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Abstract 

Radiomics analysis of single-phase contrast-enhanced CT for 

classification of hepatic focal lesions in colorectal cancer patients 

 

Heejin Bae 

 

Department of Medicine 

The Graduate School, Yonsei University 

 

(Directed by Professor Joon Seok Lim) 

 

 Objective: To evaluate the diagnostic performance of a radiomics model 

for classifying hepatic cysts, hemangiomas, and metastases in patients with 

colorectal cancer (CRC) from portal-phase abdominopelvic computed tomography 

(CT) images. 

 Methods: This retrospective study included 502 patients with CRC who 

underwent both contrast-enhanced abdominopelvic CT and contrast-enhanced liver 

magnetic resonance imaging between January 2005 and December 2010. Patients 

were divided into training (n = 386) and validation (n = 116) cohorts. Portal-phase 

contrast-enhanced CT images of 1290 liver lesions (size range, 3 mm–5 cm) were 

used to develop a radiomics model for differentiating three classes of liver lesions 

(cyst, hemangioma, and metastasis). Among multiple handcrafted features, the 

feature selection was performed using the ReliefF method, and random forest 

classifiers were used to train the selected features. The diagnostic performance of 

the developed model was evaluated and compared with that of four radiologists who 

classified liver lesions from the validation cohort (128 cysts, 30 hemangiomas, and 

149 metastases). Additionally, a subgroup analysis was conducted based on lesion 

size (<10 mm or ≥10 mm).  
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 Results: The radiomics model demonstrated significantly lower overall 

and hemangioma- and metastasis-specific polytomous discrimination index (PDI) 

(overall PDI, 0.8037; hemangioma-specific PDI, 0.6653; metastasis-specific PDI, 

0.8027) than the radiologists’ results, except that of the least-experienced 

radiologist (overall PDI, 0.9622–0.9680; hemangioma-specific PDI, 0.9452–0.9630; 

metastasis-specific PDI, 0.9511–0.9869). For differentiating subcentimeter lesions, 

the PDI of the radiomics model was different according to the lesion size (overall 

PDI of < 10 mm, 0.6486; overall PDI of ≥ 10 mm, 0.8264; p-value, 0.0692) while 

that of the radiologists was relatively maintained. For classifying benign lesions 

from metastasis, the radiomics model showed excellent diagnostic performance, 

with an accuracy of 84.36% (78.59–88.8) and an area under the receiver operating 

characteristic curve of 0.9426 (0.9149–0.9703). However, the three most 

experienced radiologists outperformed the radiomics model with an accuracy of 

93.81–96.09% (p-value, 0.002–0.003). 

Conclusion: The radiomics model achieved diagnostic accuracy 

comparable to that of radiologists when differentiating cysts, hemangiomas, and 

metastases from portal-phase CT images of patients with CRC and demonstrated 

potential for clinical use. However, this model was limited particularly to 

classifying hemangiomas and subcentimeter liver lesions, and therefore, unattended 

application of the system in daily clinical practice is not yet feasible. 

 

 

 

 

 

 

 

Key Words: radiomics, computed tomography, colorectal cancer, liver metastasis, 

hepatic cyst, hemangioma, classification, diagnostic accuracy  
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(Directed by Professor Joon Seok Lim) 

 

I. Introduction 

 Liver is the most common organ to metastasize in patients with colorectal 

cancer (CRC). Approximately 15% of these patients present with synchronous liver 

metastasis during diagnostic workup, and more than 50% will eventually develop 

liver metastasis, with a 5-year survival rate of less than 5% in cases of untreated 

liver metastasis1-3. With colorectal liver metastasis (CRLM) as an important 

prognostic factor, surgical resection remains a possible curative treatment with a 

reported 5-year overall survival rate as high as 58%, which is a better long-term 

survival benefit compared with palliative chemotherapy4,5. Therefore, accurate 

staging and prompt detection and characterization of liver lesions through imaging 

evaluations are essential for the selection of proper disease management. Primarily, 

differentiation of commonly encountered benign lesions such as hepatic cysts and 

hemangiomas is significant for the diagnosis of CRLM. 

 Radiomics is a rapidly emerging technique that extracts various qualitative 

data from medical images and uses them to support the detection and diagnosis of 

disease6,7. The development of a computer-aided classification system of liver 

lesions, particularly in cancer patients, is necessary to improve diagnostic accuracy 

and efficiency in daily clinical practice. The exclusion of benign liver lesions such 
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as cysts or hemangiomas would especially increase the work speed and efficiency of 

radiologists in reading initial and follow-up evaluations of cancer patients, 

considering that the use of computed tomography (CT) and the number of images 

acquired from a single examination are constantly increasing8,9. To date, several 

radiomics analyses have been conducted to classify liver lesions as benign or 

malignant based on various imaging modalities, and have achieved diagnostic 

accuracy comparable to radiologists10-13. However, due to the retrospective nature of 

these studies, researchers tended to adopt convenience sampling, the data collection 

method of sampling control and diseased subjects in a calculated ratio that can 

cause spectrum bias14. To achieve generalizability of the radiomics model, the study 

cohort should reflect the target population in terms of disease characteristics such as 

incidence or prevalence14,15. To overcome this sampling bias, we intended to register 

all patients and their liver lesions during a specific period.  

Moreover, before the radiomics technique can be used in the clinical 

setting, its diagnostic performance must be verified in a setting similar to daily 

practice, wherein single-phase contrast-enhanced CT images are mainly performed 

for follow-up evaluations of cancer patients and radiologists review not only the 

axial but also coronal reformatted images. In practice, various imaging modalities, 

including ultrasonography, CT, gadolinium-enhanced magnetic resonance imaging 

(MRI), and fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography 

fused with CT (PET/CT), are used for the initial diagnostic workup of CRC and 

detection of CRLM. Previous studies have shown that regardless of whether a 

patient received previous therapy, MRI is superior to CT and FDG PET/CT in 

detecting and characterizing hepatic lesions16-21. Particularly, the characterization of 

small hepatic lesions less than 10 mm in size can be challenging for CT due to 

volume averaging. Thus, further evaluation, including MRI, is routinely required to 

increase diagnostic confidence in identifying small indeterminate lesions with CT 

and to detect additional CRLM22,23. Despite the higher diagnostic accuracy of MRI, 

the accurate characterization and diagnosis of liver lesions on CT are significant 



- 5 - 

 

 

because CT is most commonly performed for both initial and post-treatment 

evaluation in patients with CRC due to its wide availability and cost-effectiveness. 

To the best of our knowledge, there is a lack of studies that have developed a 

radiomics model and compared its diagnostic performance with that of radiologists 

under circumstances similar to that of the clinical setting. 

Therefore, in this study, we aimed to evaluate the performance of the 

radiomics model for the classification of CRLM, hepatic cysts, and hemangiomas 

using portal-phase abdominopelvic CT images, and compare its diagnostic accuracy 

with that of radiologists. 

 

II. Materials and Methods 

1. Study population 

 This retrospective study was approved by the institutional review board at 

our institution, and the requirement for informed consent was waived. A flow 

diagram of patient selection is shown in Figure 1. 

A total of 676 CRC patients, who underwent both contrast-enhanced 

abdominopelvic CT and contrast-enhanced liver MRI between January 2005 and 

December 2010 were retrospectively registered in this study. Of these, 21 patients 

were excluded due to poor image quality (i.e., abdominopelvic CT without 

portal-phase or slice thickness larger than 5 mm). The following inclusion criteria 

were used for hepatic lesions in the study: (1) simple cyst, hemangioma, or 

metastasis larger than 3 mm and smaller than 5 cm; (2) in the case of multiple 

lesions, a maximum of five lesions per each lesion category (as many as 15 lesions 

per patient). Of the remaining 655 patients, 153 patients did not meet the inclusion 

criteria and were excluded for the following reasons: (1) had only a benign hepatic 

lesion other than a cyst or hemangioma (n = 52); (2) had a focal lesion, which was 

detected only on either of the imaging modalities, CT or MRI (n = 46); (3) had only 

a hepatic lesion smaller than 3 mm or larger than 5 cm (n = 44); (4) had a recurrent 

lesion after radiofrequency ablation (n = 6); (5) had other type of malignant tumor 
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(n = 2); (6) had no available reference standard for the hepatic lesion (n = 2); and 

(7) had images that revealed the inaccurate extent of the hepatic lesion due to 

venous thrombosis (n = 1). Subsequently, 502 CRC patients with 676 cysts, 130 

hemangiomas, and 484 metastases were included in this study. In the final study 

population, training and validation cohorts were divided chronologically to assign 

100 hemangiomas to a training cohort. Patients who underwent liver MRI after 

August 23, 2006 were included in the training cohort (n = 386; 214 men, 172 

women; mean age, 60.8 ± 11.6 years) and those who received liver MRI before 

August 23, 2006 were allocated to the validation cohort (n = 116; 71 men, 45 

women; mean age, 59.4 ± 10.3 years). The training set consisted of 548 cysts, 100 

hemangiomas, and 335 metastases, and the validation set included 128 cysts, 30 

hemangiomas, and 149 metastases. 

 

Figure 1. Flow diagram of patient selection.  

Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging. 
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2. Image acquisition 

 At our institution, single-phase contrast-enhanced CT with portal phase 

images was routinely performed to detect metastasis in both initial and follow-up 

evaluations of cancer patients. Following CT scans, liver MRI was usually 

performed to accurately evaluate the extent of metastases and to characterize the 

focal lesion when an indeterminate lesion was found on CT. 

 Various types of multidetector CT (MDCT) scanners were used in this 

study: a 4-channel MDCT scanner (Lightspeed Plus, GE Healthcare, Milwaukee, 

WI, USA), 16-channel MDCT scanners (Sensation 16, Siemens Healthcare, 

Erlangen, Germany; LightSpeed VCT, GE Healthcare, Milwaukee, WI, USA), and 

64-channel MDCT scanners (Sensation 64, Somatom Definition Flash, Siemens 

Healthcare, Erlangen, Germany). The following CT parameters were used: tube 

voltage, 120–140 kVp; tube current, 100–280 mAs; beam pitch, 0.6–1.07; and 

reconstruction thickness, 3–5 mm. Portal-phase abdominopelvic CT images were 

acquired from the lower thorax to the lower pelvis approximately 70 seconds after 

the intravenous administration of 2.0 mL/kg of nonionic contrast material 

(Iopromide, Ultravist 300, Schering, Berlin, Germany) via an antecubital vein (flow 

velocity, 3–4 mL/s; fixed duration, 30 seconds) followed by a 20-mL saline bolus 

injection. The acquired images were reformatted in the coronal plane, and both axial 

and coronal image sets were transferred to our Picture Archiving and 

Communication System (PACS) for interpretation. 

 All liver MRI scans included in this study were obtained using a 1.5-T 

(Achieva 1.5-T, Philips Healthcare, Best, the Netherlands) or 3.0-T (Magnetom Trio 

a Tim, Siemens Healthcare, Forchheim, Germany; Achieva, Philips Healthcare, Best, 

the Netherlands) magnetic resonance scanners. Magnetic resonance sequences of 

both MRI with extracellular contrast agent (ECA-MRI) and MRI with hepatobiliary 

agent were as follows: dual-echo in-phase and opposed-phase spoiled gradient-echo 

T1-weighted images; multi-shot and single-shot turbo spin-echo T2-weighted 

images; and dynamic fat-suppressed spoiled gradient-echo T1-weighted images 
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conducted before and after the contrast agent injection, including arterial, portal 

venous, 3-minute delayed, and 5-minute delayed phases. Additionally, for dynamic 

scans with gadoxetic acid disodium (Primovist, Bayer Schering Pharma, Berlin, 

Germany), hepatobiliary phase images were obtained 15 or 20 minutes after 0.1 

mL/kg (0.025 mmol/kg) contrast agent administration. For ECA-MRI, different 

types of gadolinium-based contrast agents including gadopentetate dimeglumine 

(Magnevist, Bayer Schering Pharma, Berlin, Germany) or gadoterate meglumine 

(Dotarem, Guerbet, Roissy, France) were injected intravenously with a volume of 

0.1 mmol/kg. 

 

3. Hepatic lesion confirmation 

Hepatic lesions were pathologically confirmed by either surgery or 

percutaneous biopsy. If pathological results were not obtainable, typical MRI 

imaging findings of a cyst, hemangioma, or metastasis were used to characterize the 

focal hepatic lesion. For patients with focal hepatic lesions without pathological 

results and confirmatory imaging studies, the characterization of the lesion was 

determined through follow-up imaging for at least 1 year. An increase or decrease in 

lesion size during chemotherapy was considered as metastasis. On the other hand, 

lesions showing stability for at least 1 year were classified as benign. 

 

4. Image analysis 

 Two board-certified abdominal radiologists and two radiology residents 

(second and fourth years of residency) who were unaware of outcomes of hepatic 

lesions independently reviewed the axial and coronal portal-phase images of each 

lesion in the validation cohort. Before the image review, each lesion was 

individually annotated by another radiologist on axial portal-phase images to 

indicate the location of the lesion. Radiologists evaluated each lesion and rated the 

probability of it being a cyst, hemangioma, or metastasis using a 6-point numerical 

rating scale with scores of 0, 2, 4, 6, 8, and 10 and the sum of the scale as 10. 
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Figure 2. A flowchart of the radiomics model. 

 

5. Radiomics feature analysis 

A. Image segmentation 

 A flowchart of the radiomics analysis is summarized in Figure 2. From our 

PACS, axial portal-phase CT images were extracted in a Digital Imaging and 

Communications in Medicine (DICOM) format. One abdominal radiologist 

semiautomatically drew a region of interest (ROI) bounding the largest 

cross-sectional area of the hepatic lesion, using the medical image processing, 
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analysis, and visualization (MIPAV) software developed by the Center for 

Information Technology at the National Institutes of Health24. Another 

board-certified abdominal radiologist independently segmented the lesions of 

randomly selected 50 patients with 130 lesions to evaluate interobserver 

reproducibility. Among the extracted radiomics features, features with excellent 

interobserver reproducibility (i.e., intraclass correlation coefficient > 0.75)25 were 

adopted for analysis. 

 

B. Feature extraction 

 In feature extraction, the handcrafted features26,27 representing the imaging 

characteristics of lesions, such as texture and shape, were computed. For each lesion, 

119 dimensional texture features and 10 dimensional shape features were extracted 

from the segmented region. In texture features, the following features were 

included: 7 features of histogram characteristics, 6 features of the percentage of 

pixels below the thresholds, 6 features of the percentage of pixels above the 

thresholds, 5 features of histogram, 14 features of a gray-level co-occurrence matrix 

(GLCM), 22 features of a gray-level run-length matrix (GLRLM), and 59 features 

of local binary patterns (LBP). In shape features, size-related and roundness-related 

features such as area/perimeter ratio, eccentricity, or major axis length were 

included. A complete list of extracted features is summarized in Table 1. 

 

Table 1. A complete list of hand-crafted features extracted from lesions 

Categories (No. of features):  

Features (feature number) 

Texture features (119) 

Histogram features (7): 

Histogram mean (1), standard deviation (2), minimum (3) and maximum (4) 

intensities, skewness (5), kurtosis (6), and entropy (7) 
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GLRLM features (22):  

Four direction mean and standard deviation of short run emphasis (39,40), long run 

emphasis (41,42), gray-level non-uniformity (43,44), run length non-uniformity 

(45,46), run percentage (47,48), low gray-level run emphasis (49,50), high 

gray-level run emphasis (51,52), short run low gray-level emphasis (53,54), short 

run high gray-level emphasis (55,56), long run low gray-level emphasis (57,58), 

long run high gray-level emphasis (59,60) 

Percentages of pixels below the thresholds (6):  

0 HU (8), 30 HU (9), 60 HU (10), 90 HU (11), 120 HU (12), 150 HU (13) 

GLCM features (14):  

Four direction mean and standard deviation of angular second moment (25,26), 

contrast (27,28), sum average (29,30), sum variance (31,32), sum entropy (33,34), 

entropy (35,36), and difference entropy (37,38) 

Percentages of pixels above the thresholds (6):  

150 HU (14), 170 HU (15), 190 HU (16), 210 HU (17), 230 HU (18), 250 HU (19) 

LBP features (59):  

10 uniform patterns in LBP histogram (61-119) 

Percentile intensities at (5): 

5% (20), 25% (21), 50% (22), 75% (23), 95% (24) 

Shape features (10): 

Area/perimeter ratio (120), convex area (121), eccentricity (122), Euler number 

(123), solidity (124), major-minor axis length ratio (125), major axis length (126), 

minor axis length (127), area (128), perimeter (129) 

Abbreviations: GLCM, gray-level co-occurrence matrix; GLRLM, gray-level 

run-length matrix; HU, Hounsfield unit; LBP, local binary patterns. 
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C. Feature selection and classifier training  

Among the extracted 129 features, only 126 features showed excellent 

interobserver reproducibility, and therefore, were recruited for the analysis. Three 

excluded features were as follows: the GLRLM short-run low gray-level emphasis 

standard deviation, shape eccentricity, and shape major-minor axis length ratio. 

Using the ReliefF method28, we selected 60 features in the order of high ReliefF 

scores (Fig. 3), which reflected the weights related to feature importance. The 

ReliefF method computed feature weights through iteratively updating them while 

emphasizing interclass margins and penalizing intraclass margins26. The random 

forest (RF) classifier29 was trained on the selected features to identify the lesions as 

part of a cyst, hemangioma, or metastasis. For the classifier training, the number of 

decision trees for RF was experimentally determined and set to 100. To avoid 

overfitting and class imbalance, data augmentation was performed to increase the 

number of training data to 5000 for each class using random scaling and random 

angle rotation on the training images (Fig. 4). 

 

Figure 3. Heatmap of hepatic focal lesions in the training cohort. Each row 

represented hepatic focal lesions in the training cohort: cysts, 1-548; hemangiomas, 

549-648; and metastases, 649-983. Each column displayed 60 different radiomics 

features in descending order by ReliefF scores. This heatmap demonstrated that 

uppermost radiomics features having high ReliefF scores could classify three 

categories of liver lesions.   
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Figure 4. Representative images of augmented data of a cyst (top), hemangioma 

(middle), and metastasis (bottom). Using random scaling and random angle rotation, 

training data were augmented to avoid overfitting and class imbalance. 

 

D. Performance evaluation 

 After the classifier training, we examined the accuracy of the trained 

model by distinguishing three categories of liver lesions in the validation cohort 

(Fig. 5). The model provided numbers that can be interpreted as the probability for 

each lesion category. The category with the highest output value was chosen as the 

diagnosis made by the radiomics model. 

 

Figure 5. Heatmap of hepatic focal lesions in the validation cohort. Each row 
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represented hepatic focal lesions in the validation cohort: cysts, 1-128; 

hemangiomas, 129-158; and metastases, 159-307. Each column displayed 60 

different radiomics features in descending order by ReliefF scores. Similar to the 

heatmap of the training cohort, that of the validation cohort revealed that uppermost 

radiomics features with high ReliefF scores could classify three categories of liver 

lesions.   

 

6. Statistical analysis 

The polytomous discrimination index (PDI)30 and correct classification 

percentage (CCP)31 were calculated to compare diagnostic performances in the 

classification of three classes of liver lesions. Both overall PDI and 

category-specific PDI were calculated and compared. In addition, 95% confidence 

intervals and p-values were computed using an adjusted bootstrap-corrected method 

with 1000 resampling.  

For the two-class comparison of benign (hepatic cysts and hemangiomas) 

and metastatic lesions, the lesion was diagnosed as benign when the sum of the 

scale that radiologists assigned to the hepatic cyst and hemangioma exceeded 5 and 

when the sum of the number that the radiomics model assigned to the hepatic cyst 

and hemangioma was more than 0.5. The sensitivity, specificity, positive predictive 

value (PPV), negative predictive value (NPV), and the accuracy of diagnosing liver 

metastases were analyzed using logistic regression in a generalized estimating 

equations model. Delong’s method was used to calculate the area under the receiver 

operating characteristic curve (AUC).  

Additionally, we conducted a subgroup analysis based on the lesion size 

(<10 mm group; ≥10 mm group). All statistical analyses were performed using the 

R software (version 3.6.2; R Foundation for Statistical Computing, Vienna, Austria). 

A p-value less than 0.05 was considered statistically significant. For a comparison 

between the radiomics model and average values of radiologists, a p-value less than 

0.025 was set to be significant after applying Bonferroni correction. 
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III. Results 

1. Patient characteristics 

The patient characteristics of the training and validation cohorts are 

summarized in Table 2. Demographic characteristics among patients were not 

significantly different between the two cohorts. Mean size of the liver lesions in 

validation image sets was 16.0 ± 8.79 mm (cysts, 11.5 ± 6.50 mm; hemangiomas, 

14.2 ± 6.52 mm; metastasis, 20.1 ± 8.95 mm). Image sets in the validation cohort 

were divided based on the size for subgroup analysis. The <10 mm group had 92 

lesions with 76 cysts, 7 hemangiomas, and 9 metastases. The ≥10 mm group had 

215 lesions, including 52 cysts, 23 hemangiomas, and 140 metastases. 

 

Table 2. Patient characteristics in the training and validation cohorts 

Parameter  Training (n = 386) Validation (n = 116) p-value 

Mean age (y) 60.8 ± 11.6 59.4 ± 10.3 0.222 

Sex   0.272 

 Men (%) 214/386 (55.4) 71/116 (61.2)  

 Women (%) 172/386 (44.6) 45/116 (12.9)  

CEA level (ng/mL) 56.7 ± 642.1 20.9 ± 61.1 0.282 

Primary cancer location   0.826 

 Colon (%) 234/386 (60.6) 69/116 (59.5)  

 Rectum (%) 152/386 (39.4) 47/116 (40.5)  

Primary cancer T stage1   0.574 

 T1 (%) 18/383 (4.7) 6/113 (5.3)   

 T2 (%) 34/383 (8.9) 11/113 (9.7)   

 T3 (%) 266/383 (69.5) 83/113 (73.5)  

 T4 (%) 65/383 (17.0) 13/113 (11.5)  

Primary cancer N stage1   0.173 
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N0 (%) 167/383 (43.6) 43/113 (38.1)  

N1 (%) 134/383 (35.0) 36/113 (31.9)  

N2 (%) 82/383 (21.4) 34/113 (30.1)  

Abbreviations: CEA, carcinoembryonic antigen. 

1Primary cancer stages of three patients in the validation cohort and three patients in 

the training cohort were unknown because they received colorectal surgeries at 

other institutions. 

 

2. Diagnostic performance of three-class classification 

 PDI is the probability of correctly classifying a case within a set of cases30. 

Both overall PDI and category-specific PDI were analyzed to compare the ability of 

the model and radiologists to classify three categories of the liver lesions (Table 3, 

Fig. 6). Reviewer 1 and Reviewer 2 were board-certified abdominal radiologists, 

whereas Reviewer 3 and Reviewer 4 were fourth- and second-year residents, 

respectively. All reviewers except for the least-experienced radiologist demonstrated 

significantly higher overall (range, 0.9622–0.9680) and hemangioma- and 

metastasis-specific PDIs (hemangioma-specific PDI, 0.9452–0.9630; 

metastasis-specific PDI, 0.9511–0.9869) than the radiomics model (overall PDI, 

0.8037; hemangioma-specific PDI, 0.6653; metastasis-specific PDI, 0.8027) with 

p-values ranging from <0.001 to 0.001. Particularly, the model showed the lowest 

category-specific PDI for hemangiomas (0.6653) among its category-specific PDIs; 

however, the radiologists maintained high category-specific PDIs regardless of the 

lesion type. For cysts, a statistically significant difference in category-specific PDI 

was observed between Reviewer 1 and the radiomics model (0.9889 and 0.9432, 

respectively; p-value, 0.007). Albeit statistically insignificant, Reviewer 2 and 

Reviewer 3 showed higher cyst-specific PDI (0.9741 and 0.9605, respectively) than 

the radiomics model (p-value, 0.103 and 0.385). Although the least-experienced 

reviewer did not show a significant difference, the overall and category-specific 

PDIs (overall PDI, 0.8458; cyst-specific PDI, 0.9478; hemangioma-specific PDI, 
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0.7305; metastasis-specific PDI, 0.8589) were numerically higher than those of the 

radiomics model.  

 

 

Figure 6. Comparison of the diagnostic performance between the radiomics model 

and radiologists measured by polytomous discrimination index (PDI). Reviewers 1 

and 2 were board-certified abdominal radiologists, whereas Reviewers 3 and 4 were 

fourth- and second-year resident radiologists, respectively. All reviewers 

demonstrated higher overall and category-specific PDI than the radiomics model. 

The hemangioma-specific PDI of the radiomics model was the lowest among all 

values. 
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Table 3. Diagnostic performance to classify hepatic lesions as measured by 

polytomous discrimination index (PDI).  

PDI 
Radiomics 

model 

Radiologist 

(average) 
Reviewer 11 Reviewer 21 

Overall 

(95% CI) 

0.8037 

(0.7291–0.8653) 

0.9635 

(0.9374–0.9799) 

0.9622 

(0.9268–0.9816) 

0.9649 

(0.9055–0.9846) 

   p-value NA <0.001 <0.001 <0.001 

Cyst 0.9432 0.9815 0.9889 0.9741 

   p-value NA 0.023 0.007 0.103 

Hemangioma 0.6653 0.9541 0.9452 0.9630 

   p-value NA <0.001 <0.001 <0.001 

Metastasis 0.8027 0.9558 0.9511 0.9606 

   p-value NA <0.001 <0.001 0.001 

PDI 
Resident 

(average) 
Reviewer 32 Reviewer 42  

Overall 

(95% CI) 

0.9069 

(0.8731–0.9374) 

0.9680 

(0.9294-0.983) 

0.8458 

(0.778-0.902) 
 

   p-value 0.003 <0.001 0.305  

Cyst 0.9541 0.9605 0.9478  

   p-value 0.549 0.385 0.891  

Hemangioma 0.8425 0.9546 0.7305  

   p-value 0.010 <0.001 0.418  

Metastasis 0.9229 0.9869 0.8589  

   p-value 0.006 <0.001 0.253  

Abbreviations: CI, confidence interval; NA, nonapplicable. 

1Reviewer 1 and Reviewer 2 were board-certified abdominal radiologists. 

2Reviewer 3 was a fourth-year resident, and Reviewer 4 was a second-year resident.
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Additionally, in the subgroup analysis (Table 4, Fig. 7), all the reviewers 

displayed consistently good performance in classifying the hepatic lesions 

regardless of lesion size, whereas the radiomics model showed numerically lower 

classification performance when evaluating subcentimeter lesions (overall PDI of 

<10mm group, 0.6486; overall PDI of ≥10 mm group, 0.8264; p-value, 0.069). 

Radiologists demonstrated overall PDIs of <10mm group ranging from 0.8855 to 

0.9667, which was significantly higher than those of the radiomics model (p-value, 

<0.001–0.042). For ≥10 mm group, Reviewers 1, 2, and 3 showed significantly 

higher overall PDIs (0.9562, 0.9454 and 0.9621, respectively) than those of the 

radiomics model (p-value, 0.001–0.009). However, the least-experienced reviewer’s 

overall PDI for classifying lesions ≥ 10 mm (0.8271; p-value, 0.993) was similar to 

that of the radiomics model.  

All the reviewers demonstrated higher category-specific PDIs when 

assessing <10mm group (cyst-specific PDI, 0.9175–0.9910; hemangioma-specific 

PDI, 0.7898–0.9953; metastasis-specific PDI, 0.9131–0.9715) than the radiomics 

model (cyst-specific PDI, 0.8704; hemangioma-specific PDI, 0.4599; 

metastasis-specific PDI, 0.6155); however, statistically significant differences were 

only observed for cyst- and hemangioma-specific PDIs of Reviewers 1, 2, and 3 

(p-value of cyst-specific PDI, 0.003-0.018; p-value of hemangioma-specific PDI, 

0.002-0.006) and metastasis-specific PDIs of Reviewers 2 and 3 (p-value, 

0.015-0.028). For ≥10 mm group, category-specific PDIs of reviewers, except for 

the least-experienced radiologist (cyst-specific PDI, 0.9421–0.9847; 

hemangioma-specific PDI, 0.9311–0.9505; metastasis-specific PDI, 0.9478–0.9872), 

were higher than those of the radiomics model (cyst-specific PDI, 0.9552; 

hemangioma-specific PDI, 0.7274; metastasis-specific PDI, 0.7966) with significant 

differences in hemangioma- and metastasis-specific PDIs (p-value of 

hemangioma-specific PDI, 0.004–0.006; p-value of metastasis-specific PDI, 

<0.001–0.011). Noticeably, in <10mm group, board-certified radiologists 

demonstrated significantly better performance in classifying benign lesions that 
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were cysts or hemangiomas (radiologist-averaged cyst-specific PDI, 0.9876; 

p-value, 0.003; radiologist-averaged hemangioma-specific PDI, 0.9649; p-value, 

0.003), whereas resident radiologists showed statistically significantly higher 

accuracy in differentiating metastasis (resident-averaged metastasis PDI, 0.9602; 

p-value, 0.018). 

Corresponding to the sensitivity and specificity in binary outcome 

evaluation, the CCP is the proportion of the diagnostic results that correctly match 

the gold standard among three classes of outcomes (Table 5). Similar to the PDI, the 

CCP was significantly higher for the results of the three most experienced 

radiologists (Reviewer 1, 0.9316; Reviewer 2, 0.9446; Reviewer 3, 0.9283) than 

that of the radiomics model (CCP, 0.8436; p-value, <0.001–0.001). In the subgroup 

analysis, differences in CCP were observed between the two subgroups, but the 

difference was not significant between the radiomics model and radiologists, except 

in the case of the least-experienced radiologist. Throughout the subgroup analysis, 

reviewers displayed better diagnostic performance (CCP of <10mm group range, 

0.913–0.9457; CCP of ≥10 mm group range, 0.8465–0.9395) than the radiomics 

model (CCP of <10mm group, 0.8587; CCP of ≥10 mm group, 0.8372). Statistically 

significant differences were observed between Reviewers 2, and 4 for <10mm 

group (p-value, 0.009-0.030) and between Reviewers 1, 2, and 3 for ≥ 10 mm group 

(p-value, <0.001-0.001).  



- 21 - 

 

 

Table 4. Subgroup analysis of the polytomous discrimination index (PDI) based on hepatic lesion size 

PDI Radiomics model Radiologist (average) Reviewer 12 Reviewer 22 

 
<10 mm1 

(n = 92) 

≥10 mm1 

(n = 215) 

<10 mm1 

(n = 92) 

≥10 mm1 

(n = 215) 

<10 mm1 

(n = 92) 

≥10 mm1 

(n = 215) 

<10 mm1 

(n = 92) 

≥10 mm1 

(n = 215) 

Overall 0.6486 0.8264 0.9565 0.9508 0.9462 0.9562 0.9667 0.9454 

   p-value NA NA 0.001 0.002 0.002 0.001 <0.001 0.009 

Cyst 0.8704 0.9552 0.9876 0.9634 0.9910 0.9847 0.9841 0.9421 

   p-value NA NA 0.003 0.719 0.003 0.111 0.003 0.627 

Hemangioma 0.4599 0.7274 0.9649 0.9399 0.9345 0.9311 0.9953 0.9487 

   p-value NA NA 0.003 0.003 0.005 0.004 0.002 0.006 

Metastasis 0.6155 0.7966 0.9169 0.9493 0.9131 0.9507 0.9206 0.9478 

   p-value NA NA 0.051 0.003 0.107 0.002 0.028 0.011 

p-value4  0.069  0.598  0.867  0.789 
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PDI Resident (average) Reviewer 33 Reviewer 43   

 
<10 mm1 

(n = 92) 

≥10 mm1 

(n = 215) 

<10 mm1 

(n = 92) 

≥10 mm1 

(n = 215) 

<10 mm1 

(n = 92) 

≥10 mm1 

(n = 215) 
  

Overall 0.9216 0.8946 0.958 0.9621 0.8855 0.8271   

   p-value 0.005 0.079 0.001 0.002 0.042 0.993   

Cyst 0.9417 0.9406 0.9659 0.9500 0.9175 0.9312   

   p-value 0.080 0.513 0.018 0.817 0.442 0.355   

Hemangioma 0.8632 0.8391 0.9366 0.9505 0.7898 0.7277   

   p-value 0.036 0.111 0.006 0.005 0.164 0.951   

Metastasis 0.9602 0.906 0.9715 0.9872 0.949 0.8248   

   p-value  0.018 0.031 0.015 <0.001 0.026 0.618   

p-value4  0.589  0.511  0.841   

Abbreviations: CI, confidence interval; NA, nonapplicable. 

1The validation set (n = 307) was divided into two subgroups based on the lesion size (<10 mm or ≥10 mm). 
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2Reviewer 1 and Reviewer 2 were board-certified abdominal radiologists. 

3Reviewer 3 was a fourth-year resident, and Reviewer 4 was a second-year resident radiologist. 

4P-values for differences between <10mm group and ≥10 mm group.  

 

 

Figure 7. Comparisons of overall and category-specific polytomous discrimination index (PDI) between the radiomics model 

and radiologists classified by hepatic lesion size. Reviewers 1 and 2 were board-certified abdominal radiologists, whereas 

Reviewers 3 and 4 were fourth-year and second-year resident radiologists, respectively. All the reviewers, except for the 

least-experienced radiologist, displayed consistently good performance in classifying hepatic lesions, regardless of lesion size. 

However, the radiomics model demonstrated lower diagnostic performance for evaluating <10mm group than for classifying ≥ 

10 mm group. 
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Table 5. Diagnostic performance to classify hepatic lesions as measured by correct classification percentage (CCP)  

Subgroup1 
Radiomics model 

(95% CI) 

Reviewer 12 

(95% CI) 

Reviewer 22 

(95% CI) 

Reviewer 33 

(95% CI) 

Reviewer 43 

(95% CI) 

All  

(n = 307) 

0.8436 (259/307) 

(0.8013–0.8827) 

0.9316 (286/307) 

(0.9055–0.9642) 

0.9446 (290/307) 

(0.9121–0.9642) 

0.9283 (285/307) 

(0.9055–0.9593) 

0.8697 (267/307) 

(0.8274–0.9023) 

   p-value NA <0.001 <0.001 0.001 0.271 

<10 mm 

(n = 92) 

0.8587 (79/92) 

(0.7717–0.913) 

0.9348 (86/92) 

(0.8587–0.9674) 

0.9457 (87/92) 

(0.8804–0.9674) 

0.9130 (84/92) 

(0.8478–0.9733) 

0.9348 (86/92) 

(0.8587–0.9674) 

   p-value NA 0.050 0.009 0.285 0.030 

≥ 10 mm 

(n = 215) 

0.8372 (180/215) 

(0.788–0.8837) 

0.9163 (197/215) 

(0.8681–0.9442) 

0.9395 (202/215) 

(0.8977–0.9628) 

0.9163 (197/215) 

(0.8698–0.9349) 

0.8465 (182/215) 

(0.7953–0.893) 

   p-value NA 0.001 <0.001 0.001 0.865 

p-value4 0.612 0.581 0.684 0.488 0.010 

Abbreviations: CI, confidence interval; NA, nonapplicable. 

1The validation set was divided into two subgroups based on lesion size (<10 mm group or ≥10 mm group). 

2Reviewer 1 and Reviewer 2 were board-certified abdominal radiologists. 

3Reviewer 3 was a fourth-year resident, and Reviewer 4 was second-year resident. 

4P-values for the differences between lesion size subgroups. 
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3. Diagnostic performance of binary classification 

 In addition to the three-class classification, the diagnostic performance 

of differentiating benign liver lesions (hepatic cysts and hemangiomas) from 

metastatic lesions was analyzed (Table 6). The radiomics model and all four 

radiologists showed high sensitivity (80.54%−95.97%) and specificity 

(86.71%−99.37%) for diagnosing liver metastases. Sensitivity, specificity, PPV, 

NPV, accuracy, and AUC of the radiomics model for diagnosing liver 

metastases were 80.54%, 87.97%, 86.33%, 82.74%, 84.36%, and 0.9426, 

respectively. Reviewers 1, 2, and 3 showed significantly higher accuracy 

(93.81–96.09%; p-value, 0.002–0.003) and AUC (0.9810–0.9928; p-value, 

<0.001–0.003) than those of the radiomics model. For a comparison between 

the radiomics model and the radiologists, a p-value less than 0.025 was set to be 

significant after applying Bonferroni correction. The average diagnostic 

performance of the board-certified radiologists was significantly higher than 

that of the radiomics model, with a sensitivity of 93.29% (p-value, 0.003), a 

specificity of 96.52% (p-value, 0.007), a PPV of 96.19% (p-value, 0.008), an 

NPV of 93.85% (p-value, 0.006), an accuracy of 94.95% (p-value, <0.001), and 

an AUC of 0.9814 (p-value, <0.001). Although the differences were not 

significant, the resident radiologists showed numerically higher sensitivity 

(90.60%; p-value, 0.030), specificity (93.04%; p-value, 0.187), PPV (92.47%; 

p-value, 0.166), and NPV (91.3%; p-value, 0.056) than those of the model. The 

less-experienced radiologists showed a significantly higher accuracy (91.86%; 

p-value, <0.001) and AUC (0.9623; p-value, <0.001) than those of the 

radiomics model. The fourth-year resident showed significantly higher 

specificity (p-value, 0.003), PPV (p-value, 0.005), accuracy (p-value, 0.026), 

and AUC (p-value, 0.001) than those of the second-year resident. 
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Table 6. Diagnostic performances of binary classification (hepatic cyst + hemangioma vs. metastasis) 

Parameter Radiomics model Radiologist (average) Reviewer 11 Reviewer 21 

Sensitivity (%) 80.54 93.29 90.60 95.97 

   p-value NA 0.003 0.047 0.012 

Specificity (%) 87.97 96.52 96.84 96.20 

   p-value NA 0.007 0.018 0.059 

PPV (%) 86.33 96.19 96.43 95.97 

   p-value NA 0.008 0.023 0.050 

NPV (%) 82.74 93.85 91.62 96.20 

   p-value NA 0.006 0.069 0.018 

Accuracy (%) 

(95% CI) 

84.36 

(78.59–88.8) 

94.95 

(92.15–96.79) 

93.81 

(89.78–96.32) 

96.09 

(91.28–98.3) 

   p-value NA <0.001 0.003 0.002 

AUC 

(95% CI) 

0.9426 

(0.9149–0.9703) 

0.9814 

(0.9679–0.9901) 

0.9819 

(0.9675–0.9964) 

0.981 

(0.9596–1.0000) 

   p-value NA <0.001 0.003 0.019 
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Parameter Resident (average) Reviewer 32 Reviewer 42  

Sensitivity (%) 90.60 91.95 89.26  

   p-value 0.030 0.060 0.118  

Specificity (%) 93.04 99.37 86.71  

   p-value 0.187 0.003 0.810  

PPV (%) 92.47 99.28 86.36  

   p-value 0.166 0.004 0.996  

NPV (%) 91.30 92.90 89.54  

   p-value 0.056 0.072 0.211  

Accuracy (%) 

(95% CI) 

91.86 

(87.94–94.58) 

95.77 

(90.62–98.15) 

87.95 

(81.3–92.45) 
 

   p-value 0.013 0.003 0.359  

AUC 

(95% CI) 

0.9623 

(0.9456–0.9760) 

0.9928 

(0.9842–1.0000) 

0.9317 

(0.8933–0.9701) 
 

   p-value <0.001 <0.001 0.611  

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; NA, notapplicable; NPV, 
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negative predictive value; PPV, positive predictive value. 

1Reviewer 1 and Reviewer 2 were board-certified abdominal radiologists. 

2Reviewer 3 was a fourth-year resident, and Reviewer 4 was a second-year resident.
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IV. Discussion 

 We generated a computer-aided system to differentiate cysts, 

hemangiomas, and metastases from portal-phase CT images using handcrafted 

features and compared its diagnostic performance with radiologists. Our 

radiomics model demonstrated an overall PDI of 0.8037 with category-specific 

PDIs of 0.9432 for cysts, 0.6653 for hemangiomas, and 0.8027 for metastasis, 

indicating that the model showed good performance for discriminating cysts 

and metastasis among the three classes of liver lesions. Along with the 

diagnostic performance of three-class classification, the diagnostic accuracy of 

binary classification was also evaluated. The radiomics model of the current 

study showed 80.54% sensitivity, 87.97% specificity, 84.36% accuracy, and an 

AUC of 0.9426. In addition to substantial performance in binary classification, 

our classification system demonstrated accuracy for classifying three types of 

liver lesions with a CCP of 84.37% for all lesions, 85.87% for subcentimeter 

lesions, and 83.72% for lesions > 10 mm. Several previous studies that assessed 

the ability of machine learning for classifying liver lesions at various imaging 

modalities described good diagnostic performance, with an accuracy of 

77.3%–97.2% and an AUC of 0.92–0.94111-13, 32-36. Allowing for varying 

performance of machine learning under different imaging acquisition conditions 

and imaging modalities, we expect our classification system to differentiate 

between the three classes of liver lesions with comparable accuracy. 

 However, between the radiomics model and radiologists, the latter 

outperformed the former throughout the analyses because the top three most 

experienced radiologists showed significantly higher overall, 

hemangioma-specific, and metastasis-specific PDIs, accuracy, and AUC than 

those of the radiomics model. Particularly, the model showed the lowest 

diagnostic performance of classifying hemangiomas compared to other values. 

This can be explained by the limitation of two-dimensional segmentation. 
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Although the ROI for image segmentation was drawn at the plane where the 

image was most suitable for diagnosis and represented the corresponding 

category of liver lesions the best, single portal-phase image may not be 

sufficient for identifying hepatic hemangioma due to its various imaging 

features. Depending on the acquisition time of portal phase images, the 

morphology of the hemangioma can be heterogeneous because the typical 

imaging finding of hepatic hemangioma on dynamic contrast-enhanced CT is 

early peripheral nodular enhancement with progressive centripetal fill-in37,38. 

Moreover, atypical hemangiomas with a flash-filling enhancement pattern or 

delayed fill-in enhancement pattern cause heterogeneity in image sets for 

radiomics model training37,38. Further study with three-dimensional (3-D) 

segmentation may increase the diagnostic accuracy of the radiomics model in 

classifying hepatic hemangiomas. 

In subgroup analysis, albeit with insignificant difference, the radiomics 

model showed a lower diagnostic accuracy for classifying lesions < 10 mm than 

for classifying those ≥ 10 mm. A noticeable difference between radiologists and 

the radiomics model was that the radiologists maintained excellent diagnostic 

performance of discriminating subcentimeter lesions in the subgroup analysis. 

This discrepancy may be due to the bias of healthcare professionals who already 

know and have an experience that hepatic lesions that are too small to 

characterize are mostly benign even in cancer patients39,40. Particularly in 

colorectal cancer patients, the incidence of subcentimeter indeterminate lesions 

was reported to be 12.7% to 25.5% with a benign rate of 80% to 92.5%, which 

increased to as much as 97.8% in cases of small low attenuating hepatic lesions 

without larger lesions41-43. In accordance with this bias, in this study, more 

experienced board-certified radiologists were likely to demonstrate significantly 

better discrimination of subcentimeter benign lesions than metastatic lesion, but 

less-experienced resident radiologists showed lower category-specific PDIs for 
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cysts and hemangiomas than for metastases. Additionally, the diagnostic 

accuracy of the radiomics model for classifying lesions < 10 mm may decrease 

because precise drawing of ROI perfectly surrounding the subcentimeter-sized 

lesions is difficult and extractable information from these small lesions may be 

limited.  

Contrary to our study, some studies showed that the diagnostic 

performance of radiologists was inferior to that of the classification models. 

Dankerl et al.44 developed a retrieval-based computer-aided diagnosis system 

(accuracy for lesion type, 85.8%; accuracy for lesion histology, 75.1%) for 

differentiating 5 different types of liver lesions (cyst, hemangioma, 

hepatocellular carcinoma, metastasis and focal nodular hyperplasia) that 

provided diagnostic performance superior to three radiologists (accuracy for 

lesion type, 52–74%; accuracy for lesion histology, 22–51%). Similar to our 

study, only portal-phase CT images were used, and radiologists were allowed to 

review axial, coronal, and sagittal images. However, the liver lesion categories 

evaluated by Dankerl et al.44 included hepatocellular carcinoma and focal 

nodular hyperplasia, for which multiphase CT is crucial for an accurate 

diagnosis. The inclusion of these liver lesions may have lowered the diagnostic 

accuracy of radiologists, which may explain the difference with our study 

results. Hamm et al.45 proposed a deep learning system that classifies six 

categories of liver lesions (cyst, hemangioma, focal nodular hyperplasia, 

hepatocellular carcinoma, intrahepatic cholangiocarcinoma, and CRLM) on 

multiphase MRI with a diagnostic accuracy (90%) superior to that of two 

radiologists (80% and 85%). Other than a different imaging modality being used, 

the significant difference between our study and Hamm et al.45 is the manner in 

which radiologists assessed liver lesions. While Hamm et al.45 did not allow 

radiologists to scroll and view lesions other than the target liver lesion, 

radiologists from our study interpreted CT images similar to those seen in daily 
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clinical practice. In addition, we included every patient and liver lesion detected 

during the specific period in the study population and aimed to avoid 

convenience sampling and secure generalizability of the model. For 

implementation of the radiomics model in clinical practice, verification of its 

diagnostic performance and comparing the performance to that of radiologists 

in a clinical setting are crucial. Liver lesions that were both correctly and 

incorrectly diagnosed by the radiomics model are depicted in Figures 8 and 9. 

 

 

Figure 8. Representative images of a cyst, hemangioma, and metastasis that 

were correctly diagnosed by the radiomics model. (A) Cyst, (B) hemangioma, 

and (C) metastasis correctly diagnosed by both the radiomics model and 

radiologists. (D) Cyst correctly classified by the radiomics model but 

incorrectly diagnosed by all radiologists. (E) Hemangioma correctly diagnosed 

by the radiomics model but misclassified as metastasis by two radiologists. (F) 

Metastasis misdiagnosed as a hemangioma by resident radiologists.  
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Figure 9. Representative images of a cyst, hemangioma, and metastasis that 

were incorrectly diagnosed by the radiomics model. (A) Cyst, (B) hemangioma, 

and (C) metastasis that were misclassified by both the radiomics model and 

radiologists. In the case of metastasis, there were no lesions that were 

misdiagnosed by all four radiologists. Board-certified radiologists misclassified 

this (C) metastasis as benign and the radiomics model misdiagnosed it as a cyst. 

(D) Cyst, (E) hemangioma, and (F) metastasis that were inaccurately classified 

by the radiomics model but correctly diagnosed by radiologists. 

 

Some limitations exist in the current study. First, the sample size of 

hemangiomas was smaller than those of cysts and metastases. Although data 

augmentation was conducted to avoid an overfitting problem, this skewness in 

the dataset may have caused bias in the classifier training and induced decreased 

diagnostic performance for classifying hemangiomas. Second, the 

histopathological results of some of the liver lesions were not available. 

However, cysts and hemangiomas can be accurately diagnosed with typical 

MRI imaging features, and at least 1 year of follow-up images were reviewed to 
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judge the class of liver lesions. Finally, the subjective nature of semiautomatic 

segmentation might be another limitation of this study, particularly because the 

precise drawing of ROI of the subcentimeter lesion was challenging. To 

overcome this problem, two radiologists independently performed image 

segmentation and analyzed interobserver reproducibility. 

 

V. Conclusion 

We proposed a radiomics model that could differentiate cysts, 

hemangiomas, and metastases with substantial diagnostic performance using 

portal-phase abdominopelvic CT images from patients with CRC. Albeit 

inferior to the diagnostic accuracy of radiologists in this study, our classification 

model demonstrated high diagnostic accuracy comparable to that of previous 

studies and proved its potential to be used in clinical practice, where elimination 

of frequently detected benign liver lesions such as cysts or hemangiomas would 

help radiologists to review follow-up evaluations of cancer patients. However, 

the radiomics model demonstrated limitations especially in classifying 

hemangiomas and subcentimeter liver lesions. Therefore, at this stage, the 

unattended application of the radiomics model in the clinical setting may still be 

premature. Further studies using different techniques such as deep learning or 

3-D segmentation are required to improve diagnostic accuracy and implement 

the system in daily practice. 
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ABSTRACT(IN KOREAN) 

대장암 환자에서 발견되는 국소 간병변의 감별을 위한 조영증강 

전산화 단층촬영에서의 라디오믹스 연구 

 

<지도 교수 임준석> 

 

연세대학교 대학원 의학과 

 

배희진 

 

목적: 대장암에서 간은 제일 흔하게 전이가 되는 장기로, 대장암 

환자에서 간전이를 빠르게 진단하고, 간 병변을 정확하게 감별하는 

것은 중요하다. 따라서, 본 연구에서는 조영증강 복부 전산화 

단층촬영의 문맥기 영상에서 간 낭종, 혈관종 및 간 전이를 분류할 

수 있는 라디오믹스 모델을 구축하고, 진단 정확도를 평가하고자 

하였다. 

방법: 2005년 1월부터 2010년 12월에 조영증강 복부 전산화 

단층촬영과 조영증강 간 자기공명영상을 모두 시행한 502명의 대장암 

환자를 후향적으로 분석하였으며, 2006년 8월 23일을 기준으로 그 

이후에 조영증강 자기공명영상을 시행 받은 386명의 환자를 

학습군으로 하였고, 나머지 116명의 환자를 검증군으로 포함하였다. 

502명의 환자에서 병변의 크기가 3mm 이상, 5cm 이하인 간 낭종, 

혈관종, 간 전이 병변이 포함이 되었으며, 총 1290개의 간 병변 (간 

낭종 676개, 혈관종 130개, 간 전이 484개)의 문맥기 조영증강 
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전산화 단층촬영 영상을 이용하여 3 군의 간 병변을 분류할 수 있는 

라디오믹스 모델을 구축하였다. 추출해낸 129개의 사람이 정의한 

특징 (hand-crafted feature)중에서 관찰자간 재현성이 우수한 

(intraclass correlation coefficient> 0.75) 126개의 특징만을 

모델링에 사용하였다. ReliefF 방법을 통하여 특징 선택 (feature 

selection)을 시행하였으며, 선택된 특징들은 랜덤 포레스트를 

이용하여 학습시킨 뒤에 최종적으로 라디오믹스 모델을 구축하였다. 

구축한 모델의 진단능은 검증군에 포함된 간 병변을 이용하여 

평가하였으며, 4명의 영상의학과 의사와 진단 정확도를 비교하였다. 

이와 더불어 병변의 크기를 기준으로 10mm 미만과 10mm 이상으로 

나누어서 추가적으로 분석을 시행하였다. 3군의 간 병변을 분류하는 

진단능을 비교하기 위해서 polytomous discrimination index (PDI)와 

correct classification percentage (CCP)를 구하였고, 양성 (간 

낭종과 혈관종)과 악성의 이항 분류 진단능을 비교하기 위해서 

민감도, 특이도, 양성 예측도, 음성 예측도, 진단 정확도 및 수신자 

조작 특성 곡선 (receiver operating characteristic curve)의 곡선 

아래 면적 (area under the curve)을 분석하였다. 

결과: 라디오믹스 모델의 전체 PDI, 혈관종 PDI 및 간 전이 PDI는 

각각 0.8037, 0.6653, 0.8027로 측정되었으며, 해당 수치는 가장 

경험이 없는 영상의학과 의사를 제외한 모든 영상의학과 의사 (전체 

PDI, 0.9622-0.9680; 혈관종 PDI, 0.9452-0.9630; 간 전이 PDI, 

0.9511-0.9869)에 비해서 유의미하게 낮은 결과였다. 특히나, 병변에 

상관없이 군 별 PDI가 비슷하게 높은 영상의학과 의사와 비교하여, 

라디오믹스 모델의 혈관종 PDI는 0.6653으로 다른 군 별 PDI에 비해 

낮은 수치로 측정되었다. 10mm 이상의 병변을 평가할 때와 비교하여 
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10mm미만의 병변을 감별할 때 라디오믹스 모델의 PDI는 감소하였으나, 

영상의학과 의사의 PDI는 병변의 크기에 상관이 없이 비교적 유지가 

되는 결과를 보여주었다. 이항 분류에서는 라디오믹스 모델이 좋은 

진단능을 보여주었으며, 간 전이를 감별하는 진단 정확도가 84.36% 

(95% 신뢰도, 78.59-88.8), 수신자 조작 특성 곡선의 곡선 아래 

면적이 0.9426 (0.9149-0.9703)로 측정되었다. 그러나, 제일 경험이 

적은 영상의학과 전공의를 제외하고 나머지 3명의 영상의학과 의사는 

이항 분류에 있어서도 라디오믹스 모델을 뛰어 넘는 결과를 

보여주었으며, 진단 정확도는 93.81%-96.09%로 측정되었고, 모델과의 

차이는 통계학적으로 유의미한 차이였다 (p-value, 0.002-0.003). 

결론: 라디오믹스 모델은 대장암 환자의 문맥기 조영증강 전산화 

단층촬영 영상에서 간 낭종, 혈관종과 간 전이를 분류하는데 있어서 

영상의학과 의사보다는 낮지만, 비교적 좋은 진단 정확도를 보여, 

임상적으로 적용이 될 수 있는 잠재력을 보여주었다. 하지만, 

라디오믹스 모델은 혈관종과 10mm 미만의 병변을 진단하는 것에 있어 

한계를 보여 실제 진료 환경에서 사람의 개입 없이 적용이 되기에는 

아직은 시기 상조로 판단된다.  
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