyruvate metabolism and citric acid 

(TCA) cycle 
Metabolism 0.030245 

Signaling by ERBB4 Signal Transduction 0.031873 

GABA receptor activation Neuronal System 0.032957 

Loss of Nlp from mitotic centrosomes Cell Cycle 0.037821 

Loss of proteins required for interphase 

microtubule organization  
Cell Cycle 0.037821 

AURKA Activation by TPX2 Cell Cycle 0.039438 

Recruitment of mitotic centrosome 

proteins and complexes 
Cell Cycle 0.044275 

Centrosome maturation Cell Cycle 0.044275 

Regulation of PLK1 Activity at G2/M 

Transition 
Cell Cycle 0.047489 
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7. Quantification of metabolites 

 The ELISA results for PAF and PGH2 is presented in Figure 8. Two 

outliers were removed because their values were over 2 times the interquartile 

range above the third quartile for both metabolites. Of the FA subjects, 25 

patients had persistent FA and 23 patients had resolving FA. Although the mean 

values of PAF levels were different between resolving FA and persistent FA, 

the groups did not have a significant difference. When only egg allergy 

resolution was considered, persistent egg allergy had a significantly higher level 

of PAF, with a mean value of 141.04 pg/mL compared to 121.23 pg/mL in 

resolving egg allergy. There were no differences in the level of PGH2 observed 

between FA and control. With resolving FA and persistent FA, the average 

level of PGH2 was lower in persistent FA even when only egg allergy was 

considered. However, the results were not significant and the variance within 

the data was big. 
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Figure 8. Level of PAF and PGH2 in FA and resolving FA patients. 

Metabolite levels were measured with ELISA using serum samples from 50 FA 

subjects and 30 healthy controls. Scatter plots are presented for (A) PAF levels 

in FA (B) PGH2 levels in FA (C) PAF levels in FA resolution (D) PGH2 levels 

in FA resolution (E) PAF levels in egg allergy resolution (F) PGH2 levels in 

egg allergy resolution. PAF; platelet activating factor, PGH2; prostaglandin H2. 
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IV. DISCUSSION 

 In this study, serum metabolic profiling was performed on children 

with FA. A unique metabolic signature was associated with FA and FA 

resolution. Through an integrated approach with both metabolomics and 

genomics, we identified several pathways that are associated with FA resolution. 

This study aimed to identify biomarkers for the development and prognosis of 

FA. Through the process, understanding the etiology and pathological 

mechanisms of FA can be made possible.  

 Several sphingolipid metabolites and acylcarnitine metabolites were 

significantly associated with FA. Sphingolipids constitute a class of lipids 

synthesized in the endoplasmic reticulum. They play significant roles in cell 

membranes and provide many bioactive metabolites that regulate cell signal 

transduction39. In our study, 4 types of sphingolipid metabolites, mainly 

glucosylceramides, were significantly increased in FA. In a previous study, a 

decrease in sphingomyelin and ceramide levels were observed in patients with 

FA26. As seen in Figure 9, both sphingomyelin and glucosylceramide are 

synthesized from ceramides. Hence, the increase in glucosylceramide levels 

might have been affected by the decrease in sphingomyelin and ceramides. 

Although the level of sphingomyelins and ceramides were not measured in our 

study, ceramide 1-P levels were measured and no difference was shown 

between FA and control subjects.  
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Figure 9. Metabolism of sphingolipids. Ceramide is the key metabolite that 

links the synthesis of sphingomyelin, glucosylceramide, sphingosine, and 

ceramide 1-P. Figure adapted from external source40. 
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 Also, changes in plasma sphingolipids have been reported in 

association with severe allergic respiratory responses24. In asthma, disruption in 

sphingolipid metabolism has been reported several times regarding the 

genotypic variation in the gene ORMDL Sphingolipid Biosynthesis Regulator 3 

(ORMDL3)41,42. Asthma is also an allergic disease that commonly coexists with 

FA in many children. In addition to the previous study, children with asthma 

had lower ceramide and sphingomyelin levels. Glucosylceramides might also be 

related to this process and have a role in allergic inflammation. The role of 

glucosylceramides is still ambiguous, but alterations in its level have been 

associated with cardiovascular disease, diabetes, and chronic inflammation43.  

 In contrast to sphingolipid metabolites, acylcarnitine metabolites with 

long carbon chains and a low level of double bonds were significantly 

associated with FA. Long-chain acylcarnitines are by-products of incomplete 

beta-oxidation during fatty acid metabolism. It has been reported acylcarnitine 

activates pro-inflammatory signaling pathways, possibly through a mechanism 

involving pattern recognition receptors44. Plasma acylcarnitine concentrations 

were previously suggested as a biomarker for metabolism disorders and 

cardiovascular diseases45, but there are no previous studies for allergic diseases.   

 Prostaglandin H2 was also significantly lower in FA. Prostaglandin H2 

is synthesized from arachidonic acids and is a precursor for many other 

biologically significant molecules. It is a pro-inflammatory molecule and is 

related to platelet aggregation. However, the difference was not distinctive in 
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the quantification results from ELISA, possibly due to the large variation in 

metabolite levels.  

 Regarding FA resolution, the level of HDoHE metabolites were clearly 

higher in resolving FA compared to persistent FA. In addition to the difference 

in HDoHE levels between the FA and control group at the time of diagnosis, 

subjects with resolving FA showed a clear decrease with time-spanning through 

the resolution of FA. HDoHEs are essential lipid mediators involved in 

inflammation resolution. HDoHE is derived from docosahexaenoic acid (DHA), 

an omega-3 fatty acid. Exogenous DHA is converted by human platelets to 17- 

HDoHE and by human neutrophils mainly to 7- HDoHE46. 17-HDoHE 

produces resolvins and protectins, which act as active mediators of 

inflammation resolution.  

 Studies on omega-3 derivatives in allergic diseases have produced 

meaningful results. In mothers with low preexisting levels of DHA, reduced risk 

of FA, atopic dermatitis, and asthma was consistently observed47. Also in 

patients with severe asthma, decreased synthesis of protectin D1 in eosinophils 

was observed48. These omega-3 fatty acids act to oppose the actions of omega-6 

fatty acids, particularly concerning eicosanoid synthesis, protecting against 

allergic manifestations49. Although HDoHE has a clear role as an intermediate 

product of DHA metabolism, whether it has a direct effect on anti-inflammatory 

mechanisms are still unknown. However, the high level of HDoHE may act as a 

marker for resolving FA, and a decreasing trend over time can solidify the 
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prediction.  

 Pathway analysis results of genes from HDoHE metabolite-SNP pairs 

highlights pathways related to cell-cell communication and metabolism. 

Especially, two pathways significantly associated with the genes are related to 

the citric acid cycle. The citric acid cycle has a central role in lipogenesis 

because acetyl-CoA from the cycle is synthesized to fatty acid and triglyceride. 

There have been previous reports on omega-3 fatty acids causing alterations in 

the citric acid cycle50,51. SNPs located within genes related to the citric acid 

cycle might cause dysregulation of omega-3 fatty acid metabolism.  

 Several lysophosphatydyl metabolites were associated with FA and FA 

resolution. Lysophophosphatidyl metabolites have a central role in cell 

membranes and many are presented as a phospholipid in the membrane acting 

in cell-mediated cell signaling and the activation of enzymes. From metabolites 

significantly associated with FA resolution, lysophosphatidylcholine has been 

reported to have a critical role in allergic airway disease manifestation, possibly 

via natural killer T cells52. It has been shown to aggravate contact 

hypersensitivity by promoting neutrophil infiltration and IL-17 expression53. 

Along with lysophosphatic acid, it has been considered several times for 

potential asthma biomarkers54,55. Since allergic asthma and FA have similar 

pathological mechanisms, lysophophatidic acid might act as a biomarker for FA 

and FA resolution.  

 The level of platelet-activating factor (16:1) also showed a significant 
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difference between subjects with resolving FA and persistent FA. The 

association between genotypic variation in the Platelet Activating Factor 

Acetylhydrolase 1b Regulatory Subunit 1 (PAFAH1B1) gene and FA phenotype 

might point towards a derangement of PAF activity. The level of PAF was also 

associated with rs2955903 and rs4925654, which encodes to IDO2 and NLRP3. 

PAFs are produced by various types of cells, including mast cells, neutrophils, 

eosinophils, and platelets, playing an important role in inflammatory diseases 

by amplifying acute inflammatory cascades56,57. Several published reports have 

linked the association between PAF and FA, especially food-induced severe 

anaphylaxis58. Circulating PAF levels correlated with the severity of 

anaphylaxis in humans59 and possibly affect the biological system by increasing 

vascular permeability decreasing cardiac output, smooth muscle contraction of 

central airways, and circulatory collapse. A higher level of serum PAF in 

persistent FA might be related to this effect. However, ELISA results of PAF 

show that serum PAF levels are more associated with the resolution of egg 

allergy rather than a full resolution to all food allergens.  

 A key strength of our study is the recruitment of carefully phenotyped 

patients with children with confirmed egg allergy. Since allergy to different 

food allergens can induce different pathological mechanisms, unifying the 

allergen to egg white can control variability among subjects. Another strength is 

the availability of information on metabolite levels before and after FA 

resolution. This provides insight into the act of metabolites on resolution and 
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serves as an additional potential biomarker. Lastly, our study focused on lipid 

metabolites, which act as profound biological signals. Many metabolites 

associated with inflammatory pathways are lipids and we assessed these 

metabolites for a clear understanding of the crosswalk between inflammation 

signals.  

 There are also limitations to our study. First, the sample size was 

limited. We collected serum samples from 20 FA subjects and 20 control 

subjects, which may limit the interpretation of the results. Second, serum 

metabolite levels are affected by diet. Especially in children with FA, their 

restricted diet can cause an impact on metabolite levels and lipid metabolism 

due to microbiome variations. Further studies with a larger patient group and a 

controlled diet may provide more accurate insight into the metabolomic profile 

of FA. 
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V. CONCLUSION 

 

 In conclusion, our study discovered that children with FA, especially 

those with resolving FA exhibit a unique metabolomic signature. High levels of 

omega-3 metabolites might indicate resolving FA, especially when the level 

decrease with time. The combined analysis of genotypic and metabolomic data 

in FA patients shows distinct disease mechanisms that function in resolving FA, 

and this sheds light on the trajectory of FA pathology. Our observations suggest 

that metabolic profiling may be a powerful tool in providing insights into 

disease mechanisms and in identifying biomarkers for FA and FA resolution in 

children.  
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ABSTRACT(IN KOREAN) 

대사체 연구를 통한 식품알레르기 바이오마커 발굴 

 

< 지도교수 김경원 > 

 

연세대학교 대학원 의과학과 

 

장 혜 린 

 

 식품알레르기는 점점 더 많은 어린이들에게 영향을 

미치게 되면서 중요한 건강 문제로 대두되면서, 소아 

식품알레르기는 때때로 증상들이 자연적으로 호전되기도 한다. 

그러나 식품알레르기 호전의 원리는 아직 심도 있게 연구되지 

않았다. 본 연구는 대사체학을 통해 식품알레르기와 그의 

호전을 예측할 수 있는 바이오마커를 개발하는 것을 목적으로 

하였다. 

 식품알레르기 환자 20명과 대조군 20명의 대사체 정보를 

액체 크로마토그래피 질량분석법을 사용하여 연구하였다. 
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식품알레르기 환자의 혈청 검체를 사용하였으며, 식품알레르기 

진단 시점과 호전 시점에 검체를 채취하여 대사물 수치의 

변화를 파악하였다. 또한, 유전자형 분석을 실시하여 대사과정과 

연관된 경로를 분석하였다. 

 식품알레르기 환자들은 대조군과는 확연히 다른 

대사체를 보였다. Sphingolipid의 증가와 acylcarnitine의 감소가 

식품알레르기와 연관되어 있었다. 또한, 식품알레르기가 

호전되는 환자들에게서는 오메가-3 대사물이 많이 관찰되었다. 

오메가-3 대사물의 수준은 식품알레르기가 호전되면서 같이 

감소했는데, 같은 기간 동안 식품알레르기가 호전되지 않은 

환자에서는 증가하는 양상을 보였다. 또한, 혈소판 활성화 

인자와 lysophosphatidylcholine은 식품알레르기 호전과 밀접한 

관련이 있었다.  

 여러 지질 대사물이 소아 식품알레르기의 발병과 호전에 

밀접한 관련이 있으며 이것은 식품알레르기를 예측할 수 있는 

바이오마커로서 활용될 수 있음을 시사한다. 

---------------------------------------------------------------------------------------- 

핵심되는 말: 식품알레르기, 대사체학, 오메가-3, 바이오마커 


