
 International Journal of 

Molecular Sciences

Article

Paradoxical Pro-angiogenic Effect of Low-Dose Ellipticine
Identified by In Silico Drug Repurposing

Jisu Oh 1, Hyeon Hae Lee 2, Yunhui Jeong 2, Siyeong Yoon 2, Hyun-Ju An 2 , Minjung Baek 2, Do Kyung Kim 3

and Soonchul Lee 2,*

����������
�������

Citation: Oh, J.; Lee, H.H.; Jeong, Y.;

Yoon, S.; An, H.-J.; Baek, M.; Kim,

D.K.; Lee, S. Paradoxical

Pro-angiogenic Effect of Low-Dose

Ellipticine Identified by In Silico Drug

Repurposing. Int. J. Mol. Sci. 2021, 22,

9067. https://doi.org/10.3390/

ijms22169067

Academic Editor: Jan Korabecny

Received: 2 August 2021

Accepted: 20 August 2021

Published: 23 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Hemato-Oncology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei
University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si 16995, Korea;
newfascia5@gmail.com

2 Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine,
Seong-nam 13496, Korea; aotcnlsl@gmail.com (H.H.L.); jeongyunhui92@gmail.com (Y.J.);
tldud1105@naver.com (S.Y.); yks486ahj@naver.com (H.-J.A.); eclsa79@gmail.com (M.B.)

3 CHA Graduate School of Medicine, 120 Hyeryong-ro, Pocheon 11160, Korea; fkzhfjqm@naver.com
* Correspondence: Lsceline78@gmail.com; Tel.: +82-31-780-5289; Fax: +82-31-881-7114

Abstract: Inadequate vessel maintenance or growth causes ischemia in diseases such as myocardial
infarction, stroke, and neurodegenerative disorders. Therefore, developing an effective strategy
to salvage ischemic tissues using a novel compound is urgent. Drug repurposing has become a
widely used method that can make drug discovery more efficient and less expensive. Additionally,
computational virtual screening tools make drug discovery faster and more accurate. This study
found a novel drug candidate for pro-angiogenesis by in silico virtual screening. Using Gene Expres-
sion Omnibus (GEO) microarray datasets related to angiogenesis studies, differentially expressed
genes were identified and characteristic direction signatures extracted from GEO2EnrichR were used
as input data on L1000CDS2 to screen pro-angiogenic molecules. After a thorough review of the
candidates, a list of compounds structurally similar to TWS-119 was generated using ChemMine
Tools and its clustering toolbox. ChemMine Tools and ChemminR structural similarity search tools
for small-molecule analysis and clustering were used for second screening. A molecular docking
simulation was conducted using AutoDock v.4 to evaluate the physicochemical effect of secondary-
screened chemicals. A cell viability or toxicity test was performed to determine the proper dose of the
final candidate, ellipticine. As a result, we found ellipticine, which has pro-angiogenic effects, using
virtual computational methods. The noncytotoxic concentration of ellipticine was 156.25 nM. The
phosphorylation of glycogen synthase kinase-3β was decreased, whereas the β-catenin expression
was increased in human endothelial cells treated with ellipticine. We concluded that ellipticine
at sublethal dosage could be successfully repositioned as a pro-angiogenic substance by in silico
virtual screening.

Keywords: in silico; drug repurposing; noncytotoxic concentration; ellipticine; angiogenesis

1. Introduction

Angiogenesis, the formation of new blood vessels, is critically involved in many
normal physiological processes, such as embryonic development, ovulation, and wound
healing, and is a critical step in many pathological conditions [1]. In many patients with
coronary arterial diseases, peripheral arterial diseases (such as arteriosclerosis obliterans),
thromboangiitis obliterans, and collagen disease, the anatomic extent and distribution
of arterial occlusive disease make the patients unsuitable for surgical or percutaneous
revascularization. Additionally, the diseases sometimes follow an inexorable downhill
course. However, no pharmacological treatment has shown a favorable effect in the natural
history of critical limb ischemia in those patients [2]. Collectively, it is urgent to develop an
effective strategy to salvage ischemic tissues using a novel compound.
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Drug repurposing (also known as drug repositioning, reprofiling, or retasking) in-
volves finding novel medical uses for existing drugs, including approved, investigational,
discontinued, and shelved therapeutics [3]. In drug discovery, drug repurposing has
several advantages compared with de novo drug discovery because the new therapeutic
indications, including cost-effectiveness and time-saving with less risk, are built on already
available pharmacokinetics, as well as toxicological and manufacturing data, leading to
therapeutic solutions in an expedited manner [4]. Furthermore, it helps in circumventing
preclinical development and optimization issues, making drug discovery more efficient
and less expensive. Alternatively, advances in drug discovery have dramatically increased
the number of synthetic and naturally sourced molecules available for testing in vitro in
biochemical and cellular assays [5]. In addition, recent advancements in virtual screening
methods extend the possibilities to molecules that do not necessarily exist physically in
an investigator’s collection but can be readily obtained through purchase or synthesis.
The other advantage is that as a result of the computational prediction of binding affinity,
only a relatively small subset of compounds requires testing, and therefore, activities can
be quantified in a low- or medium-throughput assay format [6]. A method that can be
achieved by combining drug repurposing and computational manners in drug discovery is
called “in silico repurposing.”

Ellipticine is an alkaloid extracted from the trees of the species Ochrosia elliptica, which
inhibits the enzyme topoisomerase II via intercalative binding to DNA replication [7]. In
clinical trials, ellipticine derivatives have been observed to induce remission of tumor
growth but are not used for medical purposes because of their high toxicity. Side effects
include nausea and vomiting, hypertension, cramps, pronounced fatigue, mouth dry-
ness, and mycosis of the tongue and esophagus [8]. Although there are many studies
of the antiproliferative properties of several topoisomerase II inhibitors (etoposide and
amsacrine), including ellipticine, no studies have focused on the influence of this molecule
in regulating angiogenesis.

This study shows that ellipticine—a drug identified by the virtual screening strategy
using the LINCS L1000CDS2 perturbation dataset, chemical similarity, and molecular
docking test—enhances angiogenesis in in vitro and ex vivo models at a noncytotoxic
dosage, and was not used as an anticancer drug. Thus, the results of this study provide
valuable insight into a drug development process that can regenerate the ischemic tissue
by provocating angiogenesis.

2. Results
2.1. Initial Identification of Candidate Drugs to Enhance Angiogenesis by In Silico
Virtual Screening

To screen the LINCS L1000CDS2 perturbation database to identify candidate drugs
for provocating angiogenesis, we collected five angiogenesis microarray studies from the
Gene Expression Omnibus (GEO) data repository (Table 1). Each dataset was analyzed
with GEO2R to obtain gene expression change data during angiogenesis. All differentially
expressed gene symbols from five microarray results were merged into 749 unique differen-
tially expressed gene (DEG) symbols and used for virtual screening. Next, we searched the
L1000CDS2 to prioritize small molecules predicted to be either reverse or mimic expressions
of the DEG signatures [9]. The L1000CDS2 calculated the pairwise cosine distance between
the directions of the disease-drug characteristics and provided ranked lists of scores for the
candidate compounds. We obtained 347 perturbations of each (Supplemental Table S1). By
thoroughly reviewing each compound, we identified that a glycogen synthase kinase-3β
(GSK-3β) inhibitor, TWS-119 (4,6-disubstituted pyrrolo-pyrimidine), was well known to
have the pro-angiogenic effect in previous studies [10–12]. Hence, we focused on TWS-119
for further screening.
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Table 1. List of GEO datasets used in this study.

GEO
Accession
Number

Experimental Group Sample
Number Species Study Summary

GSE837

High serum PlGF 24 h
High serum VEGF-A 24 h

Low serum PlGF 24 h
Low serum VEGF-A 4 h
Low serum VEGF-A 24 h

GSM12894–
GSM12926

Homo
sapience

HUVECs are treated
with the angiogenic
factors VEGF-A and
PlGF in low or high

serum media

GSE9677
Angiopoietin-1

(Sparse)Angiopoietin-1
(Confluence)

GSM244647–
GSM244654

Homo
sapience

Angiopoietin-1
stimulation on

HUVECs

GSE19098 VEGF (spread)
VEGF (unspread)

GSM473026–
GSM473037

Homo
sapience

50 ng/mL VEGF or no
growth factor was

treated on HUVEC for
18 h

GSE22695
VEGF 30 min
VEGF 60 min

VEGF 150 min

GSM385333–
GSM385353

Homo
sapience

HUVEC and CEP were
treated with VEGF-A

for 30, 60, 150 min

GSE71216 VEGF GSM1830134–
GSM1830137

Homo
sapience

HUVECs were treated
with 16 ng/mL

VEGF165 for 4 days

We used hierarchical and multidimensional clustering analyses to identify the chem-
icals that have a structural similarity to TWS-119 among the first-screened compound
libraries, as implemented in the ChemMine software suite [13]. Hierarchical clustering
showed that 18 compounds had a similar structure within the respective libraries. Among
the 18 compounds, we found that five compounds were overlapped in multidimensional
clustering analysis [14]. The result of the structural similarity test is shown in Figure 1. The
general description of the five chemicals is shown in Table 2.

Finally, we performed molecular docking using AutoDock v.4 on GSK-3β (PDB: 3I4B)
for five compounds (TWS-119, ellipticine, BRD-K39687892, SB-334867, and CHEMBL2142877)
because TWS-119 was known as a GSK-3β inhibitor. These tested inhibitors showed nega-
tive binding energy. Ellipticine (except for CHEMBL2142877, which cannot be purchased)
showed the highest binding affinity (−7.8 kcal/mol) than did TWS-199 (−7.5 kcal/mol) and
other compounds (BRD-K39687892, −7.1 kcal/mol; SB-334867, −6.9 kcal/mol; and ATP,
−4.6 kcal/mol) (Figure 2).

Table 2. List of chemicals of interest.

Compounds IUPAC Name Known MOA CID MW

TWS-119 3-[[6-(3-aminophenyl)-7H-pyrrolo[2,3-
d]pyrimidin-4-yl]oxy]phenol GSK-3β inhibitor 9549289 318.3

Ellipticine 5,11-dimethyl-6H-pyrido[4,3-b]carbazole Topoisomerase II
inhibitor 3213 246.31

BRD-K39687892 N-(3-fluorophenyl)-2-pyridin-4-
ylquinazolin-4-amine GSK-3β inhibitor 710962 316.3

SB-334867 1-(2-methyl-1,3-benzoxazol-6-yl)-3-(1,5-
naphthyridin-4-yl)urea Orexin antagonist 6604926 319.32

CHEMBL2142877 4-phenyl-N-(6-phenyl-3-pyridin-2-yl-
1,2,4-triazin-5-yl)-1,3-thiazol-2-amine Unknown 45099945 408.5
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Figure 1. Results of structural similarity; (A) hierarchical clustering and (B) multidimensional clustering. The hierarchical
clustering method repeats the process of finding the two most similar structures, then aggregating into the same cluster until
all rows are clustered. After the repetition, structurally similar chemicals are arranged together to generate dendrogram. A
multidimensional clustering technique is used to visualize high dimensional data into two-dimensional space. This method
transforms the coordinate vectors to explain the highest two variances of the dataset. Hierarchical clustering showed
that 18 compounds had a similar structure within the respective libraries. Among the 18 compounds, we found that five
compounds were overlapped in multidimensional clustering analysis.
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Figure 2. Results of GSK-3β chemical docking test. Small molecules that putatively bind the binding box of GSK-3β were
identified using an in silico docking approach. We identified five small molecules that putatively bind the binding box
of GSK-3β. We conducted the binding energy calculation for the five compounds using AutoDock v.4 (A). Results were
ranked according to the calculated binding affinity (B). The lowest binding affinity docking pose for ellipticine/GSK-3β
was superimposed onto the ATP/GSK-3β crystal structure.
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2.2. The Noncytotoxic Concentration of Ellipticine in a Dose–Response Curve Is 156.25 nM

The efficacy of ellipticine was verified in vitro to confirm that virtual screening was
useful. It was tested in human umbilical vein endothelial cells (HUVECs) for 24 h using
the cell counting kit-8 (CCK-8) assay. Analysis of the cell viability assay by individual dose
ellipticine using twofold serial dilutions (from 10,000 to 78.125 nM) is presented in Figure 3.
Because ellipticine, a topoisomerase II inhibitor, is an anticancer drug, a cell viability assay
was used to measure appropriate drug concentrations that do not cause cell death. Thus, a
concentration of 156.25 nM was used for the following cellular experiments.
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Figure 3. Analysis of cell viability in human umbilical vein endothelial cells (HUVECs). Cell
viability was analyzed using Cell Counting Kit-8. The HUVECs were treated with 78.125–10,000 nM
ellipticine for 24 h. The noncytotoxic concentration of ellipticine (<156.25 nM) was obtained. Dose–
response curves for ellipticine at fixed substrate concentrations. Dotted lines represent the best fit of
experimental data to the four-parameter Hill equation.

2.3. Low-Dose Ellipticine Reduces the Phosphorylation of GSK-3β and Increases β-Catenin
Expression

We examined the activity of the candidate compound ellipticine using western blotting
and immunofluorescence assays. Western blotting (Figure 4A) revealed that 156.25 nM
ellipticine decreased the phosphorylation of GSK-3β. By contrast, it enhanced β-catenin
protein expression after treatment for 8 h. Immunofluorescence assay (Figure 4B) was
used to detect the status of β-catenin in HUVECs. Following a challenge with 156.25 nM
ellipticine for 8 h, the signals of β-catenin expression in the ellipticine-treated group were
significantly enhanced compared to the control group.

2.4. Low-Dose Ellipticine Enhances Endothelial Cell Migration

We performed an HUVEC angiogenesis assay (Figure 5A,B). HUVECs treated with
ellipticine showed a significantly greater number of tubes and branch points than the
control (DMSO treatment). Additionally, we tested the effect of ellipticine on HUVEC
collective bidimension through the wound-healing assay. We found a significantly greater
increment in wound closure after 8 h of incubation in ellipticine-treated cells with respect
to control cells (Figure 5C,D). Furthermore, cell migration was enhanced with the presence
of low-dose ellipticine.
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revealed that the expression of β-catenin (green) in ellipticine-treated cells was significantly enhanced compared to the
control. Nuclei were counterstained with DAPI (blue) (B). (40×magnification, scale bar = 10 µm).
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Figure 5. In vitro angiogenesis assay using HUVECs. HUVECs tube-forming assay (A) measured by the number of junctions.
DMSO was used as a negative control (40×magnification, scale bar = 500 µm). It reveals reassembly of endothelial cells
(green dot) and formation of new cell-cell contacts, vessel lumina, and cell network formation (green line) in ellipticine-
treated cells were significantly enhanced as compared with control. Graph (B) shows significant activation of endothelial
tube formation by ellipticine at 156.25 nM. Confluently cultured endothelial cells were wounded using a sterile tip and
treated without or with 156.25 nM ellipticine for 8 h (C) (40× magnification, scale bar = 100 µm). There is a significant
difference in the amount and velocity of vascular endothelial cells (green dot) migrating from both sides to fill the gap in the
wound (red line). The wound closure levels are shown (D). * p < 0.05, ** p < 0.01.
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2.5. Low-Dose Ellipticine Has a Pro-angiogenic Property

We analyzed the capillary plexus of the treated embryos to determine whether low-
dose ellipticine possesses pro-angiogenic properties. In the control embryos, a normal
vasculature was seen around the embryo. In ellipticine-treated embryos, changes were
seen in the vascular pattern (Figure 6A). The number of branches, total tube length, and
total branching length were presented in percentage. The number of branch area and
total branching length were significantly higher in ellipticine-treated embryos than in the
control (p < 0.05 and p < 0.001, respectively) (Figure 6B). With regard to in vivo vessel
formation, chorioallantoic membrane (CAM) assay with low-dose ellipticine resulted in
significantly greater vessel density, total vessel network length, and total branch points
than it without ellipticine.
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Figure 6. Chorioallantoic membrane (CAM) assay for pro-angiogenic effect. CAMs were treated with either 156.25 nM
ellipticine or DMSO as a control for 96 h (A). The number of branches, total branch length, and total tube length were
measured and shown (B). * p < 0.05, *** p < 0.001.

3. Discussion

Efforts to stimulate tissue vascularization in patients with ischemia resulting from
a coronary or peripheral arterial disease [15,16] have passed through several scientific
phases over the last dozen years based on our increased understanding of the molecular
mechanisms underlying vascular homeostasis [17]. This study shows that ellipticine, a drug
identified by a virtual screening strategy using the LINCS L1000CDS2 perturbation dataset,
ChemMine, and AutoDock, increased angiogenesis in in vitro and ex vivo models at low
concentrations. Furthermore, it provides evidence that depending on the concentration,
ellipticine regulates angiogenesis and confirms the pro-angiogenic ability of low-dose
ellipticine. Thus, a low concentration of ellipticine, such as around 156.25 nM, enhanced
capillary-like formation by increasing cell proliferation and migration, which can induce
neovascularization by inhibiting the phosphorylation of GSK-3β and upregulation of β-
catenin expression. Interestingly, although ellipticine, a topoisomerase II inhibitor, could be
used as an antitumor molecule, its low dose in the nanomolar range (156.25 nM) could offer
crucial therapeutic perspectives for treating and preventing ischemic diseases. Furthermore,
treatment with low-concentration ellipticine might have potentially no serious adverse
effects and a high degree of tolerability with a good safety profile.

Drug repurposing is an efficient approach to finding new indications by exploiting
available and approved drugs. We do not need to test them all over again because there
are existing data on pharmacokinetics and pharmacodynamics, and we could skip pre-
clinical studies and ultimately phase 1 of the clinical phase. Additionally, computational
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methods, such as structure-based drug design, can make drug discovery more resourceful
and accurate because it allows for screening large compound libraries for specific targets
quickly. Although finding new protein targets from the previously approved drugs is
challenging, computational techniques, such as virtual screening for drug repurposing,
have become one of the most widely used methods to make the drug development process
more efficient, faster, and less expensive. The use of the virtual screening of the connectivity
map methodology based on the integration of the available gene expression data helps in
identifying new indications for recently certified drugs [18–20]. Using this approach, thera-
peutic candidates for various diseases, such as dyslipidemia [21], pain [22], influenza [23],
lung cancer [24], and renal cancer [25], have been identified. Moreover, the methodological
validity of the connectivity map has been confirmed as a promising technique for drug
development and repositioning [19].

The double-stranded nature of DNA creates a special set of problems for processing
that requires strand unwinding, such as transcription and replication. The unwinding dur-
ing these processes creates a topological problem because unwinding must be compensated
by overwinding elsewhere in the DNA molecule. Thus, there is a clear requirement to alter
DNA topology by introducing transient double-strand breaks; only DNA topoisomerase
II can perform this reaction and is essential for all eukaryotic cells [26]. Ellipticine, an
alkaloid isolated from Apocynaceae plants, exhibits significant antitumor activities, which
inhibittopoisomerase II via intercalative binding into DNA [7]. Many studies have shown
that this antitumor agent forms covalent DNA adducts after enzymatic activation with
peroxidases and cytochrome P450 [27,28], suggesting additional DNA-damaging effects of
ellipticine. Furthermore, it has functioned through multiple mechanisms that participate in
cell cycle arrest by regulating the expression of cyclin B1 and Cdc2 and phosphorylation of
Cdc2 [29] to induce apoptotic cell death by generating cytotoxic-free radicals, activating the
Fas/Fas ligand system, and regulating Bcl-2 family proteins [29–31]. Moreover, ellipticine is
reported to trigger the apoptosis of human endometrial cancer cells [31,32], neuroblastoma
cells [33], and rheumatoid arthritis fibroblast-like synoviocytes [34].

The IC50 value of ellipticine in various cancer cell lines was approximately 1 µM.
Neuroblastoma IMR-32 cells, followed by neuroblastoma UKF-NB-4 and UKF-NB-3 and
leukemia HL-60 cells, were the most sensitive to ellipticine, with IC50 values lower than
1 µM. When the sensitivity of other cells to ellipticine was compared, cytotoxicity of this
agent to human breast adenocarcinoma MCF-7 cells and a glioblastoma U87MG cell line
was comparable (the IC50 values were approximately 1 µM). By contrast, leukemia CCRF-
CEM cells were less sensitive. However, the IC50 value for ellipticine was almost four times
higher in these leukemia cells than in MCF-7 and U87MG cells [35].

According to ISO 10993-5, percentages of cell viability above 80% are considered non-
cytotoxic; within 80–60%, weak; 60–40%, moderate, and below 40%, strong cytotoxicity [36].
Thus, we have determined the concentration of ellipticine as 156.25 nM and conducted
further experiments to verify the pro-angiogenic effect.

β-catenin is a central signaling molecule in the canonical Wnt pathway, an important
regulatory system that controls cell fate, and when disturbed, it is a major driver of cancer.
β-catenin is a genuinely multifunctional protein with two major cellular pools. First, it
localizes at the plasma membrane as part of multiprotein cell–cell junction complexes
(adherens junctions), and second, it is free in the cytosol or nucleus. The free form is a vital
transcriptional regulator of specific target genes. However, in cells not stimulated with
Wnt ligands, it is maintained at a low level by GSK-3β phosphorylation, which targets
β-catenin for ubiquitination and degradation [37]. GSK-3β, a multifunctional Ser/Thr
kinase, is a vital component of diverse signaling pathways regulating protein synthesis,
glycogen metabolism, cell mobility, proliferation, and survival [38,39]. There are two
mammalian GSK-3 isoforms encoded by distinct genes: GSK-3α and GSK-3β, which share
85% identity [40]. Despite a high degree of similarity and functional overlap, these isoforms
are not functionally identical and redundant. It is known whether GSK-3β plays a central



Int. J. Mol. Sci. 2021, 22, 9067 9 of 15

role in various signaling pathways, such as the Wnt/β-catenin, Hedgehog, Notch, and
insulin signaling pathways [41–45]

The possible pro-angiogenic mechanism for low concentrations of ellipticine is as fol-
lows: β-catenin has a positive effect on the serine/threonine-specific protein kinase-mechanistic
target of rapamycin (AKT-mTOR) pathway [37], thereby inducing endothelial nitric ox-
ide synthase (eNOS) expression and increasing nitric oxide (NO) [46]. Additionally, an
activated AKT enhances the expression of hypoxia-inducible factor-1α (HIF-1α), which
has a great influence on the increase in vascular endothelial growth factor (VEGF) [47].
Eventually, both NO and VEGF play an essential role in promoting vascular regeneration.
Conversely, because GSK-3β negatively regulates β-catenin and HIF-1α [41,42], low-dose
ellipticine is thought to facilitate angiogenesis by inhibiting GSK-3β (Figure 7).
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There are several limitations to this study. First, it is necessary to determine the
appropriate dosage of drugs that enhances angiogenesis. Second, further studies on the
specific mechanism of ellipticine pro-angiogenetic effect are needed. Nevertheless, our
research is significant as the first drug repurposing results in the neovascular regeneration
of the topoisomerase II inhibitor ellipticine using an in silico method.

In summary, the main finding of this study is the demonstration of the paradoxical
properties of the potent topoisomerase II inhibitor (antitumor effect) ellipticine in regulating
angiogenesis at a low dose by in silico virtual screening. Furthermore, this study indicated
that a low concentration of ellipticine might improve angiogenic remodeling after ischemia.
Thus, further experiments are needed to validate our findings.

4. Materials and Methods
4.1. Screening Procedure

The general chemical screening procedure is described in Figure 8. Gene Expression
Omnibus (GEO) microarray datasets related to angiogenesis studies were collected for
the first screening. The GEO2EnrichR web application and R packages were used to
extract the characteristic direction (CD) to identify differentially expressed gene signatures.
The CD method brings multivariate gene information to a single direction in hyperspace,
which makes it possible to compare similar gene signature information. All microarray
datasets were extracted with a cutoff of 500, and other options were default conditions.
The extracted CD signatures from GEO2EnrichR were used as input data on L1000CDS2 to
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screen pro-angiogenic molecules. L1000CDS2 is a web-based search engine that includes
CD signatures of thousands of small molecules.
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Figure 8. Summary of the study design.

ChemMine Tools and ChemminR, structural similarity search tools for small-molecule
analysis and clustering, were used for the second screening. PubChem compound iden-
tifications (CIDs) of first-screened small molecules were imported to construct structural
fingerprints. Hierarchical and multidimensional clustering was processed for the down-
stream analysis. The hierarchical clustering in ChemMine Tools organizes similar objects in
a tree with branch lengths proportional to the compound-to-compound similarities defined
using the Atom Pair descriptors [48] and the Tanimoto coefficiency [49]. The Tanimoto
coefficient of similarity for Molecules A and B was defined as c/(a + b − c), where a
is the number of on-bits in molecule A, b is the number of on-bits in molecule B, and c
is the number of bits that are on in both molecules A and B. The Tanimoto coefficient
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ranges from 0 to 1, with higher values indicating greater similarity. The single linkage
method was performed to define the distance between two clusters. The distance matrix,
which is converted from similarity matrix by subtracting the Tanimoto similarity values
from 1, was visualized on a heat map. Multidimensional clustering is an algorithm for
embedding compounds in a Euclidian space such that the distances between compounds
can preserve the dissimilarities between compounds. ChemMine Tools follows the analysis
of Mardia [50], which is known as classical metric multidimensional scaling or principal
coordinate analysis. Two dimensions were set for multidimensional clustering. Other
options were processed in default conditions.

Next, to evaluate the physicochemical effect of the second-screened chemical, molec-
ular docking simulation was conducted with AutoDock v.4. The structure data format
files of chemicals were collected from PubChem and converted to a PDBQT format using
Open Babel (v.2.3.1) and Raccoon (v.1.5.7rc1). GSK-3β crystal structure (PDB: 3I4B) was
imported to AutoDock v.4 for the target protein. The water molecules that could have been
included in the target protein.pdb files were removed, polar hydrogens were added to
the proteins, and Gasteiger charges were added as previously described [51]. The target
protein was changed to a PDBQT, and each chemical PDBQT was imported from AutoDock
v.4. The grid box (size: 40Å × 40Å × 40Å) was set on the binding site of the target protein.
Other options were set with default conditions for the docking process. The rank of the
binding energy (−kcal/mol) was used as the main criteria to select final molecules for
in vitro analysis.

4.2. Chemicals

On the basis of the result of the screening procedure, ellipticine was purchased from
TargetMol (Target Molecule Corp., Boston, MA, USA). Unfortunately, CHEMBL214877
could not be purchased.

4.3. Cell Culture and Chemical Treatment

HUVECs were purchased from Lonza. Cells were incubated with EGM-2 medium
(Lonza) at 37 ◦C with 5% CO2 in a humidified incubator. A passage between two and
six was used for the experiments. Each chemical was dissolved in DMSO. The selected
chemical concentration was mixed with EGM-2 medium and treated on cells. The medium
was replaced every 2–3 d. The concentration of DMSO in the medium was not more than
0.2% in the experiments.

4.4. Cell Viability Assay

To analyze the cytotoxic effect of each chemical on HUVECs, CCK-8 (Dojindo, Rockville,
MD, USA) was used according to the manufacturer’s instructions. HUVECs (5 × 103 cells)
were plated in noncoated 96-well plates and cultured for 24 h. Various doses of the chemical
or DMSO (control) were treated on each well. Following 24 h of incubation, 10 µL of CCK-8
solution was added to each well for 2 h. Absorbance at 450 nm was detected using a
microplate reader (Synergy H1, Biotek, Vermont, USA) to determine cytotoxicity.

4.5. Western Blot

HUVECs were lysed using PRO-PREP protein extraction solution (iNtRON Biotech-
nology, Seongnam, Korea). Equal amounts of proteins (15–30 µg) were loaded on 10% gel
and separated by SDS-PAGE. The separated proteins were transferred to a nitrocellulose
membrane. Following 1 h of blocking with 5% nonfat dry milk in TBS-T (0.2% TWEEN-20
with TBS), 1:1000 PBS-T diluted primary antibody was treated and incubated overnight
at 4 ◦C. After 10 min and three times of TBS-T washing, secondary antibodies diluted
at 1:2000 in TBS-T were incubated for 2 h. Antibodies against phosphorylated GSK-3β
(Ser9) (cat. no. 9336), β-Catenin (D10A8) (cat. no. 8480), and β-actin (cat. no.4970) were
purchased from Cell Signaling Technology, Inc (Danvers, MA, USA). Horseradish perox-
idase (HRP)-conjugated anti-rabbit IgG (cat. no. A120-101P) secondary antibodies were
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purchased from Bethyl Laboratories, Inc (Montgomery, TX, USA). Immunoreactive proteins
were visualized with an ECL detection kit (Pierce ECL, Thermo Fisher Scientific, Waltham,
MA, USA).

4.6. Immunofluorescence

HUVECs were plated and cultured on slides. Following chemical-treated incubation
for 8 h, cells were fixed with 4% paraformaldehyde for 10 min. After washing three times
with PBS, 0.1% Triton X-100 in PBS was loaded on cells for 10 min and washed three
times with PBS. BSA (1%) in PBS-T (0.1% TWEEN-20 with PBS) was used as a blocking
solution for 30 min. The slides were incubated with PBS-T-diluted to 1:100 primary β-
Catenin (D10A8) (cat. no. 8480) antibody overnight at 4 ◦C, followed by three times and
5 min of washing with PBS-T. Incubation with secondary diluted to 1:400 Alexa Fluor
488 goat anti-rabbit (cat. no. ab150077) antibodies was performed for 1 h at RT in a dark
environment. After three 5-min washes, 1 µg/mL of DAPI (4′,6-diamidino-2-phenylindole)
(cat. no. ab228549) was used for counterstaining for 1 min, followed by rinsing with PBS.
The mounted slide was visualized using a confocal microscope (Zeiss LSM880).

4.7. Tube Formation Assay

A tube formation assay was performed to evaluate the effect of chemicals on angio-
genic properties in HUVEC. Matrigel (60 µL) thawed at 4 ◦C was coated on each well of
96-well plates, followed by 30 min incubation at room temperature (20~22 ◦C) for initial so-
lidification. Then, 2 h of additional solidification was performed in a humidified incubator.
HUVECs (1.5 × 104/well) were seeded in Matrigel-coated 96-well plates. After 2–3 h of
incubation at 37 ◦C for initial tube formation, predetermined concentrations of chemicals
from the CCK assay with EGM-2 medium were treated on HUVEC for 8 h. An assessment
of tube network was performed under a fluorescence microscope. Calcein AM (1 mM;
BD Biosciences, Franklin Lakes, NJ, USA) was treated 20 min before the assessment. The
number of branching points was calculated using ImageJ (NIH).

4.8. Migration Assay

To analyze the migration effect of chemicals on HUVECs, a migration assay was per-
formed using a wound-healing assay multiwell plate (ibidi, Fitchbug, WI, USA) according
to the manufacturer’s instructions. Briefly, 70 µL of 1.0 × 105 HUVEC was plated on each
well’s insert. After observing confluency within 1 to 2 d of incubation, predetermined
concentrations of chemicals or DMSO with EGM-2 medium were treated on each well,
followed by insert removal with sterile tweezers. The assessment was performed after 8 h
of incubation under a fluorescence microscope. Calcein AM was treated 20 min before the
assessment. The percentage of wound closure was determined by ImageJ.

4.9. Chorioallantoic Membrane (CAM) Assay

Fertilized chicken eggs (Ross 308) were incubated at 37 ◦C in 60–80% humidity for
24 h. Eggshells were cleaned with 70% ethanol, and a pinpoint hole was then made through
the blunt pole of the shell. Next, a sterilized Thermanox coverslip (Nunc, Thermo Fisher
Scientific, Waltham, MA, USA) saturated with either sterile phosphate-buffered saline or el-
lipticine was placed on the CAM. A predetermined concentration of chemicals was applied
for 72 h. The holes were then sealed with cellophane tape, and the eggs were resubjected
to incubation under the abovementioned conditions. On Hamburger–Hamilton develop-
mental stage 22–24 (day 4 of the incubation period), the eggshells and shell membranes
were aseptically removed to expose the surface of the CAM by peeling a 25 × 25 mm
window on the egg. High-quality images (4000 × 3000 pixels) were captured using a
stereomicroscope (Luxeo 4D Stereozoom Microscope, Labomed, CA, USA) and analyzed.
Blood vessel density was quantified using ImageJ and represented as a bar diagram.
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4.10. Statistical Analyses

Statistical analysis of quantitative data was performed using R (v.3.6.3; The R Founda-
tion for Statistical Computing, Vienna, Austria; http://www.R-project.org/, accessed 15
April 2020). A two-tailed Student’s t-test was used for single-group comparison. p < 0.05
between experimental groups was considered statistically significant.

Supplementary Materials: Table S1: Reverse or mimic DEG signatures for the candidate compounds.
Table S1 will be available at https://www.mdpi.com/article/10.3390/ijms22169067/s1.
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