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Abstract
Radiomics analysis of single-phase contrast-enhanced CT for

classification of hepatic focal lesions in colorectal cancer patients

Heejin Bae

Department of Medicine

The Graduate School, Yonsei University

(Directed by Professor Joon Seok Lim)

Objective: To evaluate the diagnostic performance of a radiomics model
for classifying hepatic cysts, hemangiomas, and metastases in patients with
colorectal cancer (CRC) from portal-phase abdominopelvic computed tomography
(CT) images.

Methods: This retrospective study included 502 patients with CRC who
underwent both contrast-enhanced abdominopelvic CT and contrast-enhanced liver
magnetic resonance imaging between January 2005 and December 2010. Patients
were divided into training (n = 386) and validation (n = 116) cohorts. Portal-phase
contrast-enhanced CT images of 1290 liver lesions (size range, 3 mm-5 cm) were
used to develop a radiomics model for differentiating three classes of liver lesions
(cyst, hemangioma, and metastasis). Among multiple handcrafted features, the
feature selection was performed using the ReliefF method, and random forest
classifiers were used to train the selected features. The diagnostic performance of
the developed model was evaluated and compared with that of four radiologists who
classified liver lesions from the validation cohort (128 cysts, 30 hemangiomas, and
149 metastases). Additionally, a subgroup analysis was conducted based on lesion

size (<10 mm or >10 mm).



Results: The radiomics model demonstrated significantly lower overall
and hemangioma- and metastasis-specific polytomous discrimination index (PDI)
(overall PDI, 0.8037; hemangioma-specific PDI, 0.6653; metastasis-specific PDI,
0.8027) than the radiologists’ results, except that of the least-experienced
radiologist (overall PDI, 0.9622-0.9680; hemangioma-specific PDI, 0.9452-0.9630;
metastasis-specific PDI, 0.9511-0.9869). For differentiating subcentimeter lesions,
the PDI of the radiomics model was different according to the lesion size (overall
PDI of < 10 mm, 0.6486; overall PDI of > 10 mm, 0.8264; p-value, 0.0692) while
that of the radiologists was relatively maintained. For classifying benign lesions
from metastasis, the radiomics model showed excellent diagnostic performance,
with an accuracy of 84.36% (78.59-88.8) and an area under the receiver operating
characteristic curve of 0.9426 (0.9149-0.9703). However, the three most
experienced radiologists outperformed the radiomics model with an accuracy of
93.81-96.09% (p-value, 0.002-0.003).

Conclusion: The radiomics model achieved diagnostic accuracy
comparable to that of radiologists when differentiating cysts, hemangiomas, and
metastases from portal-phase CT images of patients with CRC and demonstrated
potential for clinical use. However, this model was limited particularly to
classifying hemangiomas and subcentimeter liver lesions, and therefore, unattended

application of the system in daily clinical practice is not yet feasible.

Key Words: radiomics, computed tomography, colorectal cancer, liver metastasis,

hepatic cyst, hemangioma, classification, diagnostic accuracy
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Radiomics analysis of single-phase contrast-enhanced CT for
classification of hepatic focal lesions in colorectal cancer patients

Heejin Bae

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Joon Seok Lim)

. Introduction

Liver is the most common organ to metastasize in patients with colorectal
cancer (CRC). Approximately 15% of these patients present with synchronous liver
metastasis during diagnostic workup, and more than 50% will eventually develop
liver metastasis, with a 5-year survival rate of less than 5% in cases of untreated
liver metastasis'3. With colorectal liver metastasis (CRLM) as an important
prognostic factor, surgical resection remains a possible curative treatment with a
reported 5-year overall survival rate as high as 58%, which is a better long-term
survival benefit compared with palliative chemotherapy*®. Therefore, accurate
staging and prompt detection and characterization of liver lesions through imaging
evaluations are essential for the selection of proper disease management. Primarily,
differentiation of commonly encountered benign lesions such as hepatic cysts and
hemangiomas is significant for the diagnosis of CRLM.

Radiomics is a rapidly emerging technique that extracts various qualitative
data from medical images and uses them to support the detection and diagnosis of
disease®’. The development of a computer-aided classification system of liver
lesions, particularly in cancer patients, is necessary to improve diagnostic accuracy

and efficiency in daily clinical practice. The exclusion of benign liver lesions such
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as cysts or hemangiomas would especially increase the work speed and efficiency of
radiologists in reading initial and follow-up evaluations of cancer patients,
considering that the use of computed tomography (CT) and the number of images
acquired from a single examination are constantly increasing®°. To date, several
radiomics analyses have been conducted to classify liver lesions as benign or
malignant based on various imaging modalities, and have achieved diagnostic
accuracy comparable to radiologists'®*®. However, due to the retrospective nature of
these studies, researchers tended to adopt convenience sampling, the data collection
method of sampling control and diseased subjects in a calculated ratio that can
cause spectrum bias'4. To achieve generalizability of the radiomics model, the study
cohort should reflect the target population in terms of disease characteristics such as
incidence or prevalence!*!. To overcome this sampling bias, we intended to register
all patients and their liver lesions during a specific period.

Moreover, before the radiomics technique can be used in the clinical
setting, its diagnostic performance must be verified in a setting similar to daily
practice, wherein single-phase contrast-enhanced CT images are mainly performed
for follow-up evaluations of cancer patients and radiologists review not only the
axial but also coronal reformatted images. In practice, various imaging modalities,
including ultrasonography, CT, gadolinium-enhanced magnetic resonance imaging
(MRI), and fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography
fused with CT (PET/CT), are used for the initial diagnostic workup of CRC and
detection of CRLM. Previous studies have shown that regardless of whether a
patient received previous therapy, MRI is superior to CT and FDG PET/CT in
detecting and characterizing hepatic lesions'®2, Particularly, the characterization of
small hepatic lesions less than 10 mm in size can be challenging for CT due to
volume averaging. Thus, further evaluation, including MRI, is routinely required to
increase diagnostic confidence in identifying small indeterminate lesions with CT
and to detect additional CRLM?>2, Despite the higher diagnostic accuracy of MR,

the accurate characterization and diagnosis of liver lesions on CT are significant
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because CT is most commonly performed for both initial and post-treatment
evaluation in patients with CRC due to its wide availability and cost-effectiveness.
To the best of our knowledge, there is a lack of studies that have developed a
radiomics model and compared its diagnostic performance with that of radiologists
under circumstances similar to that of the clinical setting.

Therefore, in this study, we aimed to evaluate the performance of the
radiomics model for the classification of CRLM, hepatic cysts, and hemangiomas
using portal-phase abdominopelvic CT images, and compare its diagnostic accuracy

with that of radiologists.

Il. Materials and Methods

1. Study population

This retrospective study was approved by the institutional review board at
our institution, and the requirement for informed consent was waived. A flow
diagram of patient selection is shown in Figure 1.

A total of 676 CRC patients, who underwent both contrast-enhanced
abdominopelvic CT and contrast-enhanced liver MRI between January 2005 and
December 2010 were retrospectively registered in this study. Of these, 21 patients
were excluded due to poor image quality (i.e., abdominopelvic CT without
portal-phase or slice thickness larger than 5 mm). The following inclusion criteria
were used for hepatic lesions in the study: (1) simple cyst, hemangioma, or
metastasis larger than 3 mm and smaller than 5 cm; (2) in the case of multiple
lesions, a maximum of five lesions per each lesion category (as many as 15 lesions
per patient). Of the remaining 655 patients, 153 patients did not meet the inclusion
criteria and were excluded for the following reasons: (1) had only a benign hepatic
lesion other than a cyst or hemangioma (n = 52); (2) had a focal lesion, which was
detected only on either of the imaging modalities, CT or MRI (n = 46); (3) had only
a hepatic lesion smaller than 3 mm or larger than 5 cm (n = 44); (4) had a recurrent

lesion after radiofrequency ablation (n = 6); (5) had other type of malignant tumor
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(n = 2); (6) had no available reference standard for the hepatic lesion (n = 2); and
(7) had images that revealed the inaccurate extent of the hepatic lesion due to
venous thrombosis (n = 1). Subsequently, 502 CRC patients with 676 cysts, 130
hemangiomas, and 484 metastases were included in this study. In the final study
population, training and validation cohorts were divided chronologically to assign
100 hemangiomas to a training cohort. Patients who underwent liver MRI after
August 23, 2006 were included in the training cohort (n = 386; 214 men, 172
women; mean age, 60.8 + 11.6 years) and those who received liver MRI before
August 23, 2006 were allocated to the validation cohort (n = 116; 71 men, 45
women; mean age, 59.4 £ 10.3 years). The training set consisted of 548 cysts, 100
hemangiomas, and 335 metastases, and the validation set included 128 cysts, 30

hemangiomas, and 149 metastases.

Colorectal cancer patients who underwent both contrast-enhanced
abdominopelvic CT and contrast-enhanced liver MRI between
January 2005 and December 2010 (n = 676)

— Excluded patients:
Poor image quality (n=21)

Included patients (n = 655):
(1) Simple cyst, hemangioma or metastasis size >3mm or <5 cm
(2) Maximum of five lesions per each lesion category
(as many as 15 lesions per patient).

(3) Hepatic lesion size <3mm or = 5cm (n = 44)

(4) Recurrent lesion after radiofrequency ablation (n = 6)

(5) Other type of malignant tumor (n =2)

(6) Noavailable reference standard of the hepatic lesion (n =2)

(7) Inaccurate extent of hepatic lesion due to venous thrombosis (n=1)

Excluded patients (n = 153):
(1) Benign hepatic lesion other than a cyst or hemangioma (n=52)
— (2) Focal lesion detected only on either CT or MRI (n = 46)

Included patients (n =502)
- 676 cysts

- 130 hemangiomas

- 484 metastases

/ N\

Training cohort (n = 386) Validation cohort (n = 116)
- 548 cysts - 128 cysts

- 100 hemangiomas - 30 hemangiomas

- 335 metastases - 149 metastases

Figure 1. Flow diagram of patient selection.

Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging.
— 6 —



2. Image acquisition

At our institution, single-phase contrast-enhanced CT with portal phase
images was routinely performed to detect metastasis in both initial and follow-up
evaluations of cancer patients. Following CT scans, liver MRI was usually
performed to accurately evaluate the extent of metastases and to characterize the
focal lesion when an indeterminate lesion was found on CT.

Various types of multidetector CT (MDCT) scanners were used in this
study: a 4-channel MDCT scanner (Lightspeed Plus, GE Healthcare, Milwaukee,
WI, USA), 16-channel MDCT scanners (Sensation 16, Siemens Healthcare,
Erlangen, Germany; LightSpeed VCT, GE Healthcare, Milwaukee, W1, USA), and
64-channel MDCT scanners (Sensation 64, Somatom Definition Flash, Siemens
Healthcare, Erlangen, Germany). The following CT parameters were used: tube
voltage, 120-140 kVp; tube current, 100-280 mAs; beam pitch, 0.6-1.07; and
reconstruction thickness, 3-5 mm. Portal-phase abdominopelvic CT images were
acquired from the lower thorax to the lower pelvis approximately 70 seconds after
the intravenous administration of 2.0 mL/kg of nonionic contrast material
(lopromide, Ultravist 300, Schering, Berlin, Germany) via an antecubital vein (flow
velocity, 3-4 mL/s; fixed duration, 30 seconds) followed by a 20-mL saline bolus
injection. The acquired images were reformatted in the coronal plane, and both axial
and coronal image sets were transferred to our Picture Archiving and
Communication System (PACS) for interpretation.

All liver MRI scans included in this study were obtained using a 1.5-T
(Achieva 1.5-T, Philips Healthcare, Best, the Netherlands) or 3.0-T (Magnetom Trio
a Tim, Siemens Healthcare, Forchheim, Germany; Achieva, Philips Healthcare, Best,
the Netherlands) magnetic resonance scanners. Magnetic resonance sequences of
both MRI with extracellular contrast agent (ECA-MRI) and MRI with hepatobiliary
agent were as follows: dual-echo in-phase and opposed-phase spoiled gradient-echo
T1-weighted images; multi-shot and single-shot turbo spin-echo T2-weighted

images; and dynamic fat-suppressed spoiled gradient-echo T1-weighted images
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conducted before and after the contrast agent injection, including arterial, portal
venous, 3-minute delayed, and 5-minute delayed phases. Additionally, for dynamic
scans with gadoxetic acid disodium (Primovist, Bayer Schering Pharma, Berlin,
Germany), hepatobiliary phase images were obtained 15 or 20 minutes after 0.1
mL/kg (0.025 mmol/kg) contrast agent administration. For ECA-MRI, different
types of gadolinium-based contrast agents including gadopentetate dimeglumine
(Magnevist, Bayer Schering Pharma, Berlin, Germany) or gadoterate meglumine
(Dotarem, Guerbet, Roissy, France) were injected intravenously with a volume of

0.1 mmol/kg.

3. Hepatic lesion confirmation

Hepatic lesions were pathologically confirmed by either surgery or
percutaneous biopsy. If pathological results were not obtainable, typical MRI
imaging findings of a cyst, hemangioma, or metastasis were used to characterize the
focal hepatic lesion. For patients with focal hepatic lesions without pathological
results and confirmatory imaging studies, the characterization of the lesion was
determined through follow-up imaging for at least 1 year. An increase or decrease in
lesion size during chemotherapy was considered as metastasis. On the other hand,

lesions showing stability for at least 1 year were classified as benign.

4. Image analysis

Two board-certified abdominal radiologists and two radiology residents
(second and fourth years of residency) who were unaware of outcomes of hepatic
lesions independently reviewed the axial and coronal portal-phase images of each
lesion in the validation cohort. Before the image review, each lesion was
individually annotated by another radiologist on axial portal-phase images to
indicate the location of the lesion. Radiologists evaluated each lesion and rated the
probability of it being a cyst, hemangioma, or metastasis using a 6-point numerical

rating scale with scores of 0, 2, 4, 6, 8, and 10 and the sum of the scale as 10.
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(548 cysts, 100 hemangiomas, 335 metastases)

4

I (1) Image segmentation and feature extraction ]

[ Training cohort (n = 386) ]

[ (2) Feature selection: ReliefF method ]

(3) Classifier training:
random forests with data augmentation

=
= - =
mman -,

(4) Model validation:
Validation cohort (n = 116)

(128 cysts, 30 hemangiomas, 119 metastases)

Figure 2. A flowchart of the radiomics model.

5. Radiomics feature analysis

A. Image segmentation

A flowchart of the radiomics analysis is summarized in Figure 2. From our
PACS, axial portal-phase CT images were extracted in a Digital Imaging and
Communications in Medicine (DICOM) format. One abdominal radiologist
semiautomatically drew a region of interest (ROI) bounding the largest

cross-sectional area of the hepatic lesion, using the medical image processing,

_9_



analysis, and visualization (MIPAV) software developed by the Center for
Information Technology at the National Institutes of Health?s. Another
board-certified abdominal radiologist independently segmented the lesions of
randomly selected 50 patients with 130 lesions to evaluate interobserver
reproducibility. Among the extracted radiomics features, features with excellent
interobserver reproducibility (i.e., intraclass correlation coefficient > 0.75)?° were

adopted for analysis.

B. Feature extraction

In feature extraction, the handcrafted features?®2’ representing the imaging
characteristics of lesions, such as texture and shape, were computed. For each lesion,
119 dimensional texture features and 10 dimensional shape features were extracted
from the segmented region. In texture features, the following features were
included: 7 features of histogram characteristics, 6 features of the percentage of
pixels below the thresholds, 6 features of the percentage of pixels above the
thresholds, 5 features of histogram, 14 features of a gray-level co-occurrence matrix
(GLCM), 22 features of a gray-level run-length matrix (GLRLM), and 59 features
of local binary patterns (LBP). In shape features, size-related and roundness-related
features such as area/perimeter ratio, eccentricity, or major axis length were

included. A complete list of extracted features is summarized in Table 1.

Table 1. A complete list of hand-crafted features extracted from lesions

Categories (No. of features):

Features (feature number)

Texture features (119)

Histogram features (7):
Histogram mean (1), standard deviation (2), minimum (3) and maximum (4)

intensities, skewness (5), kurtosis (6), and entropy (7)
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GLRLM features (22):
Four direction mean and standard deviation of short run emphasis (39,40), long run
emphasis (41,42), gray-level non-uniformity (43,44), run length non-uniformity
(45,46), run percentage (47,48), low gray-level run emphasis (49,50), high
gray-level run emphasis (51,52), short run low gray-level emphasis (53,54), short
run high gray-level emphasis (55,56), long run low gray-level emphasis (57,58),
long run high gray-level emphasis (59,60)

Percentages of pixels below the thresholds (6):
0 HU (8), 30 HU (9), 60 HU (10), 90 HU (11), 120 HU (12), 150 HU (13)

GLCM features (14):
Four direction mean and standard deviation of angular second moment (25,26),
contrast (27,28), sum average (29,30), sum variance (31,32), sum entropy (33,34),
entropy (35,36), and difference entropy (37,38)

Percentages of pixels above the thresholds (6):
150 HU (14), 170 HU (15), 190 HU (16), 210 HU (17), 230 HU (18), 250 HU (19)

LBP features (59):
10 uniform patterns in LBP histogram (61-119)

Percentile intensities at (5):
5% (20), 25% (21), 50% (22), 75% (23), 95% (24)

Shape features (10):

Area/perimeter ratio (120), convex area (121), eccentricity (122), Euler number
(123), solidity (124), major-minor axis length ratio (125), major axis length (126),
minor axis length (127), area (128), perimeter (129)

Abbreviations: GLCM, gray-level co-occurrence matrix; GLRLM, gray-level

run-length matrix; HU, Hounsfield unit; LBP, local binary patterns.
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C. Feature selection and classifier training

Among the extracted 129 features, only 126 features showed excellent
interobserver reproducibility, and therefore, were recruited for the analysis. Three
excluded features were as follows: the GLRLM short-run low gray-level emphasis
standard deviation, shape eccentricity, and shape major-minor axis length ratio.
Using the ReliefF method?, we selected 60 features in the order of high ReliefF
scores (Fig. 3), which reflected the weights related to feature importance. The
ReliefF method computed feature weights through iteratively updating them while
emphasizing interclass margins and penalizing intraclass margins?. The random
forest (RF) classifier?® was trained on the selected features to identify the lesions as
part of a cyst, hemangioma, or metastasis. For the classifier training, the number of
decision trees for RF was experimentally determined and set to 100. To avoid
overfitting and class imbalance, data augmentation was performed to increase the
number of training data to 5000 for each class using random scaling and random

angle rotation on the training images (Fig. 4).

Radiomics features

100 200 300 400 500 600 700 800 900

Hepatic focal lesions in training cohort

Figure 3. Heatmap of hepatic focal lesions in the training cohort. Each row
represented hepatic focal lesions in the training cohort: cysts, 1-548; hemangiomas,
549-648; and metastases, 649-983. Each column displayed 60 different radiomics
features in descending order by ReliefF scores. This heatmap demonstrated that
uppermost radiomics features having high ReliefF scores could classify three

categories of liver lesions.
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Figure 4. Representative images of augmented data of a cyst (top), hemangioma
(middle), and metastasis (bottom). Using random scaling and random angle rotation,

training data were augmented to avoid overfitting and class imbalance.

D. Performance evaluation

After the classifier training, we examined the accuracy of the trained
model by distinguishing three categories of liver lesions in the validation cohort
(Fig. 5). The model provided numbers that can be interpreted as the probability for
each lesion category. The category with the highest output value was chosen as the

diagnosis made by the radiomics model.

AN TEE IEN ST NN . II.I‘I'-I‘I- :.-. L .I'II”.I

Radiomics features

50 100 150 200 250 300

Hepatic focal lesions in validation cohort

Figure 5. Heatmap of hepatic focal lesions in the validation cohort. Each row
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represented hepatic focal lesions in the validation cohort: cysts, 1-128;
hemangiomas, 129-158; and metastases, 159-307. Each column displayed 60
different radiomics features in descending order by ReliefF scores. Similar to the
heatmap of the training cohort, that of the validation cohort revealed that uppermost
radiomics features with high ReliefF scores could classify three categories of liver

lesions.

6. Statistical analysis

The polytomous discrimination index (PDI1)%° and correct classification
percentage (CCP)3! were calculated to compare diagnostic performances in the
classification of three classes of liver lesions. Both overall PDI and
category-specific PDI were calculated and compared. In addition, 95% confidence
intervals and p-values were computed using an adjusted bootstrap-corrected method
with 1000 resampling.

For the two-class comparison of benign (hepatic cysts and hemangiomas)
and metastatic lesions, the lesion was diagnosed as benign when the sum of the
scale that radiologists assigned to the hepatic cyst and hemangioma exceeded 5 and
when the sum of the number that the radiomics model assigned to the hepatic cyst
and hemangioma was more than 0.5. The sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and the accuracy of diagnosing liver
metastases were analyzed using logistic regression in a generalized estimating
equations model. Delong’s method was used to calculate the area under the receiver
operating characteristic curve (AUC).

Additionally, we conducted a subgroup analysis based on the lesion size
(<10 mm group; >10 mm group). All statistical analyses were performed using the
R software (version 3.6.2; R Foundation for Statistical Computing, Vienna, Austria).
A p-value less than 0.05 was considered statistically significant. For a comparison
between the radiomics model and average values of radiologists, a p-value less than

0.025 was set to be significant after applying Bonferroni correction.
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1. Results

1. Patient characteristics

The patient characteristics of the training and validation cohorts are
summarized in Table 2. Demographic characteristics among patients were not
significantly different between the two cohorts. Mean size of the liver lesions in
validation image sets was 16.0 £ 8.79 mm (cysts, 11.5 = 6.50 mm; hemangiomas,
14.2 + 6.52 mm; metastasis, 20.1 + 8.95 mm). Image sets in the validation cohort
were divided based on the size for subgroup analysis. The <10 mm group had 92
lesions with 76 cysts, 7 hemangiomas, and 9 metastases. The >10 mm group had

215 lesions, including 52 cysts, 23 hemangiomas, and 140 metastases.

Table 2. Patient characteristics in the training and validation cohorts

Parameter Training (n = 386) Validation (n =116) p-value
Mean age (y) 60.8 +11.6 59.4+10.3 0.222
Sex 0.272
Men (%) 214/386 (55.4) 71/116 (61.2)
Women (%) 172/386 (44.6) 45/116 (12.9)
CEA level (ng/mL) 56.7 £ 642.1 209+61.1 0.282
Primary cancer location 0.826
Colon (%) 234/386 (60.6) 69/116 (59.5)
Rectum (%) 152/386 (39.4) 47/116 (40.5)
Primary cancer T stage? 0.574
T1 (%) 18/383 (4.7) 6/113 (5.3)
T2 (%) 34/383 (8.9) 11/113 (9.7)
T3 (%) 266/383 (69.5) 83/113 (73.5)
T4 (%) 65/383 (17.0) 13/113 (11.5)
Primary cancer N stage! 0.173
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NO (%) 167/383 (43.6) 43/113 (38.1)

N1 (%) 134/383 (35.0) 36/113 (31.9)

N2 (%) 82/383 (21.4) 34/113 (30.1)

Abbreviations: CEA, carcinoembryonic antigen.
Primary cancer stages of three patients in the validation cohort and three patients in
the training cohort were unknown because they received colorectal surgeries at

other institutions.

2. Diagnostic performance of three-class classification

PDI is the probability of correctly classifying a case within a set of cases®.
Both overall PDI and category-specific PDI were analyzed to compare the ability of
the model and radiologists to classify three categories of the liver lesions (Table 3,
Fig. 6). Reviewer 1 and Reviewer 2 were board-certified abdominal radiologists,
whereas Reviewer 3 and Reviewer 4 were fourth- and second-year residents,
respectively. All reviewers except for the least-experienced radiologist demonstrated
significantly higher overall (range, 0.9622-0.9680) and hemangioma- and
metastasis-specific ~ PDIs  (hemangioma-specific ~ PDI,  0.9452-0.9630;
metastasis-specific PDI, 0.9511-0.9869) than the radiomics model (overall PDI,
0.8037; hemangioma-specific PDI, 0.6653; metastasis-specific PDI, 0.8027) with
p-values ranging from <0.001 to 0.001. Particularly, the model showed the lowest
category-specific PDI for hemangiomas (0.6653) among its category-specific PDIs;
however, the radiologists maintained high category-specific PDIs regardless of the
lesion type. For cysts, a statistically significant difference in category-specific PDI
was observed between Reviewer 1 and the radiomics model (0.9889 and 0.9432,
respectively; p-value, 0.007). Albeit statistically insignificant, Reviewer 2 and
Reviewer 3 showed higher cyst-specific PDI (0.9741 and 0.9605, respectively) than
the radiomics model (p-value, 0.103 and 0.385). Although the least-experienced
reviewer did not show a significant difference, the overall and category-specific

PDIs (overall PDI, 0.8458; cyst-specific PDI, 0.9478; hemangioma-specific PDI,
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0.7305; metastasis-specific PDI, 0.8589) were numerically higher than those of the

radiomics model.
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Figure 6. Comparison of the diagnostic performance between the radiomics model
and radiologists measured by polytomous discrimination index (PDI). Reviewers 1
and 2 were board-certified abdominal radiologists, whereas Reviewers 3 and 4 were
fourth- and second-year resident radiologists, respectively. All reviewers
demonstrated higher overall and category-specific PDI than the radiomics model.
The hemangioma-specific PDI of the radiomics model was the lowest among all

values.
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Table 3. Diagnostic performance to classify hepatic lesions as measured by

polytomous discrimination index (PDI).

PDI Radiomics Radiologist Reviewer 1! Reviewer 2!
(average)
Overall 0.9635 0.9622 0.9649
(95% CI) (0.7291-0.8653) (0.9374-0.9799) (0.9268-0.9816) (0.9055-0.9846)
p-value <0.001 <0.001 <0.001
Cyst 0.9815 0.9889 0.9741
p-value 0.023 0.007 0.103
Hemangioma 0.9541 0.9452 0.9630
p-value <0.001 <0.001 <0.001
Metastasis 0.9558 0.9511 0.9606
p-value <0.001 <0.001 0.001
PDI Reviewer 3? Reviewer 42
Overall 0.9680 0.8458
(95% CI) (0.8731-0.9374) (0.9294-0.983)  (0.778-0.902)
p-value <0.001 0.305
Cyst 0.9605 0.9478
p-value 0.385 0.891
Hemangioma 0.9546 0.7305
p-value <0.001 0.418
Metastasis 0.9869 0.8589
p-value <0.001 0.253

Abbreviations: CI, confidence interval; NA, nonapplicable.

'Reviewer 1 and Reviewer 2 were board-certified abdominal radiologists.

2Reviewer 3 was a fourth-year resident, and Reviewer 4 was a second-year resident.
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Additionally, in the subgroup analysis (Table 4, Fig. 7), all the reviewers
displayed consistently good performance in classifying the hepatic lesions
regardless of lesion size, whereas the radiomics model showed numerically lower
classification performance when evaluating subcentimeter lesions (overall PDI of
<10mm group, 0.6486; overall PDI of >10 mm group, 0.8264; p-value, 0.069).
Radiologists demonstrated overall PDIs of <10mm group ranging from 0.8855 to
0.9667, which was significantly higher than those of the radiomics model (p-value,
<0.001-0.042). For >10 mm group, Reviewers 1, 2, and 3 showed significantly
higher overall PDIs (0.9562, 0.9454 and 0.9621, respectively) than those of the
radiomics model (p-value, 0.001-0.009). However, the least-experienced reviewer’s
overall PDI for classifying lesions > 10 mm (0.8271; p-value, 0.993) was similar to
that of the radiomics model.

All the reviewers demonstrated higher category-specific PDIs when
assessing <10mm group (cyst-specific PDI, 0.9175-0.9910; hemangioma-specific
PDI, 0.7898-0.9953; metastasis-specific PDI, 0.9131-0.9715) than the radiomics
model  (cyst-specific PDI, 0.8704; hemangioma-specific PDI, 0.4599;
metastasis-specific PDI, 0.6155); however, statistically significant differences were
only observed for cyst- and hemangioma-specific PDIs of Reviewers 1, 2, and 3
(p-value of cyst-specific PDI, 0.003-0.018; p-value of hemangioma-specific PDI,
0.002-0.006) and metastasis-specific PDIs of Reviewers 2 and 3 (p-value,
0.015-0.028). For =10 mm group, category-specific PDIs of reviewers, except for
the  least-experienced  radiologist  (cyst-specific ~ PDI,  0.9421-0.9847;
hemangioma-specific PDI, 0.9311-0.9505; metastasis-specific PDI, 0.9478-0.9872),
were higher than those of the radiomics model (cyst-specific PDI, 0.9552;
hemangioma-specific PDI, 0.7274; metastasis-specific PDI, 0.7966) with significant
differences in  hemangioma- and metastasis-specific PDIs (p-value of
hemangioma-specific PDI, 0.004-0.006; p-value of metastasis-specific PDI,
<0.001-0.011). Noticeably, in <10mm group, board-certified radiologists

demonstrated significantly better performance in classifying benign lesions that
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were cysts or hemangiomas (radiologist-averaged cyst-specific PDI, 0.9876;
p-value, 0.003; radiologist-averaged hemangioma-specific PDI, 0.9649; p-value,
0.003), whereas resident radiologists showed statistically significantly higher
accuracy in differentiating metastasis (resident-averaged metastasis PDI, 0.9602;
p-value, 0.018).

Corresponding to the sensitivity and specificity in binary outcome
evaluation, the CCP is the proportion of the diagnostic results that correctly match
the gold standard among three classes of outcomes (Table 5). Similar to the PDI, the
CCP was significantly higher for the results of the three most experienced
radiologists (Reviewer 1, 0.9316; Reviewer 2, 0.9446; Reviewer 3, 0.9283) than
that of the radiomics model (CCP, 0.8436; p-value, <0.001-0.001). In the subgroup
analysis, differences in CCP were observed between the two subgroups, but the
difference was not significant between the radiomics model and radiologists, except
in the case of the least-experienced radiologist. Throughout the subgroup analysis,
reviewers displayed better diagnostic performance (CCP of <10mm group range,
0.913-0.9457; CCP of >10 mm group range, 0.8465-0.9395) than the radiomics
model (CCP of <10mm group, 0.8587; CCP of >10 mm group, 0.8372). Statistically
significant differences were observed between Reviewers 2, and 4 for <10mm
group (p-value, 0.009-0.030) and between Reviewers 1, 2, and 3 for > 10 mm group
(p-value, <0.001-0.001).
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Table 4. Subgroup analysis of the polytomous discrimination index (PDI) based on hepatic lesion size

PDI Radiomics model Radiologist (average) Reviewer 12 Reviewer 22
<10 mm!  >10mm! <10 mm!? >10 mm* <10mm! >10mm! <10mm!  >10 mm?
(n=92) (n =215) (n=92) (n=215) (n=92) (n =215) (n=92) (n=215)
Overall 0.6486 0.8264 0.9565 0.9508 0.9462 0.9562 0.9667 0.9454
p-value NA NA 0.001 0.002 0.002 0.001 <0.001 0.009
Cyst 0.8704 0.9552 0.9876 0.9634 0.9910 0.9847 0.9841 0.9421
p-value NA NA 0.003 0.719 0.003 0.111 0.003 0.627
Hemangioma 0.4599 0.7274 0.9649 0.9399 0.9345 0.9311 0.9953 0.9487
p-value NA NA 0.003 0.003 0.005 0.004 0.002 0.006
Metastasis 0.6155 0.7966 0.9169 0.9493 0.9131 0.9507 0.9206 0.9478
p-value NA NA 0.051 0.003 0.107 0.002 0.028 0.011
p-value* 0.069 0.598 0.867 0.789
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PDI Resident (average) Reviewer 3° Reviewer 4°

<10 mm?! >10 mm?! <10 mm? >10 mm! <10 mm? >10 mm?
(n=92) (n=215) (n=92) (n = 215) (n=92) (n=215)

Overall 0.9216 0.8946 0.958 0.9621 0.8855 0.8271
p-value 0.005 0.079 0.001 0.002 0.042 0.993
Cyst 0.9417 0.9406 0.9659 0.9500 0.9175 0.9312
p-value 0.080 0.513 0.018 0.817 0.442 0.355
Hemangioma 0.8632 0.8391 0.9366 0.9505 0.7898 0.7277
p-value 0.036 0.111 0.006 0.005 0.164 0.951
Metastasis 0.9602 0.906 0.9715 0.9872 0.949 0.8248
p-value 0.018 0.031 0.015 <0.001 0.026 0.618
p-value* 0.589 0.511 0.841

Abbreviations: Cl, confidence interval; NA, nonapplicable.

1The validation set (n = 307) was divided into two subgroups based on the lesion size (<10 mm or >10 mm).
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2Reviewer 1 and Reviewer 2 were board-certified abdominal radiologists.
3Reviewer 3 was a fourth-year resident, and Reviewer 4 was a second-year resident radiologist.

4P-values for differences between <10mm group and >10 mm group.
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Figure 7. Comparisons of overall and category-specific polytomous discrimination index (PDI) between the radiomics model
and radiologists classified by hepatic lesion size. Reviewers 1 and 2 were board-certified abdominal radiologists, whereas
Reviewers 3 and 4 were fourth-year and second-year resident radiologists, respectively. All the reviewers, except for the
least-experienced radiologist, displayed consistently good performance in classifying hepatic lesions, regardless of lesion size.
However, the radiomics model demonstrated lower diagnostic performance for evaluating <10mm group than for classifying >

10 mm group.
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Table 5. Diagnostic performance to classify hepatic lesions as measured by correct classification percentage (CCP)

Subgroup? Radiomics model Reviewer 17 Reviewer 2? Reviewer 33 Reviewer 43
(95% CI) (95% CI) (95% CI) (95% CI)

All 0.8436 (259/307) 0.9316 (286/307)  0.9446 (290/307) 0.9283 (285/307)  0.8697 (267/307)

(n = 307) (0.8013-0.8827) (0.9055-0.9642) (0.9121-0.9642) (0.9055-0.9593) (0.8274-0.9023)
p-value NA <0.001 <0.001 0.271

<10 mm 0.8587 (79/92) 0.9348 (86/92) 0.9457 (87/92) 0.9130 (84/92) 0.9348 (86/92)

(n=92) (0.7717-0.913) (0.8587-0.9674) (0.8804-0.9674) (0.8478-0.9733) (0.8587-0.9674)
p-value NA 0.050 0.009 0.030

> 10 mm 0.8372 (180/215) 0.9163 (197/215)  0.9395 (202/215) 0.0163 (197/215)  0.8465 (182/215)

(n =215) (0.788-0.8837) (0.8681-0.9442) (0.8977-0.9628) (0.8698-0.9349) (0.7953-0.893)
p-value NA 0.001 <0.001 0.865

p-value* 0.612 0.581 0.684 0.010

Abbreviations: CI, confidence interval; NA, nonapplicable.

The validation set was divided into two subgroups based on lesion size (<10 mm group or >10 mm group).
2Reviewer 1 and Reviewer 2 were board-certified abdominal radiologists.

SReviewer 3 was a fourth-year resident, and Reviewer 4 was second-year resident.

“P-values for the differences between lesion size subgroups.
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3. Diagnostic performance of binary classification

In addition to the three-class classification, the diagnostic performance
of differentiating benign liver lesions (hepatic cysts and hemangiomas) from
metastatic lesions was analyzed (Table 6). The radiomics model and all four
radiologists showed high sensitivity (80.54%-95.97%) and specificity
(86.71%—99.37%) for diagnosing liver metastases. Sensitivity, specificity, PPV,
NPV, accuracy, and AUC of the radiomics model for diagnosing liver
metastases were 80.54%, 87.97%, 86.33%, 82.74%, 84.36%, and 0.9426,
respectively. Reviewers 1, 2, and 3 showed significantly higher accuracy
(93.81-96.09%; p-value, 0.002-0.003) and AUC (0.9810-0.9928; p-value,
<0.001-0.003) than those of the radiomics model. For a comparison between
the radiomics model and the radiologists, a p-value less than 0.025 was set to be
significant after applying Bonferroni correction. The average diagnostic
performance of the board-certified radiologists was significantly higher than
that of the radiomics model, with a sensitivity of 93.29% (p-value, 0.003), a
specificity of 96.52% (p-value, 0.007), a PPV of 96.19% (p-value, 0.008), an
NPV of 93.85% (p-value, 0.006), an accuracy of 94.95% (p-value, <0.001), and
an AUC of 0.9814 (p-value, <0.001). Although the differences were not
significant, the resident radiologists showed numerically higher sensitivity
(90.60%; p-value, 0.030), specificity (93.04%; p-value, 0.187), PPV (92.47%;
p-value, 0.166), and NPV (91.3%; p-value, 0.056) than those of the model. The
less-experienced radiologists showed a significantly higher accuracy (91.86%;
p-value, <0.001) and AUC (0.9623; p-value, <0.001) than those of the
radiomics model. The fourth-year resident showed significantly higher
specificity (p-value, 0.003), PPV (p-value, 0.005), accuracy (p-value, 0.026),
and AUC (p-value, 0.001) than those of the second-year resident.
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Table 6. Diagnostic performances of binary classification (hepatic cyst + hemangioma vs. metastasis)

Parameter Radiomics model Radiologist (average) Reviewer 1! Reviewer 2!
Sensitivity (%) 80.54 93.29 90.60 95.97
p-value NA 0.003 0.047 0.012
Specificity (%) 87.97 96.52 96.84 96.20
p-value NA 0.007 0.018 0.059
PPV (%) 86.33 96.19 96.43 95.97
p-value NA 0.008 0.023 0.050
NPV (%) 82.74 93.85 91.62 96.20
p-value NA 0.006 0.069 0.018
Accuracy (%) 84.36 94.95 93.81 96.09
(95% CI) (78.59-88.8) (92.15-96.79) (89.78-96.32) (91.28-98.3)
p-value NA <0.001 0.003 0.002
AUC 0.9426 0.9814 0.9819 0.981
(95% CI) (0.9149-0.9703) (0.9679-0.9901) (0.9675-0.9964) (0.9596-1.0000)
p-value NA <0.001 0.003 0.019
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Parameter Resident (average) Reviewer 3? Reviewer 42

Sensitivity (%) 90.60 91.95 89.26
p-value 0.030 0.060 0.118

Specificity (%) 93.04 99.37 86.71
p-value 0.187 0.003 0.810

PPV (%) 92.47 99.28 86.36
p-value 0.166 0.004 0.996

NPV (%) 91.30 92.90 89.54
p-value 0.056 0.072 0.211

Accuracy (%) 91.86 95.77 87.95

(95% ClI) (87.94-94.58) (90.62-98.15) (81.3-92.45)

p-value 0.013 0.003 0.359

AUC 0.9623 0.9928 0.9317

(95% CI) (0.9456-0.9760) (0.9842-1.0000) (0.8933-0.9701)
p-value <0.001 <0.001 0.611

Abbreviations: AUC, area under the receiver operating characteristic curve; Cl, confidence interval; NA, notapplicable; NPV,
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negative predictive value; PPV, positive predictive value.
'Reviewer 1 and Reviewer 2 were board-certified abdominal radiologists.

2Reviewer 3 was a fourth-year resident, and Reviewer 4 was a second-year resident.
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IV. Discussion

We generated a computer-aided system to differentiate cysts,
hemangiomas, and metastases from portal-phase CT images using handcrafted
features and compared its diagnostic performance with radiologists. Our
radiomics model demonstrated an overall PDI of 0.8037 with category-specific
PDIs of 0.9432 for cysts, 0.6653 for hemangiomas, and 0.8027 for metastasis,
indicating that the model showed good performance for discriminating cysts
and metastasis among the three classes of liver lesions. Along with the
diagnostic performance of three-class classification, the diagnostic accuracy of
binary classification was also evaluated. The radiomics model of the current
study showed 80.54% sensitivity, 87.97% specificity, 84.36% accuracy, and an
AUC of 0.9426. In addition to substantial performance in binary classification,
our classification system demonstrated accuracy for classifying three types of
liver lesions with a CCP of 84.37% for all lesions, 85.87% for subcentimeter
lesions, and 83.72% for lesions > 10 mm. Several previous studies that assessed
the ability of machine learning for classifying liver lesions at various imaging
modalities described good diagnostic performance, with an accuracy of
77.3%-97.2% and an AUC of 0.92-0.941'%13 3236 Allowing for varying
performance of machine learning under different imaging acquisition conditions
and imaging modalities, we expect our classification system to differentiate
between the three classes of liver lesions with comparable accuracy.

However, between the radiomics model and radiologists, the latter
outperformed the former throughout the analyses because the top three most
experienced radiologists ~ showed significantly ~ higher  overall,
hemangioma-specific, and metastasis-specific PDIs, accuracy, and AUC than
those of the radiomics model. Particularly, the model showed the lowest
diagnostic performance of classifying hemangiomas compared to other values.

This can be explained by the limitation of two-dimensional segmentation.
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Although the ROI for image segmentation was drawn at the plane where the
image was most suitable for diagnosis and represented the corresponding
category of liver lesions the best, single portal-phase image may not be
sufficient for identifying hepatic hemangioma due to its various imaging
features. Depending on the acquisition time of portal phase images, the
morphology of the hemangioma can be heterogeneous because the typical
imaging finding of hepatic hemangioma on dynamic contrast-enhanced CT is
early peripheral nodular enhancement with progressive centripetal fill-in®":3,
Moreover, atypical hemangiomas with a flash-filling enhancement pattern or
delayed fill-in enhancement pattern cause heterogeneity in image sets for
radiomics model training® 8. Further study with three-dimensional (3-D)
segmentation may increase the diagnostic accuracy of the radiomics model in
classifying hepatic hemangiomas.

In subgroup analysis, albeit with insignificant difference, the radiomics
model showed a lower diagnostic accuracy for classifying lesions < 10 mm than
for classifying those > 10 mm. A noticeable difference between radiologists and
the radiomics model was that the radiologists maintained excellent diagnostic
performance of discriminating subcentimeter lesions in the subgroup analysis.
This discrepancy may be due to the bias of healthcare professionals who already
know and have an experience that hepatic lesions that are too small to
characterize are mostly benign even in cancer patients**%°. Particularly in
colorectal cancer patients, the incidence of subcentimeter indeterminate lesions
was reported to be 12.7% to 25.5% with a benign rate of 80% to 92.5%, which
increased to as much as 97.8% in cases of small low attenuating hepatic lesions
without larger lesions*3, In accordance with this bias, in this study, more
experienced board-certified radiologists were likely to demonstrate significantly
better discrimination of subcentimeter benign lesions than metastatic lesion, but

less-experienced resident radiologists showed lower category-specific PDIs for
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cysts and hemangiomas than for metastases. Additionally, the diagnostic
accuracy of the radiomics model for classifying lesions < 10 mm may decrease
because precise drawing of ROI perfectly surrounding the subcentimeter-sized
lesions is difficult and extractable information from these small lesions may be
limited.

Contrary to our study, some studies showed that the diagnostic
performance of radiologists was inferior to that of the classification models.
Dankerl et al.** developed a retrieval-based computer-aided diagnosis system
(accuracy for lesion type, 85.8%; accuracy for lesion histology, 75.1%) for
differentiating 5 different types of liver lesions (cyst, hemangioma,
hepatocellular carcinoma, metastasis and focal nodular hyperplasia) that
provided diagnostic performance superior to three radiologists (accuracy for
lesion type, 52-74%; accuracy for lesion histology, 22-51%). Similar to our
study, only portal-phase CT images were used, and radiologists were allowed to
review axial, coronal, and sagittal images. However, the liver lesion categories
evaluated by Dankerl et al.** included hepatocellular carcinoma and focal
nodular hyperplasia, for which multiphase CT is crucial for an accurate
diagnosis. The inclusion of these liver lesions may have lowered the diagnostic
accuracy of radiologists, which may explain the difference with our study
results. Hamm et al.* proposed a deep learning system that classifies six
categories of liver lesions (cyst, hemangioma, focal nodular hyperplasia,
hepatocellular carcinoma, intrahepatic cholangiocarcinoma, and CRLM) on
multiphase MRI with a diagnostic accuracy (90%) superior to that of two
radiologists (80% and 85%). Other than a different imaging modality being used,
the significant difference between our study and Hamm et al.*® is the manner in
which radiologists assessed liver lesions. While Hamm et al.* did not allow
radiologists to scroll and view lesions other than the target liver lesion,

radiologists from our study interpreted CT images similar to those seen in daily
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clinical practice. In addition, we included every patient and liver lesion detected
during the specific period in the study population and aimed to avoid
convenience sampling and secure generalizability of the model. For
implementation of the radiomics model in clinical practice, verification of its
diagnostic performance and comparing the performance to that of radiologists
in a clinical setting are crucial. Liver lesions that were both correctly and

incorrectly diagnosed by the radiomics model are depicted in Figures 8 and 9.

Figure 8. Representative images of a cyst, hemangioma, and metastasis that

were correctly diagnosed by the radiomics model. (A) Cyst, (B) hemangioma,
and (C) metastasis correctly diagnosed by both the radiomics model and
radiologists. (D) Cyst correctly classified by the radiomics model but
incorrectly diagnosed by all radiologists. (E) Hemangioma correctly diagnosed
by the radiomics model but misclassified as metastasis by two radiologists. (F)

Metastasis misdiagnosed as a hemangioma by resident radiologists.
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Figure 9. Representative images of a cyst, hemangioma, and metastasis that

were incorrectly diagnosed by the radiomics model. (A) Cyst, (B) hemangioma,
and (C) metastasis that were misclassified by both the radiomics model and
radiologists. In the case of metastasis, there were no lesions that were
misdiagnosed by all four radiologists. Board-certified radiologists misclassified
this (C) metastasis as benign and the radiomics model misdiagnosed it as a cyst.
(D) Cyst, (E) hemangioma, and (F) metastasis that were inaccurately classified

by the radiomics model but correctly diagnosed by radiologists.

Some limitations exist in the current study. First, the sample size of
hemangiomas was smaller than those of cysts and metastases. Although data
augmentation was conducted to avoid an overfitting problem, this skewness in
the dataset may have caused bias in the classifier training and induced decreased
diagnostic  performance for classifying hemangiomas. Second, the
histopathological results of some of the liver lesions were not available.
However, cysts and hemangiomas can be accurately diagnosed with typical

MRI imaging features, and at least 1 year of follow-up images were reviewed to
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judge the class of liver lesions. Finally, the subjective nature of semiautomatic
segmentation might be another limitation of this study, particularly because the
precise drawing of ROl of the subcentimeter lesion was challenging. To
overcome this problem, two radiologists independently performed image

segmentation and analyzed interobserver reproducibility.

V. Conclusion

We proposed a radiomics model that could differentiate cysts,
hemangiomas, and metastases with substantial diagnostic performance using
portal-phase abdominopelvic CT images from patients with CRC. Albeit
inferior to the diagnostic accuracy of radiologists in this study, our classification
model demonstrated high diagnostic accuracy comparable to that of previous
studies and proved its potential to be used in clinical practice, where elimination
of frequently detected benign liver lesions such as cysts or hemangiomas would
help radiologists to review follow-up evaluations of cancer patients. However,
the radiomics model demonstrated limitations especially in classifying
hemangiomas and subcentimeter liver lesions. Therefore, at this stage, the
unattended application of the radiomics model in the clinical setting may still be
premature. Further studies using different techniques such as deep learning or
3-D segmentation are required to improve diagnostic accuracy and implement

the system in daily practice.
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