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Abstract: We investigated the role of echocardiographic indices consisting of left ventricular end-
diastolic area (LVEDA) in combination with Doppler-derived surrogates of diastolic compliance
and filling (E/E/, E'/S', E'/ A’; early transmitral flow velocity (E), tissue Doppler-derived early (E')
diastolic, late (A’) diastolic, or peak systolic (S') velocity of the mitral annulus) in predicting fluid
responsiveness in off-pump coronary surgery. Hemodynamic and echocardiographic variables were
prospectively assessed under general anesthesia before and after a fluid challenge of 6 mL/kg during
apnea at atmospheric pressure in 64 patients with LV ejection fraction >40%. Forty patients (63%)
were fluid responders (>15% increase in stroke volume index). E/E’ and E'/S’ could predict fluid
responsiveness with area under the receiver operating characteristic curve (AUROC) of 0.71 (95%
confidence interval [CI], 0.56-0.85; p = 0.006) and 0.68 (95% CI, 0.54-0.82; p = 0.017), respectively.
The combination of LVEDA and E/E’ showed incremental predictive ability for fluid responsive-
ness compared with LVEDA (AUROC, 0.60; p = 0.170) or pulse pressure variation (AUROC, 0.70;
p = 0.002), yielding the highest AUROC of 0.78 (95% CI, 0.66-0.90; p < 0.001). The combined index of
echocardiographic variables reflecting LV dimension (LVEDA) and diastolic compliance and filling
(E/E’) is a potentially useful predictor of fluid responsiveness.

Keywords: left ventricular end-diastolic area; stroke volume index; Frank-Starling mechanism;
cardiac preload; fluid responsiveness; echocardiography; doppler

1. Introduction

For perioperative and critical care, appropriate fluid resuscitation guided by reliable
preload indices is of pivotal importance as only half of the patients are fluid responsive [1]
and superfluous fluid administration actually leads to increased mortality [2]. So far,
emerging evidence advocates the ability of dynamic preload indices, such as pulse pressure
variation (PPV) or stroke volume variation, to determine a patient’s status on the Frank-
Starling curve and thus, fluid responsiveness [3]. However, these dynamic indices are
subject to limitations related to heart-lung interaction and arrhythmia [4], which may
preclude their use in patients receiving lung-protective ventilation or those with a rhythm
other than sinus, spontaneous breathing efforts, pulse pressure hypertension or pulmonary
hypertension [5,6].

By contrast, the assessment of static preload indices is feasible regardless of heart
rhythm or heart-lung interaction, while they are unable to predict fluid responsiveness.
Indeed, the use of invasively acquired measures of filling pressures using a pulmonary
artery catheter (PAC) for assessing fluid responsiveness has been discouraged [7]. Similarly,
the predictive ability of a static echocardiographic index, left ventricular end-diastolic area
(LVEDA), for fluid responsiveness is also poor [3]. On the other hand, echocardiographic
measurements of combinations of early transmitral flow velocity (E), tissue Doppler-
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derived early (E’) diastolic, late (A’) diastolic, or peak systolic (S') velocity of the mitral
annulus may provide surrogate information regarding LV filling pressure (E/E’), preload
(E’/S') and stiffness (E'/A’) [8-11].

Hypothetically, combining LVEDA and these indices would provide more insights
regarding the LV dimension, as well as diastology (compliance and filling) that governs
the ventricular response to a fluid challenge [11], which could be used to identify fluid
responders. Moreover, these values can be reliably obtained non-invasively regardless of
respiratory status or heart rhythm (except for A’). The primary aim of this prospective
trial was to investigate the role of echocardiographic indices, including LVEDA, combined
with Doppler-derived parameters of diastolic compliance and filling in predicting fluid
responsiveness in patients undergoing surgical coronary revascularization.

2. Materials and Methods
2.1. Participants

The current study was conducted at Severance Cardiovascular Hospital, Yonsei Uni-
versity Health System, Seoul, Republic of Korea, after being approved by the institu-
tional review board (IRB number: 4-2017-0403) and registered at the clinicaltrials.gov
(NCTO03222778) before recruitment started. This study was conducted following the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guide-
lines and according to the Declaration of Helsinki. A total of 66 patients scheduled for
off-pump coronary surgery between August 2017 and March 2020 were enrolled after
obtaining written informed consent. The exclusion criteria were kidney disease requiring
renal replacement therapy, heart rhythm other than sinus, LV ejection fraction <40%, lateral
wall motion abnormalities, or any valvular heart disease of >moderate severity.

2.2. Anesthetic Management

All subjects received standardized anesthetic care as previously described [12]. In brief,
anesthesia was maintained with the continuous infusion of sufentanil and sevoflurane and
neuromuscular blockade using rocuronium. The ventilator was set to deliver 8 mL/kg
(ideal body weight) of oxygen at a respiratory rate of 8-14 breaths/min, I:E ratio of 1:2
and a positive end-expiratory pressure of 5 cmH,O. The inspired oxygen fraction was 0.4
with air. A PAC and transesophageal echocardiography (TEE) probe were inserted in all
patients and the former was connected to a Vigilance II monitor (Edwards Lifesciences LLC,
Irvine, CA, USA) assessing continuous cardiac output. PPV was acquired from the radial
arterial pressure waveform connected to Philips Intellivue MP70 (Philips Medical Systems,
Suresnes, France). The target mean arterial pressure during surgery was 60-80 mmHg,
which was maintained by administering norepinephrine, vasopressin (added when the
norepinephrine requirement exceeded 0.3 pg/kg/min), or nicardipine as necessary.

2.3. Study Protocol

Assessment of hemodynamic and echocardiographic variables was performed 15 min
after the insertion of a PAC under general anesthesia (baseline) and 10 min after the
completion of fluid challenge. A fluid challenge of 6 mL/kg (ideal body weight) was
performed for 10 min using 6% balanced hydroxyethyl starch 130/0.4 (Volulyte®; Fresenius
Kabi, Bad Homburg, Germany).

Hemodynamic variables included mean arterial pressure, heart rate, PPV, central
venous pressure (CVP), pulmonary artery occlusion pressure (PAOP), cardiac index and
stroke volume index (SVI). PPV was obtained as an average of 4 cycles of 8 s. Filling
pressures were measured during apnea at atmospheric pressure. For cardiac index and
SVI, the average of 3 serial STAT mode measurements was recorded.

Echocardiographic variables included LVEDA, E, E/, A’ and S'. They were all mea-
sured with TEE during apnea at atmospheric pressure by a single examiner (J-K Shim).
LVEDA measurements were obtained from the transgastric mid-papillary short axis view
and E, E/, A’ and S’ measurements were obtained from the midesophageal 4-chamber view.



J. Clin. Med. 2021, 10, 1886

30f11

An average of 3-5 beats was recorded for LVEDA (papillary muscle excluded in tracing the
leading edge of the endocardium; automatically computed by Siemens speckle-tracking
algorithm (ACUSON SC2000 PrimeTM, eSie VVITM, Siemens Medical Solutions USA
Inc., Mountain View, CA, USA)), E, E/, A’ and S'. Pulsed-wave Doppler measurement of
E velocity was performed between the mitral leaflet tips. Tissue Doppler imaging (TDI)
measurements of the E/, A’ and S’ were carried out at the lateral mitral annulus (sam-
ple volume, 2-3 mm; sweep speed, 50-100 mm/s). LVEDA and E, E/, A’ and S’ values
were all measured thrice each and the average value was used for analysis. Surgical in-
cision was deferred until the completion of the last measurement. Measurements of the
echocardiographic variables were conducted by J-K Shim who was blinded to the data on
hemodynamic variables. Vasopressor requirement and plateau inspiratory pressure at the
time of measurement were also recorded.

2.4. Study Endpoints

The primary endpoint was to assess the predictive abilities of the combined echocardio-
graphic preload indices consisting of LVEDA and Doppler-derived parameters of diastolic
compliance and filling (E/E’, E'/S/, or E’ /A’) for fluid responsiveness (defined as a >15%
increase in SVI). The secondary endpoint was to assess the predictive abilities of PPV, CVDP,
PAOP and LVEDA on fluid responsiveness and compare the predictive abilities of the
combined echocardiographic preload indices with those of LVEDA or PPV alone.

2.5. Statistical Analysis

Statistical analyses were conducted using SAS (version 9.4; SAS Inc., Cary, NC, USA)
and SPSS for Windows (Version 25; SPSS Inc., Chicago, IL, USA). Sample size was predicted
under the assumption that the area under the receiver operating characteristic curve
(AUROC) of the combined echocardiographic index would be greater by 0.2 than the
previously reported AUROC of 0.64 of LVEDA alone [3], to aim for an AUROC of greater
than 0.8, which is usually considered as having a good predictive ability. Thus, 60 patients
were required to obtain 80% power (alpha 0.05) assuming a fluid responsiveness rate of
60% [12] and a total of 66 patients were enrolled accounting for an additional drop-out rate
of 10%.

Intra-observer variabilities of the measured echocardiographic variables were assessed
using the intra-class correlation coefficient by a one-way random effects model. An intra-
class coefficient of more than 0.85 usually indicates that the measurement is consistent.

Continuous variables were first assessed for their normality using the Kolmogorov—
Smirnov test. Intergroup comparisons of continuous variables between fluid responders
and non-responders were performed using the independent ¢-test or Mann—-Whitney U
test according to the results of the normality test. Intergroup comparisons of categorical
variables between fluid responders and non-responders were conducted using the chi-
square test or Fisher’s exact test. Intragroup comparisons of continuous variables at
baseline and after fluid challenge in both responders and non-responders were carried
out using the paired t-test or the Wilcoxon signed-rank test according to the results of the
normality test.

The AUROC was calculated for the potential candidates of preload indices to test
their predictive ability for fluid responsiveness. To investigate the incremental value of
combining echocardiographic indices for predicting fluid responsiveness, we performed
multivariable logistic regression analysis and the AUROC:s of the tested variables were
compared using the DeLong test. A nomogram was constructed using a combination of
echocardiographic indices showing the highest AUROC in the multivariable analysis.

Data are presented as mean =+ standard deviation (SD), median (25-75% interquartile
range (IQR)), or 1 (%). A value of p < 0.05 was considered statistically significant.
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3. Results

The PAC could not be properly positioned in two patients who were then excluded
from the data analysis; thus, data from only 64 patients were analyzed. A total of 40 patients
(63%) were fluid responders. The intra-class coefficients of echocardiographic variables
that were measured thrice and averaged were 0.96, 0.98, 0.96, 0.94 and 0.96 for LVEDA, E,
E’,S" and A/, respectively, indicating excellent reproducibility. Intergroup comparisons of
patients’ characteristics between responders and non-responders are displayed in Table 1.
None of the patients required norepinephrine infusion in excess of 0.3 ug/kg/min (median
dose requirement 0.04 ug/kg/min).

Table 1. Patients’ characteristics.

Responders Non-Responders
(n = 40) (n=24)

Age (years) 66 £ 8 65£38 0.577
Female 12 (30) 2 (8) 0.042
Body mass index (kg/mz) 253+ 2.6 23.8 £3.1 0.037
Hypertension 24 (60) 17 (71) 0.382
Diabetes mellitus 12 (30) 15 (63) 0.011
Cerebrovascular accident 7 (18) 0(0) 0.039
Myocardial infarction (<3 months) 4(10) 2(8) 1.000
Left main disease (>50% stenosis) 17 (43) 10 (42) 0.948
LVEF (%) 64+ 6 67 +8 0.227

Medications
Statin 27 (68) 19 (80) 0.315
Nitrate 16 (40) 10 (42) 0.895
Beta blocker 19 (48) 14 (58) 0.401
Calcium channel blocker 20 (50) 6 (25) 0.049
Renin-angiotensin system antagonist 23 (58) 12 (50) 0.560
Patients requiring norepinephrine 35 (88) 21 (88) 1.000
Plateau inspiratory pressure (cmH;O) 15 (14-16) 15 (14-16) 0.486

Note: Data are expressed as 7 (%), mean =+ standard deviation or median (interquartile range). Abbreviation:
LVEEF, left ventricular ejection fraction.

Intergroup comparisons of hemodynamic variables and invasive indices of preload
between responders and non-responders are displayed in Table 2. At baseline, no sig-
nificant intergroup differences were found in the assessed variables including CVP and
PAOP, except SVI and PPV, which were significantly lower and higher, respectively, in the
responder group than in the non-responder group. After the fluid challenge, all variables
showed significant changes from their corresponding baseline values, except cardiac index
and SVI in the non-responder group.

Table 2. Hemodynamic variables and invasive preload indices at baseline and after fluid challenge.

Responders (1 = 40) Non-Responders (1 = 24)

Baseline After Fluid Challenge P Baseline After Fluid Challenge p
HR (bpm) 59+9 55+6 <0.001 57+5 55+5 <0.001
MAP (mmHg) 72+8 76 £9 <0.001 70 £8 76 £6 <0.001
MPAP (mmHg) 17 (15-19) 20 (18-22) <0.001 16 (14-17) 19 (17-22) <0.001
CI (L/min/m?) 2.1(1.9-2.3) 2.6 (2.3-2.9)* <0.001 2.3 (2.0-2.6) 2.1(1.9-24) <0.001
SVI (mL/beat/m?) 35 (32-38) * 46 (42-52) * <0.001 38 (33-48) 37 (34-44) <0.001
CVP (mmHg) 9 (8-11) 12 (10-13) <0.001 9 (8-10) 11 (10-13) <0.001
PAOP (mmHg) 13 (12-14) 16 (14-17) <0.001 12 (10-14) 15 (13-18) <0.001
PPV (%) 13 (8-14) * 4(3-6)* <0.001 9 (7-11) 6 (5-7) <0.001

Note: Data are expressed as mean =+ standard deviation or median (interquartile range). * Statistical significance between responders and
non-responders. HR, heart rate; MAP, mean arterial pressure; MPAP, mean pulmonary arterial pressure; CI, cardiac index; SVI, stroke
volume index; CVP, central venous pressure; PAOP, pulmonary artery occlusion pressure; PPV, pulse pressure variation.
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Intergroup comparisons of echocardiographic indices of preload between respon-
ders and non-responders are displayed in Table 3. At baseline, no significant intergroup
differences were observed in the assessed variables including LVEDA, except E/E’ and
E’'/S’, which were lower and higher, respectively, in the responder group than in the
non-responder group. After the fluid challenge, all variables showed significant changes
from their corresponding baseline values, except E'/A’ in the non-responder group.

Table 3. Echocardiographic preload indices at baseline and after fluid challenge.

Baseline After Fluid Challenge pl?

LVEDA Responder 21.1+3.38 239 +£3.6 <0.001

(cm?) Non-responder 225+3.0 239 +27 <0.001
p2b 0.140 0.990

Responder 6.2 (5.6-7.0) 7.1 (6.1-8.0) <0.001

E/E’ Non-responder 8.2 (6.1-9.2) 8.9 (7.4-9.8) 0.031
p2 0.006 0.002

Responder 09402 1.0£02 0.004

E'/S Non-responder 0.84+0.2 0.94+0.2 0.035
p2 0.024 0.099

Responder 1.3 (1.0-1.5) 1.4 (1.2-1.6) 0.013

E'/A Non-responder 1.1(0.9-1.4) 1.1 (0.9-1.5) 0.147
p2 0.140 0.048

Note: Data are expressed as mean =+ standard deviation or median (interquartile range).  Statistical significance
between baseline and after volume expansion. ? Statistical significance between responders and non-responders.
Abbreviations: LVEDA, left ventricular end-diastolic area; E, early transmitral flow velocity; E’, early-diastolic
velocity of the lateral mitral annulus; S’, peak systolic velocity of the lateral mitral annulus; A’, late-diastolic
velocity of the lateral mitral annulus.

The results of ROC curve analysis of the potential candidates of preload indices are
displayed in Table 4. Among the invasive indices of preload, only PPV was able to predict
fluid responsiveness with an AUROC of 0.70 (95% CI, 0.57-0.83; p = 0.002). Among the
echocardiographic indices of preload, E/E’ and E’'/S’ could predict fluid responsiveness
with AUROC:s of 0.71 (95% CI, 0.56-0.85; p = 0.006) and 0.68 (95% CI, 0.54-0.82; p = 0.017),
respectively. The combination of LVEDA and E/E’ in the multivariable model showed
incremental predictive ability for fluid responsiveness compared with LVEDA or PPV alone
(Table 4 and Figure 1), yielding the highest AUROC of 0.78 (95% CI, 0.66-0.90; p < 0.001).
Power calculation from the observed results yielded a power of 87%. The AUROC of the
combination of LVEDA and E/E’ was significantly larger than that of the LVEDA alone
(p = 0.020) while the AUROC of the PPV was not when compared to that of the LVEDA
(p =0.326).

Accordingly, a nomogram was constructed with LVEDA and E/E’ using a logistic
regression model, which showed the highest AUROC (Figure 2A). The p value of the
Hosmer—Lemeshow goodness-of-fit test was 0.384, indicating the adequacy of the con-
structed nomogram. The mean absolute error of the calibration plot of the nomogram was
0.021. This result indicates good correlation between the predicted probability proposed by
the nomogram and the actual probability of fluid responsiveness (Figure 2B).
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Table 4. Receiver operating characteristic curves of indices of predicting fluid responsiveness.

AUROC 95% CI p
Invasive indices
Central venous pressure 0.58 0.43-0.73 0.311
Pulmonary artery occlusion pressure 0.56 0.41-0.71 0.442
Pulse pressure variation 0.70 0.57-0.83 0.002
Echocardiographic indices
Left ventricular end-diastolic area 0.60 0.46-0.74 0.170
E/E’ 0.71 0.56-0.85 0.006
E'/S 0.68 0.54-0.82 0.017
E'/A 0.61 0.47-0.75 0.140
Combination of echocardiographic indices
Left ventricular end-diastolic area with E/E’ 0.78 0.66-0.90 <0.001
Left ventricular end-diastolic area with E'/S’ 0.68 0.54-0.82 0.012
Left ventricular end-diastolic area with E'/ A’ 0.66 0.52-0.80 0.026

Abbreviations: AUROC, area under the receiver operating characteristic curve; CI, confidence interval; E, early
transmitral flow velocity; E’, early-diastolic velocity of the lateral mitral annulus; S’, peak systolic velocity of the
lateral mitral annulus; A’, late-diastolic velocity of the lateral mitral annulus.

ROC Curves for Comparisons
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Figure 1. Comparison of receiver operating characteristic (ROC) curves of pulse pressure variation
(PPV; solid line; AUROC, 0.70; 95% CI, 0.57-0.83; p = 0.002), left ventricular end-diastolic area
(LVEDA; dashed line; AUROC, 0.60; 95% CIL, 0.46-0.74; p = 0.170) and combination of LVEDA and the
ratio of early transmitral flow velocity to early diastolic velocity of the mitral annulus (LVEDA + E/E’;
dotted line; AUROC, 0.78; 95% CI, 0.66-0.90; p < 0.001). Abbreviations: AUROC, area under the ROC
curve; CI, confidence interval.
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Figure 2. (A) Nomogram constructed with combination of left ventricular end-diastolic area (LVEDA)
and the ratio of early mitral flow velocity to early diastolic velocity of the mitral annulus (E/E’). The
p value of the Hosmer-Lemeshow goodness-of-fit test was 0.384. (B) Calibration plot comparing the
actual and predicted probability of fluid responsiveness proposed by the nomogram with a mean
absolute error of 0.021, n = 64.

4. Discussion

In the current pilot study, we validated that the combination of static echocardio-
graphic variables, LVEDA with E/F/, can predict fluid responsiveness; this combination
showed the highest predictive ability among the concomitantly assessed preload indices,
including PPV, in patients with preserved LV ejection fraction requiring surgical coronary
revascularization.

In recent years, point-of-care ultrasound has become an important pillar of critical
care as it can not only provide straightforward answers regarding some of the underlying
causes of the hemodynamic instability but also guide fluid therapy [13]. In that context,
echocardiographic dynamic indices, such as peak flow, velocity-time integral of the as-
cending aorta or carotid artery and diameter of the inferior or superior vena cava, have
also emerged as useful predictors of fluid responsiveness [12,14]. However, these indices
are also subject to the same inherent limitations related to heart-lung interaction [15]. By
contrast, static preload indices, such as invasive filling pressures and non-invasive echocar-
diographic variables, can be readily and reliably assessed at end-expiration atmospheric
pressure, regardless of the ventilatory status or heart rhythm of the patients. However, their
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predictive abilities for fluid responsiveness are absent as these indices lack information with
regard to ventricular compliance and filling [7], which would exert significant influence on
the ventricular response to a fluid challenge for the following reasons. The extent to which
myocytes are stretched by a given preload is governed by muscle compliance [16]. Thus, the
Frank-Starling mechanism and preload dependence would be significantly altered when
myocyte extension is inadequate due to impaired relaxation or reduced distensibility [11].

For the investigation of diastolic function, TDI has become an invaluable tool and
has been incorporated in the recommendations proposed by responsible societies in that
regard [17,18]. TDI-derived E’ velocity tracks LV relaxation along the long axis and cor-
relates well with the isovolumic LV relaxation rate [8]. As the major determinants of E
velocity are left atrial pressure and LV relaxation rate, E/E’ corrected for LV relaxation
was shown to estimate LV filling pressure in cardiac patients with preserved and reduced
LV function [19,20]. Although less specific, E' /A’ has been proposed to reflect ventricular
stiffness because stiffness is most pronounced in late diastole, in which A’ is reduced while
E’ is less affected [9]. Moreover, E'/S’ has been proposed to reflect increased preload
or systolic dysfunction considering the interdependence of these two variables and the
compensatory increase in preload in case of low S’ [10,21]. In terms of assessing LV diastolic
function, these Doppler-derived parameters fail to classify diastolic function in a fairly
large number of patients as they may change acutely with altered loading conditions [22].
In contrast, these shortcomings of the Doppler-derived variables would theoretically be of
great advantage in assessing fluid responsiveness as they would provide an instantaneous
snapshot of LV diastolic mechanics at the time of assessment. Thus, we hypothesized that
the combination of LVEDA and these parameters would act as a valuable preload index for
predicting fluid responsiveness.

In the current study, only E/E’ and E’/S’ could discriminate fluid responders albeit
with low predictive powers (AUROC of 0.71 and 0.68 for E/E’ and E’/S’, respectively),
which are considered as poor for clinical use, while E’/A” or LVEDA could not. Among
the invasive preload indices, only PPV was able to predict fluid responsiveness, but at
a lower predictive power (AUROC of 0.70) as well, whereas CVP and PAOP could not.
Of the combinations, LVEDA and E/E’ yielded the highest predictive power (AUROC of
0.78), whereas the combinations of LVEDA and E’/S' or E' /A’ could poorly predict fluid
responsiveness (all AUROCs < 0.70), which may be attributable to the following. Global
diastolic filling is mainly related to both early relaxation (active) and late elastic properties
(passive) [23]. Although E and E’ all measure early diastolic events, E' has also been
validated to be related to elastic recoil, which governs passive relaxation [23,24], implicating
that E’ may comprehensively reflect diastolic filling. As E velocity is highly dependent on
loading conditions, mainly determined by the left atrial pressure and LV relaxation, E/E’
would yield sophisticated information related to the instantaneous LV compliance that may
have imposed the incremental value for predicting fluid responsiveness when combined
with LVEDA. A previous study outlined the ability of E/E’ alone, in the context of reflecting
LV compliance, to predict fluid responsiveness in patients requiring surgical coronary
revascularization, with an AUROC of 0.74, but its incremental value when combined with
other parameters was not evaluated [25]. As indicated in the nomogram (Figure 2A), even
an extremely low E/E’ value of 4 alone can only yield a total point of 100 corresponding to
a 70% probability of being fluid responsive, while the addition of information obtained
from LVEDA assessment can increase the probability to over 90% (the lower the values of
LVEDA and E/F’, the more likely to be fluid responsive). By contrast, E' /A" or E'/S' is less
specific and influenced by other factors, rendering their relationship with LV compliance
less straightforward [9,10,21].

PPV is one of the most useful dynamic preload indices assuming that all of the
conditions for proper heart-lung interaction are met [3]. However, in the current study,
PPV’s predictive ability for fluid responsiveness was poor (AUROC of 0.70). Congruent
to this result, previous studies have depicted that high preoperative E/E’ (>15) and pulse
pressure hypertension (>60 mmHg), which are both closely related to diastolic dysfunction,
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resulted in abolished predictive ability of PPV or stroke volume variation in a similar subset
of patients that require surgical coronary revascularization [6,26]. In the current study,
11 (17%) and 9 (14%) patients had high preoperative E/E’ and pulse pressure hypertension,
respectively, which may have attributed to the low predictive ability of PPV.

In theory, this combined static index of LVEDA and E/E’ can potentially be applied to
guide fluid therapy in clinical situations not suitable for the evaluation of dynamic indices
or passive leg raising. However, being a pilot study, we measured these parameters in
patients with sinus rhythm under closed chest condition, which merits further studies in a
wide variety of patients in different clinical scenarios to prove its predictive ability on fluid
responsiveness independent from heart-lung interaction or heart rhythm.

This study is subject to the following limitations. First, we used the lateral mitral
annulus for TDI assessment. For simplicity, lateral E’ velocity is recommended given
the potential influence of the right ventricle on septal E’ velocity [27]. However, the
average of mitral annular velocities measured at different sites would have been the ideal
method. Second, although the echocardiographic values were obtained during apnea
at atmospheric pressure, anesthesia itself influences loading conditions. Thus, different
cut-off values regarding E velocity and to a lesser extent E’ velocity are likely to be present
in awake patients that need to be validated through further studies. Lastly, the difference
in the incidence of diabetes and cerebrovascular accident between the responders and non-
responders may have conveyed different influences on the vasculature and thus, diastology;,
which could not be expected and accounted for in this prospective, observational study.

5. Conclusions

In conclusions, the combined index of echocardiographic variables reflecting LV di-
mension (LVEDA) and diastolic compliance and filling (E/E’) can be a useful predictor of
fluid responsiveness in anesthetized patients with preserved LV ejection fraction undergo-
ing surgical coronary revascularization, showing better predictive ability than PPV in this
subset of patients.
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