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a b s t r a c t 

The control of the brain system has received increasing attention in the domain of brain science. Most brain control studies have been conducted to explore the brain 

network’s graph-theoretic properties or to produce the desired state based on neural state dynamics, regarding the brain as a passively responding system. However, 

the self-adjusting nature of neural system after treatment has not been fully considered in the brain control. In the present study, we propose a computational 

framework for optimal control of the brain with a self-adjustment process in the effective connectivity after treatment. The neural system is modeled to adjust its 

outgoing effective connectivity as activity-dependent plasticity after treatment, followed by synaptic rescaling of incoming effective connectivity. To control this 

neural system to induce the desired function, the system’s self-adjustment parameter is first estimated, based on which the treatment is optimized. Utilizing this 

framework, we conducted simulations of optimal control over a functional hippocampal circuitry, estimated using dynamic causal modeling of voltage-sensitive dye 

imaging from the wild type and mutant mice, responding to consecutive electrical stimuli. Simulation results for optimal control of the abnormal circuit toward 

a healthy circuit using a single node treatment, neural-type specific treatment as an analogy of medication, and combined treatments of medication and nodal 

treatment suggest the plausibility of the current framework in controlling the self-adjusting neural system within a restricted treatment setting. We believe the 

proposed computational framework of the self-adjustment system would help optimal control of the dynamic brain after treatment. 
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. Introduction 

The goal of clinical treatment is to adjust the brain circuit to achieve
 desirable brain function. The issue lies in how to optimize the treat-
ent to induce the desired function effectively. In this respect, clinical

reatment for the brain can be viewed as an optimal control problem. 
Great advances have been made in treating brain circuitry with med-

cations, dissection via a surgical operation ( Schreglmann et al., 2018 ),
amma knife radiosurgery or focused ultrasound treatment ( Park et al.,
017 ), invasive electrical stimulation such as deep brain stimulation
DBS) ( Park et al., 2015 ) and vagus nerve stimulation ( Yu et al., 2018 ),
r non-invasive stimulation such as transcranial magnetic stimulation
TMS) ( Kar, 2019 ; Park et al., 2013 ) and transcranial direct current stim-
lation (tDCS) ( Bao et al., 2020 ; Brunoni et al., 2012 ; Pini et al., 2018 ).
espite notable advancement of brain treatment tools, each treatment’s
ffects on the complex human brain system are not fully understood.
e also lack a systematic understanding of the brain’s reorganization

s a response to treatment for each individual. Despite the criticality
f the treatment planning, establishing a treatment procedure is highly
estricted and relatively slow since diverse experiments are not allowed
or the human brain. Thus, a computational framework to support op-
∗ Corresponding author. 
+ Equally contributed. 

E-mail addresses: parkhj@yonsei.ac.kr , parkhj@yonsei.ac.kr (H.-J. Park). 

m  

m  

ttps://doi.org/10.1016/j.neuroimage.2021.117805 

eceived 28 June 2020; Received in revised form 20 January 2021; Accepted 24 Jan

vailable online 30 January 2021 

053-8119/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
imizing the treatment of the human brain is necessary before clinical
pplication, particularly for individualized treatment. 

Recently, the importance of the brain control has been receiving in-
reasing attention in the neuroimaging community. Studies on the con-
rol of the brain have been conducted based on two perspectives: char-
cterization of the network in terms of the controllability and optimal
ontrol of the network to induce a desired function. 

To characterize the brain network (e.g., Liu et al., 2011 ), the net-
ork controllability has been evaluated over the (mostly linear) state
ynamic equation in terms of graph-theoretic perspective. The control
nputs affect the activity state at the all or a part of the nodes to induce
he desired brain activity at all the nodes, without changing the network
opology or parameters of the dynamic state equation. This approach has
een conducted to explore differential characteristics of the network be-
ween mild traumatic brain injury and health control, between sexes or
bout heritability ( Cornblath et al., 2019 ; Gu et al., 2017 ; Lee et al.,
019 ). 

The optimal control is to find an efficient way to change the nodal
ensitivity or network connectivity (or the network topology by remov-
ng nodes or edges) to induce a desired system function. For this, di-
erse types of virtual brain stimulators have been used to predict treat-
ent effects on the system function based on the dynamic neural state
odel. For example, Falcon et al. (2016) investigated recovery pro-
uary 2021 
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o  

V  
esses after chronic stroke with a dynamic state model, the parameters
f which were estimated from fMRI signals. Simulation with a dynamic
tate model has been used to explore epilepsy and surgical interventions
 An et al., 2019 ; Jirsa et al., 2017 ; Olmi et al., 2019 ; Proix et al., 2017 ).

Both groups of brain control studies, however, do not pay sufficient
ttention to the brain system’s self-adjustive procedure after treatment.
or example, in the controllability of the brain network ( Gu et al., 2017 ),
he brain system was assumed to be a stable linear system that alters a
rain state according to external perturbations. This is similar to brain
ontrol studies conducted to change the brain system. Most control mod-
ls for the brain do not include self-adjustive neurobiological factors;
he brain circuit can be modified not only by direct stimulus but also
y secondary changes to the stimulus and self-protective processes, or
omeostasis ( Keck et al., 2017 ). 

Activity-dependent plasticity is the brain’s fundamental ability to
pdate its connectivity according to increases or decreases in activity.
any experimental studies have shown presynaptic plasticity in activat-

ng neurons ( Lachamp et al., 2009 ; Shaban et al., 2006 ; Shin et al., 2010 ;
eisskopf et al., 1994 ). Activity-dependent plasticity is a primary mech-

nism for diverse functions such as learning and memory ( Fusi et al.,
005 ; Kano et al., 2009 ). According to the activity-dependent plasticity,
oth the treated target region and its connected regions may well be
egarded to undergo changes in the connectivity. 

Homeostatic plasticity refers to the neural system’s self-maintenance
ithin a stable range and applies opposing forces on synapse strength,

ntrinsic excitability, and synapse number ( Fauth and Tetzlaff, 2016 ).
pecifically, high activation of synapses induces synaptic down-scaling,
pine loss, and dendrite retraction, which decreases the strength of
ynapses. On the other hand, in low activation of synapses, synaptic
p-scaling, spine gain, and dendrite elongation promote and increase
heir strength. Homeostatic synaptic scaling is an important mechanism
o maintain a single neuron or neuronal populations ( Turrigiano, 2012 ,
008 ). 

Despite the importance of these adjustment processes in the intrin-
ic neural circuitry, previous studies on the optimal control of the brain
ave not considered them in the modeling of the target system; there-
ore, an initial plan of treatment may not always lead to the best solu-
ion for curing brain disease. We propose a computational framework
or the optimal control of the brain circuit in the context of the brain’s
elf-adjustments after each treatment, i.e., activity-dependent plasticity
nd homeostatic plasticity. 

The optimal control of the brain depends on the neurobiologically
lausible model that responds to the external stimuli. The current op-
imal control framework is based on a computational model that has
tate dynamics over effective (directional) connectivity among neural
opulations. To make the optimal control practical, it calls for connec-
ivity estimation from the observed neuroimaging data. In this respect,
ne may refer to computational modeling and model estimation to infer
he effective connectivity of the target circuitry from the neuroimag-
ng data, for example, dynamic causal modeling (DCM) ( Friston et al.,
003 , 2017 ). In our previous study ( Kang et al., 2020 ), we estimated
he effective connectivity of the rodent’s hippocampus circuitry using
CM of the voltage-sensitive dye imaging (VSDI), while the wild type
nd mutant hippocampal circuits respond to the consecutive stimuli.
he current framework for optimal control was presented for this neu-
al circuitry model of the hippocampus, set to self-adjust its outgoing
ffective connectivity as activity-dependent plasticity after treatment,
ollowed by synaptic rescaling incoming effective connectivity. 

We optimized the nodal property (the maximal PSP) to achieve the
esired system’s function in processing a given stimulus. In this respect,
he current optimal control framework is not exactly same as the con-
entional optimal control problem where treatments are delivered to
he system via general input channels. Instead, the current framework
ptimizes inputs to change a part of model parameters to minimize the
esponse function’s difference to a stimulus between the desired sys-
em and the treated system. In this optimization, the framework first
2 
stimates hidden parameters for the system’s intrinsic adjustment pro-
esses, based on which optimal treatment on the parameter is planned.

We conducted and presented simulations for optimal control to
ake the hippocampus of mutant mice behave like wild-type mice.
ased on these simulation results, we argue that the brain system’s self-
djustment after treatment is an essential part of optimal control of the
ynamic brain. 

. Materials and methods 

We conducted simulations to control the self-adjusting neural circuit,
ased on a neural state dynamic model of the hippocampal circuit. The
etails are described in the following orders: 1) basics of the neural state
ynamic model, 2) hippocampal circuit as a test system, 3) treatment
f the nodal sensitivity, 4) activity-dependent plasticity, 5) homeostatic
lasticity, and 6) optimization of the brain control in diverse settings. 

.1. Neural state dynamics and observation models 

We used a convolution-based neural state model ( Jansen and
it, 1995 ; Moran et al., 2013 ) that describes the dynamics of information
xchange over the asymmetrically connected neural circuit in terms of
ring rate. It can be written as the following ordinary differential equa-
ions: 

𝑑 𝑣 𝑚 
𝑑𝑡 

= 𝑖 𝑚 , (1)

𝑑 𝑖 𝑚 
𝑑𝑡 

= 𝜅𝑚 𝐻 𝑚 

( 

𝑁 ∑
𝑛 =1 

𝐴 𝑚𝑛 𝑠 𝑛 𝜎
(
𝑣 𝑛 
)
+ 𝐶 𝑚 𝑢 𝑚 

) 

− 2 𝜅𝑚 𝑖 𝑚 − 𝜅2 𝑚 𝑣 𝑚 . (2)

Here, 𝑣 𝑚 and 𝑖 𝑚 indicate the membrane potential and cross mem-
rane current of a neural population 𝑚 . 𝑠 𝑛 indicates the polarity of a
eural population 𝑛 , which is assigned + 1 for excitatory neural popula-
ions and − 1 for inhibitory neural populations. 𝜅𝑚 and 𝐻 𝑚 indicate in-
erse of decay time constant and maximal postsynaptic potential (PSP).
he effective connectivity from a neural population 𝑚 to a neural popu-

ation 𝑛 is denoted by 𝐴 𝑚𝑛 . The sigmoidal (activation) function 𝜎( 𝑣 𝑛 ) of
 neural population 𝑛 describes the transformation of the average mem-
rane potential 𝑣 𝑛 to the average firing rate of action potentials, denoted
y: (
𝑣 𝑛 
)
= 

𝑓 𝑛 

1 + 𝑒𝑥 𝑝 − 𝑅 ( 𝑣 𝑛 − 𝑣 0 ,𝑛 ) 
, (3)

ith parameters of a maximal firing rate 𝑓 𝑛 and a slope 𝑅 of the sigmoid
unction. 𝑣 0 ,𝑛 is the PSP that achieves a 50% firing rate of a neural popu-
ation 𝑛 ( Jansen and Rit, 1995 ). The external input to neural populations
 𝑚 ( 𝑡 ) is multiplied by the input modulation parameter 𝐶 𝑚 . 

Linear relations between VSDI signals and membrane potential have
een reported in previous studies ( Berger et al., 2007 ; Chemla and Cha-
ane, 2010 ). Accordingly, we applied a linear observation model for the
SDI data as a linear weighted sum of the membrane potential of neural
opulations: 

 𝑟 = 𝛼𝑟 

𝑛 ∑
𝑖 =1 
𝜌𝑟𝑖 𝑉 𝑟𝑖 . (4)

Here, v r represents the VSDI signal at a region r , composed of n neural
opulations. We used all the parameters, i.e., a scaling factor 𝛼r of a
ignal at a region r , and contribution ratio 𝜌ri to the VSDI signal in region
 of the membrane potential at a neural population i, V ri , all of which
ere estimated in our previous study ( Kang et al., 2020 ). 

.2. The hippocampal functional circuitry 

As a test system for optimal control, we used a computational model
f the rodent hippocampal circuitry, estimated using DCM from the
SDI observed in response to consecutive electrical stimuli ( Kang et al.,
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Fig. 1. The hippocampal functional circuitry 

for the mutant mouse group was used as a base 

system of all simulations. The effective connec- 

tivity among ten neural populations was esti- 

mated in Kang et al. (2020) from the exper- 

iment done by Bourgeois et al. (2014) . The 

neural populations are; E11 (granule), E12 

(mossy), I11 (DG Basket), I12 (HIPROM), E21 

(CA3c Pyramidal), I21 (CA3 Basket), I22 (CA3 

O-LM), E31 (CA1 Pyramidal), I31 (CA1 Bas- 

ket), and I32 (CA1 recurrent O-LM). Exter- 

nal electric shocks u(t) were presumed to af- 

fect all regions of the stratum radiatum and 

dentate gyrus, E11, E12, I12, E21, I21, E31, 

and I31. Excitatory and inhibitory connec- 

tions are colored red and blue, modified from 

Kang et al. (2020) . (For interpretation of the 

references to color in this figure legend, the 

reader is referred to the web version of this ar- 

ticle.) 

Fig. 2. A schematic diagram for the current optimal control framework with cycles of treatments and the system’s self-adjustment steps. (i) Treatment at a node is to 

increase or decrease the maximal postsynaptic potential H of the node, for simplicity. (ii) Each treatment affects all outgoing effective connectivity from the treated 

node as an activity-dependent plasticity process. For the altered effective connectivity, homeostatic scaling normalizes all the effective connectivity coming to each 

node to maintain the total incoming connectivity. Treatments are repeated until target behaviors are achieved. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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020 ). In brief, the computational model for the hippocampal slices of
ild-type and mutant mice is composed of ten neural populations for

hree representative regions of the hippocampus (the hilus, the CA3 and
A1 regions). The ten populations are the granule, mossy, DG Basket,
nd HIPROM in the hilus; CA3c Pyramidal, CA3 Basket, and CA3 O-LM
n the CA3 region; and CA1 Pyramidal, CA1 Basket, and CA1 recur-
ent O-LM cells ( Fig. 1 ). Based on the computational model, we esti-
ated the effective connectivity in two different groups of mice from

n open VSDI dataset ( Bourgeois et al., 2014 ). The dataset contains
timulation-locked VSDI of hippocampal brain slices of wild-type and
pileptic aristaless-related homeobox gene ( Arx ) conditional knock-out
utant mice ( Arx -/+ ; Dlx 5/6 CRE-IRES-GFP ) ( Marsh et al., 2009 ). The two

roups show different neural responses to the external consecutive elec-

rical stimuli. P  

3 
Under this test condition, we expected the system’s adjustment on
ts effective connectivity based on activity-dependent plasticity and
omeostatic plasticity by controlling the maximal PSP of a target node .
ee Fig. 2 . In all simulations, we started from a mutant mouse’s connec-
ivity, which is to be controlled to generate the healthy brain response
f the wild type. 

.3. Controlling process 

The treatment of the system is done by altering the maximum PSP
 𝑛 𝑡 

(as a sensitivity) at the target node (or neural population) 𝑛 𝑡 . 

 

∗ 
𝑛 𝑡 
⇐ 𝐻 𝑛 𝑡 

+ 𝐻 𝑛 𝑡 
× 𝛼, (5)

here 𝛼 is the ratio of increase (or decrease) compared to the maximal
SP at the target node 𝑛 𝑡 and 𝐻 

∗ 
𝑛 𝑡 

is the final treatment effect at the target
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ode. When 𝛼 is positive, the treatment is set to increase the sensitivity,
hile the treatment decreases its sensitivity for negative 𝛼. 

.4. Activity-dependent plasticity 

Increased sensitivity of a neural population induces more activity,
hich is assumed to cause an increase in synaptic connectivity with
eural populations that the neural population projects to. We simplified
he activity-dependent plasticity using the following equations: 

 

𝒆 𝑛 𝑡 
→( 𝑖 + 1 ) ⇐ 𝐴 

𝒆 𝑛 𝑡 
→( 𝑖 ) + 

(
A 𝑀𝑎𝑥 − 𝐴 

𝒆 𝑛 𝑡 
→( 𝑖 ) 

)
× 𝜌, (6)

here , 

 𝑀𝑎𝑥 = 𝐴 

𝒆 𝑛 𝑡 
→( 𝑖 = 0 ) × ( 1 + 𝛽 × 𝑠𝑖𝑔 𝑛 ( 𝛼) ) , (7)

here, i indicates the number of iterations from the treatment. When a
reatment of the pre-synaptic sensitivity ( H i ) was applied at the target
ode 𝑛 𝑡 , the activity-dependent plasticity is applied to the edges (de-
oted as 𝒆 𝑛 𝑡 →) that receive direct projections from the target node 𝑛 𝑡 
first-degree neighborhood). Here, A Max represents a maximal connec-
ivity range allowed for each edge after infinite iterations, and 𝜌 indi-
ates an updated rate at each iteration after treatment, which was set to
= 0 . 8 for simulations 1 - 2, and 𝜌 = 0 . 5 for the other simulations. 

.5. Homeostatic rescaling for connectivity 

Synaptic rescaling is done by creating constant total incoming con-
ectivity at each iteration, by scaling the total incoming connectivity

𝑚 ( 𝑖 ) to the node 𝑚 at each iteration 𝑖 to be that of the initial stage 𝛾𝑚 (0) .
he total incoming connectivity 𝛾𝑚 ( 𝑖 ) to the node 𝑚 at each iteration 𝑖

s given by: 

𝑚 ( 𝑖 ) = 

∑
𝑛 

𝐴 𝑚𝑛 ( 𝑖 ) . (8)

The rescaling is done for all the nodes with the following method: 

 𝑚 ← 

( 𝑖 + 1 ) ⇐ 𝐴 𝑚 ← 

( 𝑖 ) ×
𝛾𝑚 ( 0 ) 
𝛾𝑚 ( 𝑖 ) 

, (9)

here 𝐴 𝑚 ← 

indicates all the edges that project to the node 𝑚 . It should be
oted that the sign of the inhibitory and excitatory effect can be seen in
he dynamic equation Eq. (2) , and 𝐴 𝑚𝑛 represents the absolute amount
f projections or synapses. We hypothesized that synaptic rescaling is
one to balance the number of synapses or synaptic buttons in the node
 , regardless of the excitatory or inhibitory neural types of incoming

nputs. 
To make it simple, we fixed a total number of iterations for activity-

ependent plasticity and homeostatic rescaling cycle to three (except
or simulations to show treatment effects along the treatment number)
n all simulations of the present study. We did not change self-recurrent
ffective connectivity in the adjustment process to eschew the potential
nstability due to the self-recursive plasticity in the recurrent connec-
ivity and to avoid double alterations of the parameter for the treated
ode, i.e., the nodal sensitivity and its self-recursive connectivity. 

.6. Evaluation criterion 

To evaluate the status of a treated system (a source system s) com-
ared to that of the target system t , we used the mean square error ( MSE )
etween activity signals of 𝑦 𝑡 , 𝑦 𝑠 (VSDI) from the two systems, which is
efined as follows. 

𝑆 𝐸 

(
𝑦 𝑡 , 𝑦 𝑠 

)
= 

1 
𝑇 𝑅 

𝑅 ∑
𝑟 =1 

𝑇 ∑
𝜏=1 

( 𝑦 𝑡,𝑟 ( 𝜏) − 𝑦 𝑠,𝑟 ( 𝜏) ) 2 . (10)

Here, R and T represent a total number of regions and temporal sam-
les for the VSDI signals y . In the present study, the VSDI signals from
he three regions, the hilus, and the CA3 and CA1 regions, were consid-
red. 
4 
.7. Optimization of brain control 

In the optimal control of the brain circuit, one has to include the
elf-adjustment process of the target system in the planning, formulated
ith a function of hidden parameters. In the current study, we formu-

ated activity-dependent plasticity of the system after treatment using
 parameter 𝛽, which is estimated from the treatment-response history
ata. 

At the first treatment, no response data were available to estimate
in the planning. Therefore, we utilized the MSE landscape of treat-
ent ( 𝛼) versus activity-dependent plasticity ( 𝛽) for a given node , 𝑛 𝑡 .
y marginalizing the MSE along the 𝛽, the optimal treatment ( 𝛼∗ ) was
hosen as below. 

∗ = argmin 
𝛼

𝛽𝑈𝐵 
∫
𝛽𝐿𝐵 

𝑀𝑆𝐸 ( 𝑦 𝑡 , 𝑦 𝑠 |𝛼, 𝛽) 𝑑 𝛽, (11)

here 𝑦 𝑡 and 𝑦 𝑠 represent the VSDI signals of the target and simulated
ystems. 𝛽𝐿𝐵 and 𝛽𝑈𝐵 indicate lower and upper bounds of 𝛽, which
an be chosen by the operator in consideration of empirical ranges
f available. The MSE landscape was estimated using a Bayesian op-
imization technique, which searches appropriate sampling points of
arameters based on a model of the Gaussian process. Bayesian opti-
ization is composed of two steps - approximating the objective func-

ion (using a surrogate model) and an acquisition function to decide
here to sample (evaluate). The surrogate model incorporates prior be-

ief about the objective function and updates the prior with samples
valuated from the function to derive a posterior, leading to a better
pproximation for the function. Based on the posterior of the objec-
ive function, the acquisition function determines the next sample for
valuation that is expected to improve the approximation best over the
urrently accumulated evaluations. In the present study, we adopted a
aussian process model for the surrogate model ( Snoek et al., 2012 )
nd an expected-improvement-per-second-plus function for the acqui-
ition function ( Bull, 2011 ; Gelbart et al., 2014 ). We utilized the MAT-
AB function ‘bayesopt’ (Mathworks, co. USA) with a default acquisition
unction (‘expected-improvement-per-second-plus’). In all Bayesian op-
imizations of the present study, 240 iterations were conducted. Based
n the MSE landscape, we optimized 𝛼∗ in the marginalized space of 𝛼
ccording to Eq. (11) . 

Using the optimal treatment 𝛼∗ , the initial system was treated by
hanging the system 𝐻 𝑛 𝑡 

Eq. (5) ). The treated system undergoes system-
tic adjustment according to ( Eqs. (6) -( (9) ), and the effective connectiv-
ty A (t) is updated with the system’s inherent parameter 𝛽. 

For the second treatment, we utilized the observed signal 𝑦 𝑟 1 , i.e., a
esponse signal to the first treatment 𝛼∗ , to estimate 𝛽 by minimizing
SE between the observed signal 𝑦 𝑟 1 and the signal 𝑦 𝑠 generated with

revious treatment 𝛼∗ and a variable 𝛽 to optimize as below. 

̂ = argmin 
𝛽

𝑀𝑆𝐸 

(
𝑦 𝑟 1 , 𝑦 𝑠 𝛼

∗ , 𝛽
)
. (12)

To optimize the next treatment, based on the estimated 𝛽, we se-
ected the optimal treatment parameter 𝛼∗ that minimizes MSE between
he target signal 𝑦 𝑡 and the signal 𝑦 𝑠 generated with the estimated sys-
em’s parameter 𝛽 and a variable 𝛼 to optimize, i.e., 

∗ = argmin 
𝛼

𝑀𝑆𝐸( 𝑦 𝑡 , 𝑦 𝑠 |𝛼, ̂𝛽 ) . (13)

The signal 𝑦 𝑠 is generated by applying Eqs. (1) -( 4 ) with the param-
ters { H, A } from the system stabilized after several iterations for each
reatment, derived according to the Eqs. (5) -( 9 ). To consider limited
hances of clinical treatments, we restricted the number of treatments
o three. 

Note that 𝛼 and 𝛽 can be vectors if multiple treatments with different
ffects are used and if the system’s adjustment process is formulated with
ultiple parameters. 
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Fig. 3. An example of the self-adjustment process after treatment at a node, reflected in the transient effective connectivity A and its VSDI signals at the hilus, CA3, 

and CA1. (A) When the sensitivity of node E21 (red arrow) was increased by 20% ( 𝛼 = 0 . 2) as a treatment, the system undergoes adjustment steps by changing the 

initial system’s effective connectivity as a process of the activity-dependent plasticity, followed by synaptic rescaling as a homeostatic process. This cyclic adjustment 

continues several iterations (three in this study) until it reaches the allowable (preset) range of the connectivity. The activity-dependent plasticity affects the outgoing 

connectivity from the treated node, which corresponds to the fifth column of the effective connectivity matrix (A1). Meanwhile, the homeostatic-scaling normalizes 

every row to be consistent before and after treatments or adjustments (incoming connectivity to each node, S1). Since the changes in the effective connectivity are 

relatively small compared to the initial strength of the effective connectivity, the difference ( Δ𝐴 𝑖 ) between the effective connectivity at the transient system ( A i ) and 

the initial system ( A initial ) is presented. (B) Progressive changes in the VSDI signals at the hilus (upper panel), the CA3 (middle panel), and CA1 (lower panel) are 

presented for three iterations of adjustment steps. The color intensities for VSDI signals represent the system’s first transient state A1 to the stabilized final state after 

three iterations A3. The red and blue colors represent the results of the activity-dependent plasticity and homeostatic scaling respectively. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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. Experiments and results 

We conducted five simulation experiments to show the construct va-
idity of the proposed framework. To estimate the system’s adjustment
arameter (i.e., activity-dependent plasticity), we considered two differ-
nt situations; 1) when no treatment-response data is available for the
reatment planning; 2) when a treatment-response paired data is avail-
ble from the previous treatment. For the first case, it is necessary to
hoose a safe range of the treatment 𝛼 without a good knowledge of the
ctivity-dependent plasticity parameter 𝛽 of the target system. In simu-
ation 1, we showed that utilizing 𝛽, if not accurate within a plausible
ange, is better for the optimal control than without it in the model of
he target system. In simulation 2, we propose a method to estimate the
trength of the treatment 𝛼 for the first treatment without treatment-
esponse data by marginalizing the MSE landscape. In simulation 3, we
xtend the scheme of simulation 2 to a case with multiple treatments
here a treatment-response data is available. In simulations 4–10, we
pplied the current optimal control framework to control the mutant
ystem to achieve the wild type’s behavior. In simulation 4, we opti-
ized the target node to treat to induce the mutant’s response to that

f the wild type response. In simulations 5–6, we set up an analogy to
edication treatment that regulates specific neural types (e.g., GABA

ntagonist for GABA neurons) without location specificity. Finally, in
 t  

5 
imulations 7–8, we treated the mutant system with combined medi-
ation and node-specific (i.e., specific neural population in a region)
reatments. Based on the modeling of the nodal treatment for the medi-
ated system, we conducted an experiment for a combined treatment of
edication and a nodal treatment. 

.1. Simulation 1. The system’s self-adjustment steps after treatment 

We simulated a system that adjusts its connectivity with an arbitrar-
ly chosen ground truth parameter 𝛽𝐺𝑇 = 0 . 16 (for activity-dependent
lasticity) after treatment at node E21 by altering the maximal PSP H of
he node E21 with a rate of 𝛼 = 0 . 2 . After treatment, the effective connec-
ivity A was self-adjusted by the activity-dependent plasticity, followed
y homeostatic scaling ( Fig. 3 A). Fig. 3 B shows progressive changes in
SDI signals of the system with transient effective connectivity A after

reatment. 
To test the effect of inaccurate parameter estimation for the ground-

ruth parameter 𝛽𝐺𝑇 for activity-dependent plasticity, we simulated sys-
ems with 16 potential values of 𝛽 ( 𝛽 = 0.00, 0.02, 0.04, …, 0.30) for
wo different types of treatments, i.e., increased sensitivity ( 𝛼 = 0 . 2 ) and
ecreased sensitivity ( 𝛼 = − 0 . 2 ) at node E21. We evaluated MSEs be-
ween the signal generated from the ground truth systems adjusted with
he ground truth 𝛽 = 0 . 16 and those of the 16 systems. The activity-
𝐺𝑇 
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Fig. 4. Results of simulation 1 that show effects of including the activity-dependent plasticity in the model of optimal control. (A) The effective connectivity of two 

systems after self-adjustment iterations with a given 𝛽𝐺𝑇 = 0 . 16 for treatments at node E21 by 𝛼 = 0 . 2 and by 𝛼 = −0 . 2 are presented. The red and blue arrows indicate 

a treated node with increased and decreased sensitivity. (B) VSDI signals from three different systems that underwent self-adjustment with the ground truth 𝛽𝐺𝑇 = 
0.16 (solid lines), with 𝛽 = 0 . 1 (dash-dot lines) and 𝛽 = 0 . 0 (dotted lines, without self-adjustment) are displayed for treatment with increased ( 𝛼 = 0 . 2 ) and decreased 

( 𝛼 = −0 . 2 ) sensitivity at node E21. Note the effective connectivity is slightly different for the two systems so that it is not easily identifiable by colors. However, 

signals generated from the two effective connectivity are visually identifiable. (C) The MSE between the signals from the adjusted system with 𝛽𝐺𝑇 and those with 

various activity-dependent plasticity ( 𝛽) for the two treatments ( 𝛼 = 0 . 2 and 𝛼 = −0 . 2 ) are presented. Even though the ground truth 𝛽𝐺𝑇 cannot be directly estimated, 

it is advantageous to include the self-adjustment steps with 𝛽 within a plausible range (for example, 𝛽 = 0 . 1 ) in the optimal control of the system. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ependent plasticity parameter 𝛽 = 0 . 0 indicates no self-adjustment af-
er treatment. Figs. 4 A and 4 B display the stabilized effective connectiv-
ty matrix adjusted with 𝛽𝐺𝑇 = 0 . 16 after increased treatment ( 𝛼 = 0 . 2 )
nd decreased treatment ( 𝛼 = − 0 . 2 ). The ground-truth self-adjusting
ystem ( 𝛽𝐺𝑇 = 0 . 16) generated signals (after self-adjustments) different
rom the system without self-adjustment ( 𝛽 = 0 . 0) , particularly at the
hird and fourth stimuli at the hilus ( Fig. 4 B). For treatments 𝛼 = 0 . 2 and
= −0 . 2 at node E21, MSE between signals from the system with the

round truth 𝛽𝐺𝑇 and systems with different adjustment ratio 𝛽, are dis-
layed in Fig. 4 C. If we consider the adjustment process 𝛽 within a plau-
ible range (for example 𝛽 = 0 . 1 ), it approximates the target behaviors
etter than those without considering the adjustment process ( Fig. 4 C).

.2. Simulation 2. Strategy for optimizing treatment strength 𝛼 at a target 

ode without a treatment-response data using marginal MSE landscape 

For the initial treatment, no empirical treatment-response data is
vailable to infer the adjustment parameter 𝛽 of the target system. In
his situation, to estimate the treatment strength 𝛼 without knowledge
f a system’s parameter 𝛽, we constructed an MSE landscape spanned
ith possible ranges of 𝛼 and 𝛽. The MSE for 𝛼 and 𝛽 is defined by the
SE between the signals of the target system and signals generated by
 set of 𝛼 and 𝛽. From this MSE landscape, optimal 𝛼 was chosen by
arginalizing the MSE landscape along with plausible ranges of 𝛽. 

To test this scheme, we considered a ground truth target system with
 history of alterations (adjustment) from the initial system. The system
6 
as assumed to have altered three times by damage or by any other
easons at node E21, i.e., 𝛼( 𝐸21 ) = 0.2, followed by activity-dependent
lasticity with 𝛽( E21 ) = 0 . 16 in the first transition; 𝛼( 𝐸12 ) = −0 . 2 with
ynaptic plasticity 𝛽(E12) = 0.172 in the second transition; 𝛼( 𝐸21 ) =
 . 1 with 𝛽(E21) = 0.160 in the third transition. The initial and target
ystem’s effective connectivity are shown in Fig. 5 A. 

The goal is to have the initial system behave like the target system
VSDI signals). Using the Bayesian optimization method, we explored
he MSE values between the final target signal and signals generated
rom various 𝛼 and 𝛽 parameters ( Fig. 5 B). The search ranges of param-
ters in the Bayesian optimization were set to [ − 0.5, 0.5] for 𝛼 and [0,
.3] for 𝛽. The minimum of the marginalized MSE along 𝛽 was found
t 𝛼∗ = 0.133 ( Fig. 5 C). The marginalized MSE increases rapidly after
his optimal value. The MSE between the target and initial systems was
.015, which was reduced to 4.304 after treatment, with the estimated
∗ ( Figs. 5 D). Since we do not have prior knowledge for the system’s
djustment property, the treatment plan is rather conservative, without
xpecting the treatment’s maximal gain. 

.3. Simulation 3. Strategy for optimizing treatment strength 𝛼 at a target 

ode using a treatment-response data 

We simulated a sequential treatment case, where a treatment-
esponse experimental data is available. Using the response signal to
he first treatment, we estimated the activity-dependent plasticity pa-
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Fig. 5. Results of simulation 2 that explain the strategy for optimizing the treatment strength at a target node without empirical data for the system’s adjustment 

process. (A) The initial system ( A initial ) and the target system ( A target ) and their difference are presented. The optimal control problem is to treat the sensitivity at 

node E21 to lead the initial system with ( A initial ) into a system that behaves like the target system ( A target ). (B) The MSE landscape spanned along the treatment 𝛼 and 

activity-dependent plasticity 𝛽 is derived by using the Bayesian optimization scheme. (C) The optimal treatment 𝛼∗ = 0 . 133 was chosen to minimize the marginalized 

MSE along 𝛽. (D) The VSDI signals from the target system (dotted lines) and the initial system (solid lines) are displayed in the upper panel. In the lower panel, VSDI 

signals from the target and treated systems are shown in dotted and solid lines, respectively. 
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ameter of the system, 𝛽 ( Eq. (12) ), based on which a proper treatment
∗ was chosen in the second treatment ( Eq. (13) ). 

For the initial and target systems used in simulation 2, we applied an
ptimization scheme for the optimal control of the system. In the case of
he first treatment, since no information for the activity-dependent plas-
icity 𝛽 was available, we chose optimal treatment parameter 𝛼∗ = 0.133
hat minimizes the marginal MSE along 𝛽 (shown in simulation 2, Fig. 5 B
nd 5 C). 

From the system that underwent iterative adaptive processes for
he first treatment, we obtained VSDI signal 𝑦 𝑟 as a stabilized response
o the treatment. Using this signal, we estimated the optimal activity-
ependent plasticity parameter 𝛽 = 0 . 16 that minimizes the MSE be-
ween the observed 𝑦 𝑟 and the signal generated with the previous treat-
ent 𝛼∗ according to Eq. (12) ( Figs. 6 A and 6 B). Based on the estimated
arameter 𝛽 , we searched the optimal treatment parameter 𝛼∗ = 0 . 17
o minimize MSE between the target system’s response and the sig-
al generated with a variable 𝛼 and priorly estimated 𝛽 according to
q. (13) ( Fig. 6 C). After the second treatment, the final system repro-
uced target VSDI signals with MSE as low as 0.287 ( Fig. 6 D, the third
ow). 

In the biological system, the activity-dependent plasticity 𝛽 may vary
y each treatment. To treat the system with time-varying plasticity, we
dded a re-estimation step for the activity-dependent plasticity param-
ter at each iteration. We simulated three systems with different time-
arying characteristics in the self-adjustment parameter 𝛽𝐺𝑇 ; 1) decreas-
ng plasticity 𝛽− 

𝐺𝑇 
by 0.05 from the initial 𝛽𝐺𝑇 = 0.16, 2) a fixed plastic-

ty (the identical case of the previous simulation in Fig. 6 ), 𝛽𝐺𝑇 = 0.16,
nd 3) increasing plasticity 𝛽+ 

𝐺𝑇 
by 0.05 for each increasing treatment

umber. We used the same initial and desired systems, and the same
ptimization scheme for the first treatment as the previous simulation 2
7 
 Fig. 7 A). Compared to the previous simulation, a step for re-estimating
he system’s activity-dependent plasticity parameter 𝛽 was conducted by
sing the treatment-response data set. Based on the estimated parame-
er, the optimal strength of the treatment 𝛼∗ was determined. When the
ptimal treatment strength becomes zero ( 𝛼 = 0), the system is consid-
red to achieve the best outcome, and the treatment stops. This simula-
ion suggests the current control framework can be used in more wide
ystems with different self-adjustment characteristics. Having checked
his capability, we fixed the plasticity parameter in all the following
imulations to simplify simulations. 

.4. Simulation 4. Optimal node selection for treatment to induce the 

utant system to behave like the wild type system 

We applied the optimal control framework presented in simulation
 to each node of the mutant hippocampal circuits and searched the op-
imal node in making the mutant system behave like the healthy wild
ype system. We set the mutant and wild type as an initial system and
 target system with adjustment plasticity 𝛽 = 0.15 at all nodes. Here,
e assumed that the adjustment parameter 𝛽 is inherent, and is not al-

ered by any treatment. In the Bayesian optimization, the search ranges
or parameters 𝛼 and 𝛽 were set to [ − 0.5, 0.5] and [0, 0.3]. The ten
reatments were initially planned, but it stopped when treatment did
ot improve the MSE ( 𝛼 = 0). 

Figs. 8 A and 8 B show the initial effective connectivity of the mutant
ystem and the difference of the target wild type effective connectiv-
ty from that of the mutant (initial) system. Using the optimal control
cheme presented in simulation 3, each node was treated one by one.
ccording to the previous optimal control scheme, treatment at node
21 was optimal when treated with 𝛼( 𝐸21 ) = 0 . 051 , 𝛼( 𝐸21 ) = 0 . 220 , and
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Fig. 6. Results of simulation 3 that illustrate the strategy for optimizing treatment strength 𝛼 at a target node based on the responses obtained after the previous 

treatment. (A) The entire process used in simulation 3 is explained in Equations. For the first treatment, the optimal treatment 𝛼∗ = 0 . 133 was chosen to minimize 

marginalized MSE along 𝛽 (see Fig. 5 C). (B) For the subsequent treatment, by utilizing the response signals 𝑦 𝑟 1 to the first treatment with 𝛼∗ , the activity-dependent 

plasticity 𝛽 = 0 . 16 was estimated by minimizing MSE between the response signal 𝑦 𝑟 1 and signals generated with 𝛼∗ and 𝛽 . (C) The optimal parameter for the second 

treatment 𝛼∗ = 0 . 170 was estimated based on the estimated 𝛽 . (D) Differences of effective connectivity of the target system ( A target ) from the initial system ( A initial ), 

transient systems ( A r1 , A r2 ) after treatments 1 and 2 are displayed with their optimal treatments 𝛼∗ . The signals of the initial system (upper panel) and systems after 

the first (middle panel) and second (bottom panel) treatments are shown. 
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( 𝐸21 ) = 0 . 180 for each subsequent treatment. Treatment at node I12
as optimal when treated with 𝛼( 𝐼12 ) = −0 . 051 , and 𝛼( 𝐼12 ) = −0 . 001 for

he first and second treatments. Figs. 8 C and 8 D show examples of the
hanged effective connectivity after treatments at node E21 and I12.
he VSDI signals from the initial mutant and targeted wild type sys-
ems, and VSDI signals at the system after treatments at E21 and I12
ere presented in Figs. 8 G and 8 H. For the system with 𝛽 = 0.15, the
est treatment target node was E21, as it showed the lowest final MSE
MSE = 9.679) ( Fig. 8 E). 

We also tested this scheme for diverse systems that possess different
djustment plasticity values: 𝛽 = 0.0, 0.07, 0.15, 0.2, and 0.3 ( Figs. 8 E
nd 8 I). The node E21 was not the optimal target node for the systems
ith very small adjustment plasticity 𝛽 = 0 . 0 and 𝛽 = 0 . 07 . However, for

he systems that have larger plasticity values: 𝛽 = 0.15, 0.2, and 0.3,
21 was the optimal target to make the system behave like wild type. 

.5. Simulation 5. Neural-type specific treatment as an analogy of 

edication 

We simulated treatment with a medication, which affects drug-
pecific neurons distributed throughout the system. We set the mutant
nd wild type hippocampal circuits as an initial system and a target sys-
em with adjustment plasticity 𝛽 = 0.15 for all nodes, as in the simulation
. 

We simulated the effects of GABA receptor agonists and antagonists
y changing the maximal PSP parameters ( H i ) of all inhibitory neurons.
o distinguish the effects of drug treatment from those of the node-
pecific treatment α, we used 𝛼𝑀 

to represent the amount of drug effects
or drug doses in terms of optimal control). Fig. 9 A shows the mutant
8 
ystem’s initial effective connectivity and Fig. 9 B shows the effective
onnectivity differences between the target wild type and the mutant
initial) systems, and between the stabilized system after treatment and
he initial system. By marginalizing the MSE landscape ( Fig. 9 C), the
ptimal amount of medication treatment, 𝛼𝑀 

∗ , was chosen ( Fig. 9 D).
he VSDI signals from the initial mutant and the target wild type sys-
ems, and VSDI signals at the system after treatments were presented in
igs. 9 E and 9 F. 

.6. Simulation 6. Sequential medication treatments with optimization at 

ach trial 

As an extension of previous simulation 5, where the mutant system
as treated with one-time medication, we simulated sequential medi-

ation treatments. For the first treatment, where a treatment-response
xperimental data is not available, we estimated an optimal medica-
ion dose by minimizing marginalized MSE along 𝛽, and obtained 𝛼𝑀 

∗ =
 0.1 (explained in Figs. 9 ). After the system’s adaptive process for the
rst treatment, VSDI signal 𝑦 𝑟 was obtained from a stabilized system.
rom this data, we estimated the optimal activity-dependent plastic-
ty parameter 𝛽 = 0 . 15 , with which MSE between the observed 𝑦 𝑟 and
he signal generated with the previous treatment 𝛼𝑀 

∗ was minimized
 Figs. 10 A and 10 C). In the subsequent treatments, based on the esti-
ated parameter 𝛽 , we searched the optimal treatment parameter 𝛼𝑀 

∗ 

o minimize MSE between the target system’s response and the signal
enerated with a variable 𝛼𝑀 

and the estimated 𝛽 ( Fig. 10 D). The MSE
etween the target and finally stabilized system was 24.503 ( Fig. 10 E,
he third row). 
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Fig. 7. Results of simulation 3 with the systems of three different time-varying self-adjustment parameters of 𝛽𝐺𝑇 ; 1) decreasing plasticity 𝛽− 
𝐺𝑇 

by 0.05 from the 

initial 𝛽𝐺𝑇 = 0.16, 2) a fixed plasticity, 𝛽𝐺𝑇 = 0.16, and 3) increasing plasticity 𝛽+ 
𝐺𝑇 

by 0.05 for each increasing treatment number. (A) The VSDI signals from the target 

system (dotted lines) and the initial system (solid lines) are displayed in the left panel. The strength of the first treatment 𝛼∗ = 0 . 133 was determined by previous 

simulation 2 (see Fig. 5 C). The treatment reduced the MSE between the desired and the treated systems from 9.015 to 4.304 (right panel). (B) The MSE curves for 

the three different systems are presented along the treatment from the initial 9.015. In the system with decreasing plasticity parameter 𝛽− 
𝐺𝑇 
, the system converged 

to MSE = 2.31 after three treatment. In the fixed and increasing plasticity systems with 𝛽𝐺𝑇 and 𝛽+ 
𝐺𝑇 

, the systems became optimal after two treatments and their 

final MSE were 0.29, and 1.09. (C-E) The VSDI signals that were obtained after treatment 2 and 3 are presented for each system. The second treatment strength 

was estimated with activity-dependent plasticity 𝛽 = 0 . 16 , which was obtained by minimizing MSE between the response signal 𝑦 𝑟 1 and signals generated with 𝛼∗ 

and 𝛽 ( Fig. 6 B). (C) In the decreasing plasticity system, the third treatment’s optimal treatment strength was 𝛼∗ = 0.06, and the final treatment reached the minimal 

MSE = 2.31. (D-E) In the fixed and increasing plasticity systems, after the second treatments, the systems converged to MSE = 0.287 and MSE = 1.09, respectively. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.7. Simulation 7. Combined treatments with a neural-type specific 

reatment and a single node treatment 

In this simulation, we simulated combined treatments using both
edication treatment and a single treatment to control the mutant sys-

em. Medication affects the type-specific neurons distributed globally
hroughout the system as in simulations 5–6 and node-specific treat-
ent affects locally as shown in simulation 4. 

We restricted the range of medication effects within − 0.2 ~ 0.2,
nd explored optimal strengths of the combined treatments, medica-
ion that affects all inhibitory neurons and a single node treatment at
ode E21. Node E21 was chosen as a target of the single node treat-
ent since it showed better improvement compared to the other nodes.

or the first treatment, where a treatment-response experimental data
s not available, we estimated an optimal medication effect ( 𝛼𝑀 

∗ ) and
ode treatment ( 𝛼𝑆 

∗ ) by selecting 𝛼𝑀 

and 𝛼𝑆 at the minimal point
 (  

9 
f the marginalized MSE landscape MSE(y t , y s | 𝛼𝑀 

, 𝛼𝑆 , 𝛽) along 𝛽,

.e., 𝛼∗ 
𝑀 

, 𝛼∗ 
𝑆 
= argmin 

𝛼𝑀 , 𝛼𝑆 

𝛽𝑈𝐵 
∫
𝛽𝐿𝐵 

𝑀𝑆𝐸 ( 𝑦 𝑡 , 𝑦 𝑠 |𝛼𝑀 

, 𝛼𝑆 , 𝛽) 𝑑 𝛽, and obtained 𝛼𝑀 

∗ =

 0.1 and 𝛼𝑆 
∗ = 0.15 ( Figs. 11 A and 11 B). VSDI signal 𝑦 𝑟 from a stabi-

ized system after the first treatment was used to estimate the system’s
ctivity-dependent plasticity parameter 𝛽 ( Eq. (2) in Fig. 11 A). We ob-
ained 𝛽 = 0 . 15 that minimizes MSE between the observed 𝑦 𝑟 and the
ignal generated with the previous combined treatment 𝛼𝑀 

∗ , 𝛼𝑆 
∗ , for

 variable 𝛽 ( Figs. 11 A and 11 C); 𝛽 = argmin 
𝛽

𝑀𝑆𝐸( 𝑦 𝑟 1 , 𝑦 𝑠 |𝛼∗ 𝑀 

, 𝛼∗ 
𝑆 
, 𝛽) .

ased on the estimated parameter 𝛽 , we explored the optimal treat-
ent parameter 𝛼𝑀 

∗ and 𝛼𝑆 
∗ of subsequent treatments to minimize the

SE between the target system and the stabilized system after treat-
ent ( Figs. 11 D and 11 E); 𝛼∗ 

𝑀 

, 𝛼∗ 
𝑆 
= argmin 

𝛼𝑀 , 𝛼𝑆 

𝑀𝑆𝐸( 𝑦 𝑡 , 𝑦 𝑠 |𝛼𝑀 

, 𝛼𝑆 , ̂𝛽 ) . The

SE value between the target and finally stabilized system was 1.793
 Fig. 11 E, the fourth row), which was the smallest MSE compared to the
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Fig. 8. Results of simulation 4 that show a strategy for optimal node selection to induce the mutant system to behave like the wild type system after (up to) ten 

treatments. (A) Effective connectivity of the initial system (mutant) with an adjustment parameter 𝛽 = 0.15 is displayed. (B-D) Differences of effective connectivity 

from the initial mutant system ( A initial ) are shown for the target (wild type) ( A target ) (B) and the systems stabilized after final self-adjustments ( A treated ) for the treatments 

at node E21 (C) and node I12 (D). (E) For a system ( 𝛽 = 0.15), the final MSE that the optimal treatment at each node can achieve is displayed. (F-H) The VSDI 

signals from the initial (mutant) and target (wild type) systems (F), signals from the target and stabilized systems after treatments at node E21 (G) and I12 (H) are 

exemplarily displayed. The target wild type system signals are plotted with the dotted lines and signals from the initial system and stabilized systems are plotted in 

solid lines. The blue, red, and yellow colors represent signals from the hilus, CA3, CA1. (I) For the systems with different adjustment plasticity settings 𝛽 = 0 (without 

considering the plasticity), 0.07, 0.20, and 0.30, the final MSEs that the optimal treatment at each node can achieve are displayed. 𝑁 

∗ 
𝑛𝑜𝑑𝑒 

and 𝑀𝑆𝐸 ∗ 
𝑛𝑜𝑑𝑒 

indicate the 

treatment number and the MSE that an optimal nodal treatment at the node reached the minimum MSE. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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est optimal single node treatment (simulation 4) and to the medication
nly (simulation 6). 

. Discussion 

We presented a general framework for optimal control of the brain
ircuitry. The optimal control of the brain has many inherent challenges
n clinical treatment, not only due to ethical issues but also due to
he complexity of the brain. Because of ethical and practical issues, re-
earch remains mostly theoretical and based on virtual systems. Several
odels have been proposed to control the brain, including the graph-

heoretic controllability perspective ( Karrer et al., 2020 ; Lee et al., 2019 ;
tisoet al., 2019 ; Tang et al., 2017 ) and the optimal control perspec-
ive of the dynamic state model ( An et al., 2019 ; Falcon et al., 2016 ;
irsa et al., 2017 ; Olmi et al., 2019 ; Proix et al., 2017 ). Although the two
pproaches are similar in perturbing the system ( Menara et al., 2018 ),
he purposes differ, i.e., to characterize the system in the graph-theoretic
erspective or to find an optimal way to alter the system to generate the
esired function. 

Despite the differences in these models, they all assume a linear
r passive nonlinear brain system without considering the system’s dy-
10 
amic configuration after treatment. In the current study, we introduce
he brain’s self-adjusting nature that responds non-linearly to external
reatments or perturbations, in terms of activity-dependent plasticity
nd homeostatic plasticity. Based on the estimation of unknown pa-
ameters for these adjustment processes, we propose an optimization
ramework to treat plastic brain circuitry. 

In the brain system, activity-dependent plasticity refers to func-
ional and structural changes that arise from endogenous experience
r sensation, which is evident in the literature. For example, the func-
ional response map may contract or expand according to reduced or
ncreased input to the brain at the macroscopic level ( Jones, 2000 ).
hese macroscopic changes can be induced by changes in synaptic ef-
cacy ( Andreae and Burrone, 2014 ), which occurs at either the post-
ynapse or pre-synapse sides ( Yang and Calakos, 2013 ). In electrophys-
ology, the increased activity-dependent synaptic changes are reflected
n the long-term potential (LTP) and spine gain, whereas decreased
ctivity-dependent synaptic changes induce long-term depression (LDP)
nd spine loss ( Fauth and Tetzlaff, 2016 ). The mechanism of activity-
ependent plasticity is still not fully understood at the microscopic level
et. It may be associated with Hebbian plasticity ( Bienenstock et al.,
982 ; Sanger, 1989 ), which describes the strength of a synapse between
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Fig. 9. Results of simulation 5 that show a neural type-specific treatment as an analogy of medication. (A) Effective connectivity of the initial system ( A initial ) and 

(B) differences in the effective connectivity of the target (left) and treated systems (right) compared to the initial mutant system after medication treatment are 

displayed. (C-D) The optimal treatment 𝛼𝑀 
∗ = −0 . 1 was chosen to minimize marginalized MSE along 𝛽. The VSDI signals from the target wild type and initial mutant 

systems (E) and from the decreased sensitivity at the inhibitory neurons by medication, with 𝛼𝑀 
∗ = −0 . 1 (F) are displayed. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Results of simulation 6, which illustrate the multiple-treatment strategy for optimizing medication effects 𝛼𝑀 at each medication trial. (A) The entire control 

schemes used in simulation 6 are explained. (B) For the first treatment, the optimal treatment 𝛼𝑀 
∗ = −0 . 1 was chosen to minimize marginalized MSE along 𝛽 ( Fig. 9 ). 

(C) For the subsequent treatment, by utilizing the response signals 𝑦 𝑟 1 obtained after the first treatment with 𝛼𝑀 
∗ , the activity-dependent plasticity 𝛽 = 0 . 15 was 

estimated by minimizing the MSE between the response signal 𝑦 𝑟 1 and signals generated with 𝛼𝑀 
∗ and diverse 𝛽. (D) The optimal parameter for the second treatment 

𝛼𝑀 
∗ = −0 . 03 was estimated based on the obtained 𝛽 . (E) Differences of effective connectivity between the systems after medication treatment 1 and 2 and the initial 

system are displayed with the optimal treatment 𝛼𝑀 
∗ , which is estimated at each treatment. The signals of the initial system ( A initial , upper panel), and systems after 

the first ( A r1 , middle panel) and the second ( A r2 , bottom panel) treatments are shown. The signals from the target system are displayed with dotted lines and those 

from the initial and stabilized systems after treatments are displayed in solid lines. The blue, red, and yellow lines represent signals from the hilus, CA3, and CA1, 

respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 11. Results of simulation 7 that illustrate the strategy for optimizing combined treatments. In this simulation, a medication effect 𝛼𝑀 
∗ and a node-specific 

treatment 𝛼𝑆 
∗ were optimized for each treatment. (A) The entire control scheme used in simulation 7 is explained here. (B) For the first treatment, the optimal 

treatment 𝛼𝑀 
∗ = −0 . 1 and 𝛼𝑆 

∗ = 0 . 15 were chosen to minimize marginalized MSE along 𝛽, i.e., 𝛼∗ 
𝑀 
, 𝛼∗ 
𝑆 
= argmin 

𝛼𝑀 , 𝛼𝑆 

𝛽𝑈𝐵 

∫
𝛽𝐿𝐵 

𝑀𝑆𝐸( 𝑦 𝑡 , 𝑦 𝑠 |𝛼𝑀 , 𝛼𝑆 , 𝛽) 𝑑𝛽. (C) For the subsequent 

treatment, by utilizing the response signals 𝑦 𝑟 1 after the first treatment, the activity-dependent plasticity 𝛽 = 0 . 15 was estimated which minimize the MSE between 

the response signal 𝑦 𝑟 1 and signals generated with 𝛼𝑀 
∗ = −0 . 1 and 𝛼𝑆 

∗ = 0 . 15 , and diverse 𝛽; 𝛽 = argmin 
𝛽

𝑀𝑆𝐸( 𝑦 𝑟 1 , 𝑦 𝑠 |𝛼∗ 𝑀 , 𝛼∗ 𝑆 , 𝛽) . (D-E) The optimal parameter for 

the second treatment (D) 𝛼𝑀 
∗ = −0 . 04 and 𝛼𝑆 

∗ = 0 . 4 and for the third treatment (E) 𝛼𝑀 
∗ = −0 . 05 and 𝛼𝑆 

∗ = −0 . 01 were estimated based on the obtained 𝛽 ; 𝛼∗ 
𝑀 
, 𝛼∗ 
𝑆 
= 

argmin 
𝛼𝑀 , 𝛼𝑆 

𝑀𝑆𝐸( 𝑦 𝑡 , 𝑦 𝑠 |𝛼𝑀 , 𝛼𝑆 , ̂𝛽 ) . (F) Differences of effective connectivity from the initial system after treatments 1–3 are displayed with the optimal treatment 𝛼𝑀 
∗ 

at each treatment. The signals of the initial system (panel in the first row) and systems after the first to third treatments (panel in the second to fourth rows) are 

shown. The target system’s signals are displayed with dotted lines and those from the initial system and treated systems are displayed in solid lines. The blue, red, 

and yellow lines represent signals from the hilus, CA3, and CA1. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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wo neurons depending on their correlated activity ( Hebb, 1949 ). Post-
ynaptic receptors or receptor efficacy may increase due to synchronous
ring in the neural population level (multitudes of neurons may com-
ose a neural context in the form of PSP in the post-synaptic neuron and
hus, the incoming firing from a pre-synaptic neuron may induce firing
n the post-synaptic neuron together). Increased neurotransmitter re-
ease from the pre-synaptic membrane due to increased sensitivity may
ncrease neuroreceptors in the post-synaptic neurons. Based on this neu-
al mechanism, the treatment effect in the current simplified model is
onstructed with the following logic: when a nodal activity is increased
ue to increased sensitivity, increased activation occurs in the connected
egions and thus leads to increased connectivity between the two nodes,
eading to changes in the system’s behavior. 

Homeostatic plasticity opposes increases in synaptic strength, in-
rinsic excitability, and synapse number ( Fauth and Tetzlaff, 2016 ).
12 
ince homeostatic plasticity works as a negative feedback process
 Turrigiano and Nelson, 2000 ), it contributes to stabilizing neural and
ircuit activity. Many studies have uncovered the mechanism of home-
static synaptic scaling in cell cultures in vitro ( Turrigiano et al., 1998 )
nd in vivo ( Diering et al., 2017 ; Keck et al., 2013 ) and have shown
he essential role of homeostatic synaptic scaling in forming mem-
ry ( Turrigiano and Nelson, 2000 ). Diering et al. (2017) reported that
omeostatic scaling-down occurs during sleep and contributes to the
emodeling of synapses that participate in contextual memory con-
olidation. The remodeling of synapses can be done by controlling
he trafficking of glutamate receptors such as the AMPA-type gluta-
ate receptors (AMPARs) to modulate synaptic transmission efficiency

 Shepherd and Huganir, 2007 ). Increasing or decreasing numbers of AM-
ARs according to homeostatic demand induces strengthened or weak-
ned synapses ( Diering and Huganir, 2018 ). To incorporate homeostatic
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lasticity in the model, we applied the rescaling of incoming connections
 Turrigiano, 2008 ) to keep the total number of synapses or receptors
onstant. 

Activity-dependent plasticity and homeostatic plasticity do not work
ndependently from each other. It has been suggested that they work to-
ether, which can explain various system functions such as memory for-
ation and consolidation ( Diering et al., 2017 ), recovery processes after

rain damages ( Malone and Felling, 2020 ; Murphy and Corbett, 2009 ),
nd development ( Turrigiano, 2012 ; Turrigiano and Nelson, 2004 ). In
he recovery process of the brain from a stroke, the reconstruction of
rain circuits is associated with Hebbian and homeostatic plasticity
 Malone and Felling, 2020 ; Murphy and Corbett, 2009 ), in a process
imilar to the development of circuits ( Turrigiano, 2012 ; Turrigiano and
elson, 2004 ). 

Although activity-dependent plasticity and homeostatic plasticity
ave been investigated at the microscopic level, simplifying the process
emains a crucial challenge in computational modeling. In contrast to
ebbian plasticity, which has widely been used in machine learning and
omputational neuroscience due to its effectiveness and simplicity, the
ormulation for activity-dependent plasticity has not been thoroughly
esearched. This study simplified the homeostatic process by scaling the
otal amount of synaptic properties despite its complexity at the molec-
lar or cellular level. The details of modeling the biological reality for
hese adjustive processes could be clarified in future studies. 

By simulation, we argue that the self-adjustment plasticity should be
onsidered in the treatment plan. The simulation 1 (and Fig. 4 ) showed
hat the control model with a self-adjusting plasticity term ( 𝛽 > 0.0), if
ot highly accurate, is better than without the plasticity term ( 𝛽 = 0.0) in
roducing the desired function. Simulation 4 ( Fig. 8 ) also confirms the
eed for plasticity term in the control model. In simulation 4, the best
ode to control without considering the plasticity was not optimal and
howed higher MSE than the treatment with the plasticity term. If not
 direct clinical evidence, the resistive process in the clinical treatment
ay support the current argument. Several studies have argued that the

ndividual differences in the treatment may be associated with diver-
ity in the treatment-resistant process, found in various brain disorders
uch as schizophrenia ( Patel et al., 2014 ; Potkin et al., 2020 ), depres-
ion ( Bennabi et al., 2019 ), and Parkinson’s diseases ( Vorovenci et al.,
016 ). These studies suggested that optimal treatments for individuals
eed to consider the target systems’ treatment-resistant processes. Sim-
larly, we argue the activity-dependent and homeostatic plasticity is a
actor to consider in the treatment as those types of plasticity are widely
nown in the neurobiological system. 

Considering various situations of clinical treatments, we presented
imulations corresponding to major clinical treatment settings. We pri-
arily focused on treating a single brain node (region) since a choice

n multiple nodes is generally difficult in the clinical setting, except for
ome special cases using TMS, which allow treating different nodes at
ifferent times but is less effective than other treatments. We also lim-
ted the treatment target to a node (intra-regional circuit) rather than an
dge (inter-regional circuit) since most clinical treatments are primar-
ly associated with the regulation of a target region (or local circuitry).

e disregarded some cases involving white matter treatments such as
allosotomy or cingulotomy. In treating a single node (a local neural
opulation), we conceptualized the regulation of maximal PSP using 𝛼
s a representation of sensitivity at the node. When the maximal PSP at
 node increases, the node may induce action potentials more frequently
nd deliver increased signals (firing rates) to post-synaptic neurons. In
linical treatment, changing the local sensitivity of a target node may
e possible through invasive electrical stimulation, non-invasive high-
requency TMS, or medications that enhance or suppress neural activity
t the node. Functional neurosurgery is one of most common treatments
n altering nodal sensitivity. If the surgical treatment resects a specific
egion completely, the plasticity may occur among neighbors to com-
ensate for the deficit caused by the lesion. In much of functional neu-
osurgery such as thalamotomy, a treated region is not entirely removed,
13 
ut a portion of the region is lesioned to alter the regional sensitivity or
ctivity. To show the current optimal control concept, we didn’t specify
he exact way to achieve the desired maximal PSP. How to achieve the
esired treatment level and evaluate the treatment level are still clinical
hallenges in the practical application. 

We also simulated medication, which regulates neural-type depen-
ent diffuse effects on a neural system. In particular, we simulated a
edication treatment analogous to GABA receptor antagonists or ago-
ists. Considering limited regional or functional specificity of medica-
ion (i.e., all inhibitory neurons do not play the same function), com-
ining medication and single node treatment provides more freedom to
ontrol a brain circuitry. This was evident in the simulation 6. When we
ompared the best-stabilized system for each treatment, the best result
as obtained from the combined treatment (simulation 7) than a single
ode treatment or medication only. By adopting combined treatments,
e could also reduce the drug dose, which may decrease the high dose
edication’s side effects. 

In modeling the system’s response to an external treatment, we ab-
tracted the system’s adjustment process using a parameter 𝛽. Besides
his simplification, we also assumed that 𝛽 is constant across trials. How-
ver, we showed that we could estimate 𝛽 by using a response signal
fter each treatment. By doing this, we can apply the current control
trategy to the state-dependent or treatment-dependent changes in the
ystem’s plasticity. 

Reliable construction of a neural circuit to be treated is another big
hallenge in clinical treatment. The current framework of optimal con-
rol can be practical when we know the system’s mechanism, i.e., how
t works. The mechanism is often formulated with state dynamics over
he effective connectivity among brain regions. Since the functional cir-
uit to be treated is not generally accessible, the effective connectivity
f an individual brain circuit should be determined using empirical data
or each individual. In this respect, DCM may play an essential role as
t provides a Bayesian solution to estimate each individual’s effective
onnectivity using the observed data. In this study, DCM was used to
nfer the target circuit’s effective connectivity from VSDI signals of the
odent’s hippocampus. For the optimal control, reliable estimation of a
eural circuit using observed signals or other prior knowledge is neces-
ary, particularly for individuals in the clinical setting. 

This study is designed to restore the normal response to a stim-
lus or function, rather than matching the abnormal connectivity of
he mutant mice to that of the wild type directly. According to the
op-down and bottom-up signaling in the hierarchical brain framework
 Friston, 2008 ), the hippocampal circuitry generates signals (for a stim-
lus) required by the other neural populations in different layers. Here,
e view each nodal activity as a function that transforms a stimulus

nto a signal for other brain regions and is determined by the parame-
er. Thus, the treatment issue is to make the system generate the desired
unction, which is represented by the activity for a given stimulus. In this
espect, we chose to match the response activity to that of the desired
ystem, not necessarily matching the same connectivity of the desired
ystem, based on the degeneracy principle ( Edelman and Gally, 2001 )
the same activity can be produced by diverse circuitry ( Marder and
oaillard, 2006 ). The current framework may guide the direction of

reatment in the case of epilepsy. Instead of treatment or prevention of
eizures in the mouse model of epilepsy, one may focus on the alter-
tion of the epilepsy-associated (interictal) circuit dysfunction itself, for
xample, by normalizing response to stimulation at a certain step of the
ascaded signaling hierarchy in the epileptic mice. 

Although we propose a framework of optimal control to match clin-
cal situations, we acknowledge that clinical treatment is more restric-
ive than is assumed in the current framework. We cannot disregard the
alidation issues of the current framework using empirical data. It re-
uires longitudinal data for treated populations using diverse treatment
trategies. With more clinical data and scientific knowledge, a more bi-
logically plausible model can be established. Conversely, the modeling
nd prediction steps would increase our understanding of how the brain
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orks. It may be a long journey before the optimal control of the brain
an be applied to clinical practice. Nevertheless, the current conceptual
ramework and simplified simulations take a first step toward the final
oal of optimal control of the brain. 

In summary, we propose an optimal treatment framework by intro-
ucing the estimation of adjustment processes in the brain system af-
er treatment. Simulation results showing the responses and movement
f an abnormal circuit towards a healthy circuit in diverse testing sets
uggest the plausibility of the framework and the possibility of opti-
al control within a restricted treatment environment. Although further

esearch on a more complex system should be conducted for clinical
urposes, we believe the proposed computational framework of the ad-
ustment system would help optimal control of the dynamic brain after
reatment. 

uthors contributions 

Jiyoung Kang: Conceptualization, Methodology, Software, Writing
nd Editing 

Jinseok Eo: Software, Methodology 
Dong Myeong Lee: Software, Writing and Editing 
Hae-Jeong Park: Conceptualization, Methodology, Validation, Writ-

ng and Editing, Funding 

ode 

Data used in the current study was downloaded from the open
atabase. 

Upon reasonable request, the authors will provide the codes used in
his study. 

cknowledgment 

This research was supported by Brain Research Program and the Ko-
ea Research Fellowship Program through the National Research Foun-
ation of Korea (NRF) funded by the Ministry of Science and ICT ( NRF-
017M3C7A1049051 and NRF-2017H1D3A1A01053094 ). 

eferences 

n, S. , Bartolomei, F. , Guye, M. , Jirsa, V. , 2019. Optimization of surgical intervention
outside the epileptogenic zone in the virtual epileptic patient (VEP). PLoS Comput.
Biol. 15, e1007051 . 

ndreae, L.C. , Burrone, J. , 2014. The role of neuronal activity and transmitter release on
synapse formation. Curr. Opin. Neurobiol. 27, 47–52 . 

ao, S.C. , Khan, A. , Song, R. , Kai-Yu Tong, R. , 2020. Rewiring the lesioned brain: electrical
stimulation for post-stroke motor restoration. J. Stroke 22, 47–63 . 

ennabi, D. , Charpeaud, T. , Yrondi, A. , Genty, J.B. , Destouches, S. , Lancrenon, S. ,
Alaili, N. , Bellivier, F. , Bougerol, T. , Camus, V. , Dorey, J.M. , Doumy, O. , Haese-
baert, F. , Holtzmann, J. , Lancon, C. , Lefebvre, M. , Moliere, F. , Nieto, I. , Rabu, C. ,
Richieri, R. , Schmitt, L. , Stephan, F. , Vaiva, G. , Walter, M. , Leboyer, M. , El-Hage, W. ,
Llorca, P.M. , Courtet, P. , Aouizerate, B. , Haffen, E. , 2019. Clinical guidelines for
the management of treatment-resistant depression: french recommendations from ex-
perts, the French Association for Biological Psychiatry and Neuropsychopharmacology
and the fondation FondaMental. BMC Psychiatry 19, 262 . 

erger, T., Borgdorff, A., Crochet, S., Neubauer, F.B., Lefort, S., Fauvet, B., Ferezou, I.,
Carleton, A., Lüscher, H.-.R., Petersen, C.C.H., 2007. Combined Voltage and Calcium
Epifluorescence Imaging In Vitro and In Vivo Reveals Subthreshold and Suprathresh-
old Dynamics of Mouse Barrel Cortex. 97, 3751–3762. 

ienenstock, E.L. , Cooper, L.N. , Munro, P.W. , 1982. Theory for the development of neuron
selectivity: orientation specificity and binocular interaction in visual cortex. The J.
Neurosci. 2, 32–48 . 

ourgeois, E.B. , Johnson, B.N. , McCoy, A.J. , Trippa, L. , Cohen, A.S. , Marsh, E.D. , 2014.
A toolbox for spatiotemporal analysis of voltage-sensitive dye imaging data in brain
slices. PLoS ONE 9, e108686 . 

runoni, A.R. , Nitsche, M.A. , Bolognini, N. , Bikson, M. , Wagner, T. , Merabet, L. , Ed-
wards, D.J. , Valero-Cabre, A. , Rotenberg, A. , Pascual-Leone, A. , Ferrucci, R. , Priori, A. ,
Boggio, P.S. , Fregni, F. , 2012. Clinical research with transcranial direct current stim-
ulation (tDCS): challenges and future directions. Brain Stimuli 5, 175–195 . 

ull, A.D., 2011. Convergence rates of efficient global optimization algorithms. arXiv,
1101.3501. 

hemla, S. , Chavane, F. , 2010. A biophysical cortical column model to study the multi–
component origin of the VSDI signal. Neuroimage 53, 420–438 . 
14 
ornblath, E.J. , Tang, E. , Baum, G.L. , Moore, T.M. , Adebimpe, A. , Roalf, D.R. , Gur, R.C. ,
Gur, R.E. , Pasqualetti, F. , Satterthwaite, T.D. , Bassett, D.S. , 2019. Sex differences in
network controllability as a predictor of executive function in youth. Neuroimage 188,
122–134 . 

iering, G.H. , Huganir, R.L. , 2018. The AMPA receptor code of synaptic plasticity. Neuron
100, 314–329 . 

iering, G.H. , Nirujogi, R.S. , Roth, R.H. , Worley, P.F. , Pandey, A. , Huganir, R.L. , 2017.
Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Sci-
ence 355, 511–515 . 

delman, G.M. , Gally, J.A. , 2001. Degeneracy and complexity in biological systems. Proc.
Natl. Acad. Sci. U. S. A. 98, 13763–13768 . 

alcon, M.I. , Riley, J.D. , Jirsa, V. , McIntosh, A.R. , Elinor Chen, E. , Solodkin, A. , 2016.
Functional mechanisms of recovery after chronic stroke: modeling with the virtual
brain. eNeuro 3 . 

auth, M. , Tetzlaff, C. , 2016. Opposing effects of neuronal activity on structural plasticity.
Front. Neuroanat. 10, 75 . 

riston, K. , 2008. Hierarchical models in the brain. PLoS Comput. Biol. 4, e1000211 . 
riston, K.J. , Harrison, L. , Penny, W. , 2003. Dynamic causal modelling. Neuroimage 19,

1273–1302 . 
riston, K.J. , Preller, K.H. , Mathys, C. , Cagnan, H. , Heinzle, J. , Razi, A. , Zeidman, P. , 2017.

Dynamic causal modelling revisited. Neuroimage . 
usi, S. , Drew, P.J. , Abbott, L.F. , 2005. Cascade models of synaptically stored memories.

Neuron 45, 599–611 . 
elbart, M.A., Snoek, J., Adams, R.P., 2014. Bayesian optimization with unknown con-

straints. arXiv, 1403.5607. 
u, S. , Betzel, R.F. , Mattar, M.G. , Cieslak, M. , Delio, P.R. , Grafton, S.T. , Pasqualetti, F. ,

Bassett, D.S. , 2017. Optimal trajectories of brain state transitions. Neuroimage 148,
305–317 . 

ebb, D. , 1949. The Organization of Behavior. A Neuropsychological Theory. Wiley, New
York, NY . 

ansen, B.H. , Rit, V.G. , 1995. Electroencephalogram and visual evoked potential genera-
tion in a mathematical model of coupled cortical columns. Biol. Cybern. 73, 357–366 .

irsa, V.K. , Proix, T. , Perdikis, D. , Woodman, M.M. , Wang, H. , Gonzalez-Martinez, J. ,
Bernard, C. , Benar, C. , Guye, M. , Chauvel, P. , Bartolomei, F. , 2017. The Virtual Epilep-
tic Patient: individualized whole-brain models of epilepsy spread. Neuroimage 145,
377–388 . 

ones, E.G. , 2000. Cortical and subcortical contributions to activity-dependent plasticity
in primate somatosensory cortex. Annu. Rev. Neurosci. 23, 1–37 . 

ang, J. , Jung, K. , Eo, J. , Son, J. , Park, H.J. , 2020. Dynamic causal modeling of hippocam-
pal activity measured via mesoscopic voltage-sensitive dye imaging. Neuroimage 213,
116755 . 

ano, M. , Ohno-Shosaku, T. , Hashimotodani, Y. , Uchigashima, M. , Watanabe, M. ,
2009. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89,
309–380 . 

ar, S.K. , 2019. Predictors of response to repetitive transcranial magnetic stimulation in
depression: a review of recent updates. Clin. Psychopharmacol. Neurosci. 17, 25–33 .

arrer, T.M. , Kim, J.Z. , Stiso, J. , Kahn, A.E. , Pasqualetti, F. , Habel, U. , Bassett, D. , 2020.
A practical guide to methodological considerations in the controllability of structural
brain networks. J. Neural Eng. . 

eck, T. , Keller, G.B. , Jacobsen, R.I. , Eysel, U.T. , Bonhoeffer, T. , Hubener, M. , 2013. Synap-
tic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80,
327–334 . 

eck, T. , Toyoizumi, T. , Chen, L. , Doiron, B. , Feldman, D.E. , Fox, K. , Gerstner, W. , Hay-
don, P.G. , Hubener, M. , Lee, H.K. , Lisman, J.E. , Rose, T. , Sengpiel, F. , Stellwagen, D. ,
Stryker, M.P. , Turrigiano, G.G. , van Rossum, M.C. , 2017. Integrating Hebbian and
homeostatic plasticity: the current state of the field and future research directions.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 372 . 

achamp, P.M. , Liu, Y. , Liu, S.J. , 2009. Glutamatergic modulation of cerebellar interneu-
ron activity is mediated by an enhancement of GABA release and requires protein
kinase A/RIM1alpha signaling. J. Neurosci. 29, 381–392 . 

ee, W.H. , Rodrigue, A. , Glahn, D.C. , Bassett, D.S. , Frangou, S. , 2019. Heritability and
cognitive relevance of structural brain controllability. Cereb. Cortex . 

iu, Y.Y. , Slotine, J.J. , Barabási, A.L. , 2011. Controllability of complex networks. Nature
473, 167–173 . 

alone, L.A. , Felling, R.J. , 2020. Pediatric stroke: unique implications of the immature
brain on injury and recovery. Pediatr. Neurol. 102, 3–9 . 

arder, E. , Goaillard, J.M. , 2006. Variability, compensation and homeostasis in neuron
and network function. Nat. Rev. Neurosci. 7, 563–574 . 

arsh, E. , Fulp, C. , Gomez, E. , Nasrallah, I. , Minarcik, J. , Sudi, J. , Christian, S.L. ,
Mancini, G. , Labosky, P. , Dobyns, W. , Brooks-Kayal, A. , Golden, J.A. , 2009. Targeted
loss of Arx results in a developmental epilepsy mouse model and recapitulates the
human phenotype in heterozygous females. Brain 132, 1563–1576 . 

enara, T. , Bassett, D. , Pasqualetti, F. , 2018. Structural controllability of symmetric net-
works. IEEE Trans. Automat. Contr. 64, 3740–3747 . 

oran, R. , Pinotsis, D.A. , Friston, K. , 2013. Neural masses and fields in dynamic causal
modeling. Front. Comput. Neurosci. 7, 57 . 

urphy, T.H. , Corbett, D. , 2009. Plasticity during stroke recovery: from synapse to be-
haviour. Nat. Rev. Neurosci. 10, 861–872 . 

lmi, S. , Petkoski, S. , Guye, M. , Bartolomei, F. , Jirsa, V. , 2019. Controlling seizure prop-
agation in large-scale brain networks. PLoS Comput. Biol. 15, e1006805 . 

ark, H.J. , Pae, C. , Friston, K. , Jang, C. , Razi, A. , Zeidman, P. , Chang, W.S. , Chang, J.W. ,
2017. Hierarchical dynamic causal modeling of resting-state fMRI reveals longitudinal
changes in effective connectivity in the motor system after thalamotomy for essential
tremor. Front. Neurol. 8, 346 . 

ark, H.J. , Park, B. , Kim, H.Y. , Oh, M.K. , Kim, J.I. , Yoon, M. , Lee, J.D. , Chang, J.W. , 2015.
A network analysis of (1)(5)O-H(2)O PET reveals deep brain stimulation effects on
brain network of Parkinson’s disease. Yonsei Med. J. 56, 726–736 . 

http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0001
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0002
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0003
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0004
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0006
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0007
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0008
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0010
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0011
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0012
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0013
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0014
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0015
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0016
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0017
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0018
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0019
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0020
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0022
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0023
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0024
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0025
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0026
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0027
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0028
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0029
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0030
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0031
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0032
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0033
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0034
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0035
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0036
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0037
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0038
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0039
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0040
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0041
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0042
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0043
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0044
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0044


J. Kang, J. Eo, D.M. Lee et al. NeuroImage 230 (2021) 117805 

P  

 

P  

P  

 

P  

 

 

P  

S  

S  

 

S  

 

 

S  

S  

 

S  

S  

 

 

T  

 

 

T  

T  

T  

T  

T  

V  

W  

Y  

Y  

 

 

 

ark, S. , Park, H.J. , Kyeong, S.H. , Moon, I.S. , Kim, M. , Kim, H.N. , Choi, J.Y. , 2013. Com-
bined rTMS to the auditory cortex and prefrontal cortex for tinnitus control in patients
with depression: a pilot study. Acta Otolaryngol. 133, 600–606 . 

atel, K.R. , Cherian, J. , Gohil, K. , Atkinson, D. , 2014. Schizophrenia: overview and treat-
ment options. P T 39, 638–645 . 

ini, L. , Manenti, R. , Cotelli, M. , Pizzini, F.B. , Frisoni, G.B. , Pievani, M. , 2018. Non-inva-
sive brain stimulation in dementia: a complex network story. Neurodegener. Dis. 18,
281–301 . 

otkin, S.G. , Kane, J.M. , Correll, C.U. , Lindenmayer, J.P. , Agid, O. , Marder, S.R. , Olf-
son, M. , Howes, O.D. , 2020. The neurobiology of treatment-resistant schizophrenia:
paths to antipsychotic resistance and a roadmap for future research. NPJ Schizophr.
6, 1 . 

roix, T. , Bartolomei, F. , Guye, M. , Jirsa, V.K. , 2017. Individual brain structure and mod-
elling predict seizure propagation. Brain 140, 641–654 . 

anger, T.D. , 1989. Optimal unsupervised learning in a single-layer linear feedforward
neural network. Neural Netw. 2, 459–473 . 

chreglmann, S.R. , Krauss, J.K. , Chang, J.W. , Martin, E. , Werner, B. , Bauer, R. ,
Hagele-Link, S. , Bhatia, K.P. , Kagi, G. , 2018. Functional lesional neurosurgery for
tremor: back to the future? J. Neurol. Neurosurg. Psychiatry 89, 727–735 . 

haban, H. , Humeau, Y. , Herry, C. , Cassasus, G. , Shigemoto, R. , Ciocchi, S. , Barbieri, S. ,
van der Putten, H. , Kaupmann, K. , Bettler, B. , Luthi, A. , 2006. Generalization of amyg-
dala LTP and conditioned fear in the absence of presynaptic inhibition. Nat. Neurosci.
9, 1028–1035 . 

hepherd, J.D. , Huganir, R.L. , 2007. The cell biology of synaptic plasticity: AMPA receptor
trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 . 

hin, R.M. , Tully, K. , Li, Y. , Cho, J.H. , Higuchi, M. , Suhara, T. , Bolshakov, V.Y. , 2010.
Hierarchical order of coexisting pre- and postsynaptic forms of long-term potentiation
at synapses in amygdala. Proc. Natl. Acad. Sci. U. S. A. 107, 19073–19078 . 

noek, J., Larochelle, H., Adams, R.P., 2012. Practical Bayesian optimization of machine
learning algorithms. arXiv, 1206.2944v1202. 
15 
tiso, J. , Khambhati, A.N. , Menara, T. , Kahn, A.E. , Stein, J.M. , Das, S.R. , Gorniak, R. ,
Tracy, J. , Litt, B. , Davis, K.A. , Pasqualetti, F. , Lucas, T.H. , Bassett, D.S. , 2019. White
matter network architecture guides direct electrical stimulation through optimal state
transitions. Cell Rep. 28, 2554–2566 e2557 . 

ang, E. , Giusti, C. , Baum, G.L. , Gu, S. , Pollock, E. , Kahn, A.E. , Roalf, D.R. , Moore, T.M. ,
Ruparel, K. , Gur, R.C. , Gur, R.E. , Satterthwaite, T.D. , Bassett, D.S. , 2017. Develop-
mental increases in white matter network controllability support a growing diversity
of brain dynamics. Nat. Commun. 8, 1252 . 

urrigiano, G. , 2012. Homeostatic synaptic plasticity: local and global mechanisms for
stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 4, a005736 . 

urrigiano, G.G. , 2008. The self-tuning neuron: synaptic scaling of excitatory synapses.
Cell 135, 422–435 . 

urrigiano, G.G. , Leslie, K.R. , Desai, N.S. , Rutherford, L.C. , Nelson, S.B. , 1998. Activity-de-
pendent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 . 

urrigiano, G.G. , Nelson, S.B. , 2000. Hebb and homeostasis in neuronal plasticity. Curr.
Opin. Neurobiol. 10, 358–364 . 

urrigiano, G.G. , Nelson, S.B. , 2004. Homeostatic plasticity in the developing nervous
system. Nat. Rev. Neurosci. 5, 97–107 . 

orovenci, R.J. , Biundo, R. , Antonini, A. , 2016. Therapy-resistant symptoms in Parkinson’s
disease. J. Neural Transm. (Vienna) 123, 19–30 . 

eisskopf, M.G. , Castillo, P.E. , Zalutsky, R.A. , Nicoll, R.A. , 1994. Mediation of hippocam-
pal mossy fiber long-term potentiation by cyclic AMP. Science 265, 1878–1882 . 

ang, Y. , Calakos, N. , 2013. Presynaptic long-term plasticity. Front. Synapt. Neurosci. 5,
8 . 

u, R. , Park, H.J. , Cho, H. , Ko, A. , Pae, C. , Oh, M.K. , Kang, H.C. , Kim, H.D. , Park, E.K. ,
Shim, K.W. , Kim, D.S. , Lee, J.S. , 2018. Interregional metabolic connectivity of
2-deoxy-2[(18) F]fluoro-D-glucose positron emission tomography in vagus nerve stim-
ulation for pediatric patients with epilepsy: a retrospective cross-sectional study.
Epilepsia 59, 2249–2259 . 

http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0045
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0046
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0047
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0048
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0049
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0050
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0051
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0052
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0053
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0054
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0056
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0057
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0058
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0059
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0060
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0061
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0062
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0063
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0064
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0065
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066
http://refhub.elsevier.com/S1053-8119(21)00082-3/sbref0066

	A computational framework for optimal control of a self-adjustive neural system with activity-dependent and homeostatic plasticity
	1 Introduction
	2 Materials and methods
	2.1 Neural state dynamics and observation models
	2.2 The hippocampal functional circuitry
	2.3 Controlling process
	2.4 Activity-dependent plasticity
	2.5 Homeostatic rescaling for connectivity
	2.6 Evaluation criterion
	2.7 Optimization of brain control

	3 Experiments and results
	3.1 Simulation 1. The system’s self-adjustment steps after treatment
	3.2 Simulation 2. Strategy for optimizing treatment strength &#x03B1; at a target node&#x00A0;without a treatment-response data using marginal MSE landscape
	3.3 Simulation 3. Strategy for optimizing treatment strength &#x03B1; at a target node using a treatment-response data
	3.4 Simulation 4. Optimal node selection for treatment to induce the mutant system to behave like the wild type system
	3.5 Simulation 5. Neural-type specific treatment as an analogy of medication
	3.6 Simulation 6. Sequential medication treatments with optimization at each trial
	3.7 Simulation 7. Combined treatments with a neural-type specific treatment and a single node treatment

	4 Discussion
	Authors contributions
	Code
	Acknowledgment
	References


