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ABSTRACT

The control of the brain system has received increasing attention in the domain of brain science. Most brain control studies have been conducted to explore the brain
network’s graph-theoretic properties or to produce the desired state based on neural state dynamics, regarding the brain as a passively responding system. However,
the self-adjusting nature of neural system after treatment has not been fully considered in the brain control. In the present study, we propose a computational
framework for optimal control of the brain with a self-adjustment process in the effective connectivity after treatment. The neural system is modeled to adjust its
outgoing effective connectivity as activity-dependent plasticity after treatment, followed by synaptic rescaling of incoming effective connectivity. To control this
neural system to induce the desired function, the system’s self-adjustment parameter is first estimated, based on which the treatment is optimized. Utilizing this
framework, we conducted simulations of optimal control over a functional hippocampal circuitry, estimated using dynamic causal modeling of voltage-sensitive dye
imaging from the wild type and mutant mice, responding to consecutive electrical stimuli. Simulation results for optimal control of the abnormal circuit toward
a healthy circuit using a single node treatment, neural-type specific treatment as an analogy of medication, and combined treatments of medication and nodal
treatment suggest the plausibility of the current framework in controlling the self-adjusting neural system within a restricted treatment setting. We believe the

proposed computational framework of the self-adjustment system would help optimal control of the dynamic brain after treatment.

1. Introduction

The goal of clinical treatment is to adjust the brain circuit to achieve
a desirable brain function. The issue lies in how to optimize the treat-
ment to induce the desired function effectively. In this respect, clinical
treatment for the brain can be viewed as an optimal control problem.

Great advances have been made in treating brain circuitry with med-
ications, dissection via a surgical operation (Schreglmann et al., 2018),
gamma knife radiosurgery or focused ultrasound treatment (Park et al.,
2017), invasive electrical stimulation such as deep brain stimulation
(DBS) (Park et al., 2015) and vagus nerve stimulation (Yu et al., 2018),
or non-invasive stimulation such as transcranial magnetic stimulation
(TMS) (Kar, 2019; Park et al., 2013) and transcranial direct current stim-
ulation (tDCS) (Bao et al., 2020; Brunoni et al., 2012; Pini et al., 2018).
Despite notable advancement of brain treatment tools, each treatment’s
effects on the complex human brain system are not fully understood.
We also lack a systematic understanding of the brain’s reorganization
as a response to treatment for each individual. Despite the criticality
of the treatment planning, establishing a treatment procedure is highly
restricted and relatively slow since diverse experiments are not allowed
for the human brain. Thus, a computational framework to support op-
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timizing the treatment of the human brain is necessary before clinical
application, particularly for individualized treatment.

Recently, the importance of the brain control has been receiving in-
creasing attention in the neuroimaging community. Studies on the con-
trol of the brain have been conducted based on two perspectives: char-
acterization of the network in terms of the controllability and optimal
control of the network to induce a desired function.

To characterize the brain network (e.g., Liu et al., 2011), the net-
work controllability has been evaluated over the (mostly linear) state
dynamic equation in terms of graph-theoretic perspective. The control
inputs affect the activity state at the all or a part of the nodes to induce
the desired brain activity at all the nodes, without changing the network
topology or parameters of the dynamic state equation. This approach has
been conducted to explore differential characteristics of the network be-
tween mild traumatic brain injury and health control, between sexes or
about heritability (Cornblath et al., 2019; Gu et al., 2017; Lee et al.,
2019).

The optimal control is to find an efficient way to change the nodal
sensitivity or network connectivity (or the network topology by remov-
ing nodes or edges) to induce a desired system function. For this, di-
verse types of virtual brain stimulators have been used to predict treat-
ment effects on the system function based on the dynamic neural state
model. For example, Falcon et al. (2016) investigated recovery pro-
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cesses after chronic stroke with a dynamic state model, the parameters
of which were estimated from fMRI signals. Simulation with a dynamic
state model has been used to explore epilepsy and surgical interventions
(An et al., 2019; Jirsa et al., 2017; Olmi et al., 2019; Proix et al., 2017).

Both groups of brain control studies, however, do not pay sufficient
attention to the brain system’s self-adjustive procedure after treatment.
For example, in the controllability of the brain network (Gu et al., 2017),
the brain system was assumed to be a stable linear system that alters a
brain state according to external perturbations. This is similar to brain
control studies conducted to change the brain system. Most control mod-
els for the brain do not include self-adjustive neurobiological factors;
the brain circuit can be modified not only by direct stimulus but also
by secondary changes to the stimulus and self-protective processes, or
homeostasis (Keck et al., 2017).

Activity-dependent plasticity is the brain’s fundamental ability to
update its connectivity according to increases or decreases in activity.
Many experimental studies have shown presynaptic plasticity in activat-
ing neurons (Lachamp et al., 2009; Shaban et al., 2006; Shin et al., 2010;
Weisskopf et al., 1994). Activity-dependent plasticity is a primary mech-
anism for diverse functions such as learning and memory (Fusi et al.,
2005; Kano et al., 2009). According to the activity-dependent plasticity,
both the treated target region and its connected regions may well be
regarded to undergo changes in the connectivity.

Homeostatic plasticity refers to the neural system’s self-maintenance
within a stable range and applies opposing forces on synapse strength,
intrinsic excitability, and synapse number (Fauth and Tetzlaff, 2016).
Specifically, high activation of synapses induces synaptic down-scaling,
spine loss, and dendrite retraction, which decreases the strength of
synapses. On the other hand, in low activation of synapses, synaptic
up-scaling, spine gain, and dendrite elongation promote and increase
their strength. Homeostatic synaptic scaling is an important mechanism
to maintain a single neuron or neuronal populations (Turrigiano, 2012,
2008).

Despite the importance of these adjustment processes in the intrin-
sic neural circuitry, previous studies on the optimal control of the brain
have not considered them in the modeling of the target system; there-
fore, an initial plan of treatment may not always lead to the best solu-
tion for curing brain disease. We propose a computational framework
for the optimal control of the brain circuit in the context of the brain’s
self-adjustments after each treatment, i.e., activity-dependent plasticity
and homeostatic plasticity.

The optimal control of the brain depends on the neurobiologically
plausible model that responds to the external stimuli. The current op-
timal control framework is based on a computational model that has
state dynamics over effective (directional) connectivity among neural
populations. To make the optimal control practical, it calls for connec-
tivity estimation from the observed neuroimaging data. In this respect,
one may refer to computational modeling and model estimation to infer
the effective connectivity of the target circuitry from the neuroimag-
ing data, for example, dynamic causal modeling (DCM) (Friston et al.,
2003, 2017). In our previous study (Kang et al., 2020), we estimated
the effective connectivity of the rodent’s hippocampus circuitry using
DCM of the voltage-sensitive dye imaging (VSDI), while the wild type
and mutant hippocampal circuits respond to the consecutive stimuli.
The current framework for optimal control was presented for this neu-
ral circuitry model of the hippocampus, set to self-adjust its outgoing
effective connectivity as activity-dependent plasticity after treatment,
followed by synaptic rescaling incoming effective connectivity.

We optimized the nodal property (the maximal PSP) to achieve the
desired system’s function in processing a given stimulus. In this respect,
the current optimal control framework is not exactly same as the con-
ventional optimal control problem where treatments are delivered to
the system via general input channels. Instead, the current framework
optimizes inputs to change a part of model parameters to minimize the
response function’s difference to a stimulus between the desired sys-
tem and the treated system. In this optimization, the framework first
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estimates hidden parameters for the system’s intrinsic adjustment pro-
cesses, based on which optimal treatment on the parameter is planned.

We conducted and presented simulations for optimal control to
make the hippocampus of mutant mice behave like wild-type mice.
Based on these simulation results, we argue that the brain system’s self-
adjustment after treatment is an essential part of optimal control of the
dynamic brain.

2. Materials and methods

We conducted simulations to control the self-adjusting neural circuit,
based on a neural state dynamic model of the hippocampal circuit. The
details are described in the following orders: 1) basics of the neural state
dynamic model, 2) hippocampal circuit as a test system, 3) treatment
of the nodal sensitivity, 4) activity-dependent plasticity, 5) homeostatic
plasticity, and 6) optimization of the brain control in diverse settings.

2.1. Neural state dynamics and observation models

We used a convolution-based neural state model (Jansen and
Rit, 1995; Moran et al., 2013) that describes the dynamics of information
exchange over the asymmetrically connected neural circuit in terms of
firing rate. It can be written as the following ordinary differential equa-
tions:

dv .

d_tm =1y 1

di, ul . 2

- K, H, ZAmnS,,G(U,,) + Cpltyy | = 2K iy — KUy 2)
n=1

Here, v,, and i, indicate the membrane potential and cross mem-
brane current of a neural population m. s, indicates the polarity of a
neural population n, which is assigned +1 for excitatory neural popula-
tions and —1 for inhibitory neural populations. «,, and H,, indicate in-
verse of decay time constant and maximal postsynaptic potential (PSP).
The effective connectivity from a neural population m to a neural popu-
lation n is denoted by A,,,. The sigmoidal (activation) function o(v,) of
a neural population n describes the transformation of the average mem-
brane potential v, to the average firing rate of action potentials, denoted
by:

o(0y) = fa

B 1+ gxp_R(Un_”O,n) ’

3)

with parameters of a maximal firing rate f, and a slope R of the sigmoid
function. v, , is the PSP that achieves a 50% firing rate of a neural popu-
lation n (Jansen and Rit, 1995). The external input to neural populations
u,, (1) is multiplied by the input modulation parameter C,,.

Linear relations between VSDI signals and membrane potential have
been reported in previous studies (Berger et al., 2007; Chemla and Cha-
vane, 2010). Accordingly, we applied a linear observation model for the
VSDI data as a linear weighted sum of the membrane potential of neural
populations:

n
v =@, z Pri Vri' (4)
i=1

Here, v, represents the VSDI signal at a region r, composed of n neural
populations. We used all the parameters, i.e., a scaling factor a, of a
signal at a region r, and contribution ratio p,; to the VSDI signal in region
r of the membrane potential at a neural population i, V,;, all of which
were estimated in our previous study (Kang et al., 2020).

2.2. The hippocampal functional circuitry
As a test system for optimal control, we used a computational model

of the rodent hippocampal circuitry, estimated using DCM from the
VSDI observed in response to consecutive electrical stimuli (Kang et al.,
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Fig. 1. The hippocampal functional circuitry
for the mutant mouse group was used as a base
system of all simulations. The effective connec-
tivity among ten neural populations was esti-
mated in Kang et al. (2020) from the exper-
iment done by Bourgeois et al. (2014). The
neural populations are; E11 (granule), E12
(mossy), I11 (DG Basket), 112 (HIPROM), E21
(CA3c Pyramidal), 121 (CA3 Basket), 122 (CA3

u(t)

t O-LM), E31 (CA1l Pyramidal), 131 (CAl Bas-
ket), and I32 (CAl recurrent O-LM). Exter-
nal electric shocks u(t) were presumed to af-
fect all regions of the stratum radiatum and
dentate gyrus, E11, E12, 112, E21, 121, E31,
and 131. Excitatory and inhibitory connec-

tions are colored red and blue, modified from
Kang et al. (2020). (For interpretation of the
references to color in this figure legend, the
reader is referred to the web version of this ar-
ticle.)
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Fig. 2. A schematic diagram for the current optimal control framework with cycles of treatments and the system’s self-adjustment steps. (i) Treatment at a node is to
increase or decrease the maximal postsynaptic potential H of the node, for simplicity. (ii) Each treatment affects all outgoing effective connectivity from the treated
node as an activity-dependent plasticity process. For the altered effective connectivity, homeostatic scaling normalizes all the effective connectivity coming to each
node to maintain the total incoming connectivity. Treatments are repeated until target behaviors are achieved. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

2020). In brief, the computational model for the hippocampal slices of
wild-type and mutant mice is composed of ten neural populations for
three representative regions of the hippocampus (the hilus, the CA3 and
CA1 regions). The ten populations are the granule, mossy, DG Basket,
and HIPROM in the hilus; CA3c Pyramidal, CA3 Basket, and CA3 O-LM
in the CA3 region; and CA1 Pyramidal, CA1 Basket, and CA1l recur-
rent O-LM cells (Fig. 1). Based on the computational model, we esti-
mated the effective connectivity in two different groups of mice from
an open VSDI dataset (Bourgeois et al., 2014). The dataset contains
stimulation-locked VSDI of hippocampal brain slices of wild-type and
epileptic aristaless-related homeobox gene (Arx) conditional knock-out
mutant mice (Arx” *;DIx5/6CRE-IRES-GEPY (\[arsh et al., 2009). The two
groups show different neural responses to the external consecutive elec-
trical stimuli.

Under this test condition, we expected the system’s adjustment on
its effective connectivity based on activity-dependent plasticity and
homeostatic plasticity by controlling the maximal PSP of a target node.
See Fig. 2. In all simulations, we started from a mutant mouse’s connec-
tivity, which is to be controlled to generate the healthy brain response
of the wild type.

2.3. Controlling process

The treatment of the system is done by altering the maximum PSP
H, (as a sensitivity) at the target node (or neural population) ,.

Hy < H, +H, xa, ®

where «a is the ratio of increase (or decrease) compared to the maximal
PSP at the target node n, and H is the final treatment effect at the target
T
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node. When « is positive, the treatment is set to increase the sensitivity,
while the treatment decreases its sensitivity for negative a.

2.4. Activity-dependent plasticity

Increased sensitivity of a neural population induces more activity,
which is assumed to cause an increase in synaptic connectivity with
neural populations that the neural population projects to. We simplified
the activity-dependent plasticity using the following equations:

Ae”,_,(i +1)« Aem_,(i) + <AMax - Ae,,ﬁ(")) X p, 6)
where,
Apax = Aen,%(i =0) X (1 +f xsign(a)), @)

where, i indicates the number of iterations from the treatment. When a
treatment of the pre-synaptic sensitivity (H;) was applied at the target
node n,, the activity-dependent plasticity is applied to the edges (de-
noted as e, ) that receive direct projections from the target node n,
(first-degree neighborhood). Here, A,,,, represents a maximal connec-
tivity range allowed for each edge after infinite iterations, and p indi-
cates an updated rate at each iteration after treatment, which was set to
p = 0.8 for simulations 1 - 2, and p = 0.5 for the other simulations.

2.5. Homeostatic rescaling for connectivity

Synaptic rescaling is done by creating constant total incoming con-
nectivity at each iteration, by scaling the total incoming connectivity
¥ (i) to the node m at each iteration i to be that of the initial stage 7,,(0).
The total incoming connectivity y,,(i) to the node m at each iteration i
is given by:

YD) = 3 Ay (D). ®)

The rescaling is done for all the nodes with the following method:

Ym(0)
(@)
where 4,,_ indicates all the edges that project to the node m. It should be
noted that the sign of the inhibitory and excitatory effect can be seen in
the dynamic equation Eq. (2), and 4,,, represents the absolute amount
of projections or synapses. We hypothesized that synaptic rescaling is
done to balance the number of synapses or synaptic buttons in the node
m, regardless of the excitatory or inhibitory neural types of incoming
inputs.

To make it simple, we fixed a total number of iterations for activity-
dependent plasticity and homeostatic rescaling cycle to three (except
for simulations to show treatment effects along the treatment number)
in all simulations of the present study. We did not change self-recurrent
effective connectivity in the adjustment process to eschew the potential
instability due to the self-recursive plasticity in the recurrent connec-
tivity and to avoid double alterations of the parameter for the treated
node, i.e., the nodal sensitivity and its self-recursive connectivity.

Ap i+ ) <A, () x (C)]

2.6. Evaluation criterion

To evaluate the status of a treated system (a source system s) com-
pared to that of the target system t, we used the mean square error (MSE)
between activity signals of y,, y, (VSDI) from the two systems, which is
defined as follows.

T
MSE(y, 3,) = 2= 3, 3 00,(5) = 3o, (OF- (10)

r=1 7=

Here, R and T represent a total number of regions and temporal sam-
ples for the VSDI signals y. In the present study, the VSDI signals from
the three regions, the hilus, and the CA3 and CA1 regions, were consid-
ered.
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2.7. Optimization of brain control

In the optimal control of the brain circuit, one has to include the
self-adjustment process of the target system in the planning, formulated
with a function of hidden parameters. In the current study, we formu-
lated activity-dependent plasticity of the system after treatment using
a parameter #, which is estimated from the treatment-response history
data.

At the first treatment, no response data were available to estimate
p in the planning. Therefore, we utilized the MSE landscape of treat-
ment (a) versus activity-dependent plasticity (f) for a given node, n,.
By marginalizing the MSE along the g, the optimal treatment (a*) was
chosen as below.

Bus
ot = argmin | MSE(y,, y,la, p)dp, (1

«  Prp

where y, and y, represent the VSDI signals of the target and simulated
systems. f;p and f;p indicate lower and upper bounds of g, which
can be chosen by the operator in consideration of empirical ranges
if available. The MSE landscape was estimated using a Bayesian op-
timization technique, which searches appropriate sampling points of
parameters based on a model of the Gaussian process. Bayesian opti-
mization is composed of two steps - approximating the objective func-
tion (using a surrogate model) and an acquisition function to decide
where to sample (evaluate). The surrogate model incorporates prior be-
lief about the objective function and updates the prior with samples
evaluated from the function to derive a posterior, leading to a better
approximation for the function. Based on the posterior of the objec-
tive function, the acquisition function determines the next sample for
evaluation that is expected to improve the approximation best over the
currently accumulated evaluations. In the present study, we adopted a
Gaussian process model for the surrogate model (Snoek et al., 2012)
and an expected-improvement-per-second-plus function for the acqui-
sition function (Bull, 2011; Gelbart et al., 2014). We utilized the MAT-
LAB function ‘bayesopt’ (Mathworks, co. USA) with a default acquisition
function (‘expected-improvement-per-second-plus’). In all Bayesian op-
timizations of the present study, 240 iterations were conducted. Based
on the MSE landscape, we optimized o* in the marginalized space of «
according to Eq. (11).

Using the optimal treatment a*, the initial system was treated by
changing the system H, Eq. (5)). The treated system undergoes system-
atic adjustment according to (Egs. (6)-((9)), and the effective connectiv-
ity A(t) is updated with the system’s inherent parameter f.

For the second treatment, we utilized the observed signal y, |, i.e., a
response signal to the first treatment o, to estimate § by minimizing
MSE between the observed signal y,; and the signal y; generated with
previous treatment «* and a variable § to optimize as below.

p =argmin MSE(y,, y,a*,p). 12)
s

To optimize the next treatment, based on the estimated ﬁ\ we se-
lected the optimal treatment parameter o* that minimizes MSE between
the target signal y, and the signal y, generated with the estimated sys-
tem’s parameter ﬁ and a variable « to optimize, i.e.,

o = argmin MSE(y,, y |, §). (13
a

The signal y, is generated by applying Eqs. (1)-(4) with the param-
eters {H, A} from the system stabilized after several iterations for each
treatment, derived according to the Egs. (5)-(9). To consider limited
chances of clinical treatments, we restricted the number of treatments
to three.

Note that « and g can be vectors if multiple treatments with different
effects are used and if the system’s adjustment process is formulated with
multiple parameters.
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Fig. 3. An example of the self-adjustment process after treatment at a node, reflected in the transient effective connectivity A and its VSDI signals at the hilus, CA3,
and CAl. (A) When the sensitivity of node E21 (red arrow) was increased by 20% (a = 0.2) as a treatment, the system undergoes adjustment steps by changing the
initial system’s effective connectivity as a process of the activity-dependent plasticity, followed by synaptic rescaling as a homeostatic process. This cyclic adjustment
continues several iterations (three in this study) until it reaches the allowable (preset) range of the connectivity. The activity-dependent plasticity affects the outgoing
connectivity from the treated node, which corresponds to the fifth column of the effective connectivity matrix (A1). Meanwhile, the homeostatic-scaling normalizes
every row to be consistent before and after treatments or adjustments (incoming connectivity to each node, S1). Since the changes in the effective connectivity are
relatively small compared to the initial strength of the effective connectivity, the difference (AA;) between the effective connectivity at the transient system (4;) and
the initial system (A;q) is presented. (B) Progressive changes in the VSDI signals at the hilus (upper panel), the CA3 (middle panel), and CA1 (lower panel) are
presented for three iterations of adjustment steps. The color intensities for VSDI signals represent the system’s first transient state Al to the stabilized final state after
three iterations A3. The red and blue colors represent the results of the activity-dependent plasticity and homeostatic scaling respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

3. Experiments and results

We conducted five simulation experiments to show the construct va-
lidity of the proposed framework. To estimate the system’s adjustment
parameter (i.e., activity-dependent plasticity), we considered two differ-
ent situations; 1) when no treatment-response data is available for the
treatment planning; 2) when a treatment-response paired data is avail-
able from the previous treatment. For the first case, it is necessary to
choose a safe range of the treatment a without a good knowledge of the
activity-dependent plasticity parameter f of the target system. In simu-
lation 1, we showed that utilizing g, if not accurate within a plausible
range, is better for the optimal control than without it in the model of
the target system. In simulation 2, we propose a method to estimate the
strength of the treatment « for the first treatment without treatment-
response data by marginalizing the MSE landscape. In simulation 3, we
extend the scheme of simulation 2 to a case with multiple treatments
where a treatment-response data is available. In simulations 4-10, we
applied the current optimal control framework to control the mutant
system to achieve the wild type’s behavior. In simulation 4, we opti-
mized the target node to treat to induce the mutant’s response to that
of the wild type response. In simulations 5-6, we set up an analogy to
medication treatment that regulates specific neural types (e.g., GABA
antagonist for GABA neurons) without location specificity. Finally, in

simulations 7-8, we treated the mutant system with combined medi-
cation and node-specific (i.e., specific neural population in a region)
treatments. Based on the modeling of the nodal treatment for the medi-
cated system, we conducted an experiment for a combined treatment of
medication and a nodal treatment.

3.1. Simulation 1. The system’s self-adjustment steps after treatment

We simulated a system that adjusts its connectivity with an arbitrar-
ily chosen ground truth parameter g, = 0.16 (for activity-dependent
plasticity) after treatment at node E21 by altering the maximal PSP H of
the node E21 with a rate of @ = 0.2. After treatment, the effective connec-
tivity A was self-adjusted by the activity-dependent plasticity, followed
by homeostatic scaling (Fig. 3A). Fig. 3B shows progressive changes in
VSDI signals of the system with transient effective connectivity A after
treatment.

To test the effect of inaccurate parameter estimation for the ground-
truth parameter f;; for activity-dependent plasticity, we simulated sys-
tems with 16 potential values of g (f = 0.00, 0.02, 0.04, ..., 0.30) for
two different types of treatments, i.e., increased sensitivity (« = 0.2) and
decreased sensitivity (« = —0.2) at node E21. We evaluated MSEs be-
tween the signal generated from the ground truth systems adjusted with
the ground truth g, = 0.16 and those of the 16 systems. The activity-
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Fig. 4. Results of simulation 1 that show effects of including the activity-dependent plasticity in the model of optimal control. (A) The effective connectivity of two
systems after self-adjustment iterations with a given f;, = 0.16 for treatments at node E21 by a = 0.2 and by « = —0.2 are presented. The red and blue arrows indicate
a treated node with increased and decreased sensitivity. (B) VSDI signals from three different systems that underwent self-adjustment with the ground truth g, =
0.16 (solid lines), with g = 0.1 (dash-dot lines) and g = 0.0 (dotted lines, without self-adjustment) are displayed for treatment with increased (« = 0.2) and decreased
(a = —0.2) sensitivity at node E21. Note the effective connectivity is slightly different for the two systems so that it is not easily identifiable by colors. However,
signals generated from the two effective connectivity are visually identifiable. (C) The MSE between the signals from the adjusted system with f;; and those with
various activity-dependent plasticity () for the two treatments (« = 0.2 and « = —0.2) are presented. Even though the ground truth f;; cannot be directly estimated,
it is advantageous to include the self-adjustment steps with g within a plausible range (for example, f = 0.1) in the optimal control of the system. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

dependent plasticity parameter g = 0.0 indicates no self-adjustment af-
ter treatment. Figs. 4A and 4B display the stabilized effective connectiv-
ity matrix adjusted with B, = 0.16 after increased treatment (a = 0.2)
and decreased treatment (¢ = —0.2). The ground-truth self-adjusting
system (Bgr = 0.16) generated signals (after self-adjustments) different
from the system without self-adjustment (8 = 0.0), particularly at the
third and fourth stimuli at the hilus (Fig. 4B). For treatments a« = 0.2 and
a = —0.2 at node E21, MSE between signals from the system with the
ground truth fg; and systems with different adjustment ratio g, are dis-
played in Fig. 4C. If we consider the adjustment process § within a plau-
sible range (for example g = 0.1), it approximates the target behaviors
better than those without considering the adjustment process (Fig. 4C).

3.2. Simulation 2. Strategy for optimizing treatment strength a at a target
node without a treatment-response data using marginal MSE landscape

For the initial treatment, no empirical treatment-response data is
available to infer the adjustment parameter § of the target system. In
this situation, to estimate the treatment strength a without knowledge
of a system’s parameter 8, we constructed an MSE landscape spanned
with possible ranges of « and g. The MSE for « and f is defined by the
MSE between the signals of the target system and signals generated by
a set of « and B. From this MSE landscape, optimal « was chosen by
marginalizing the MSE landscape along with plausible ranges of f.

To test this scheme, we considered a ground truth target system with
a history of alterations (adjustment) from the initial system. The system

was assumed to have altered three times by damage or by any other
reasons at node E21, i.e., a(E21) = 0.2, followed by activity-dependent
plasticity with g(E21) = 0.16 in the first transition; a(E12) = —0.2 with
synaptic plasticity f(E12) = 0.172 in the second transition; a(E21) =
0.1 with (E21) = 0.160 in the third transition. The initial and target
system’s effective connectivity are shown in Fig. 5A.

The goal is to have the initial system behave like the target system
(VSDI signals). Using the Bayesian optimization method, we explored
the MSE values between the final target signal and signals generated
from various a and g parameters (Fig. 5B). The search ranges of param-
eters in the Bayesian optimization were set to [—0.5, 0.5] for « and [0,
0.3] for . The minimum of the marginalized MSE along g was found
at «* = 0.133 (Fig. 5C). The marginalized MSE increases rapidly after
this optimal value. The MSE between the target and initial systems was
9.015, which was reduced to 4.304 after treatment, with the estimated
a*(Figs. 5D). Since we do not have prior knowledge for the system’s
adjustment property, the treatment plan is rather conservative, without
expecting the treatment’s maximal gain.

3.3. Simulation 3. Strategy for optimizing treatment strength «a at a target
node using a treatment-response data

We simulated a sequential treatment case, where a treatment-
response experimental data is available. Using the response signal to
the first treatment, we estimated the activity-dependent plasticity pa-
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rameter of the system, B (Eq. (12)), based on which a proper treatment
a* was chosen in the second treatment (Eq. (13)).

For the initial and target systems used in simulation 2, we applied an
optimization scheme for the optimal control of the system. In the case of
the first treatment, since no information for the activity-dependent plas-
ticity f was available, we chose optimal treatment parameter a* = 0.133
that minimizes the marginal MSE along $ (shown in simulation 2, Fig. 5B
and 5C).

From the system that underwent iterative adaptive processes for
the first treatment, we obtained VSDI signal y, as a stabilized response
to the treatment. Using this signal, we estimated the optimal activity-
dependent plasticity parameter § = 0.16 that minimizes the MSE be-
tween the observed y, and the signal generated with the previous treat-
ment «* according to Eq. (12) (Figs. 6A and 6B). Based on the estimated
parameter ﬁ , we searched the optimal treatment parameter a* = 0.17
to minimize MSE between the target system’s response and the sig-
nal generated with a variable « and priorly estimated § according to
Eq. (13) (Fig. 6C). After the second treatment, the final system repro-
duced target VSDI signals with MSE as low as 0.287 (Fig. 6D, the third
row).

In the biological system, the activity-dependent plasticity f may vary
by each treatment. To treat the system with time-varying plasticity, we
added a re-estimation step for the activity-dependent plasticity param-
eter at each iteration. We simulated three systems with different time-
varying characteristics in the self-adjustment parameter f;r; 1) decreas-
ing plasticity S, by 0.05 from the initial S =0.16, 2) a fixed plastic-
ity (the identical case of the previous simulation in Fig. 6), f;; =0.16,
and 3) increasing plasticity ﬂgr by 0.05 for each increasing treatment
number. We used the same initial and desired systems, and the same
optimization scheme for the first treatment as the previous simulation 2

(Fig. 7A). Compared to the previous simulation, a step for re-estimating
the system’s activity-dependent plasticity parameter f was conducted by
using the treatment-response data set. Based on the estimated parame-
ter, the optimal strength of the treatment «* was determined. When the
optimal treatment strength becomes zero (« = 0), the system is consid-
ered to achieve the best outcome, and the treatment stops. This simula-
tion suggests the current control framework can be used in more wide
systems with different self-adjustment characteristics. Having checked
this capability, we fixed the plasticity parameter in all the following
simulations to simplify simulations.

3.4. Simulation 4. Optimal node selection for treatment to induce the
mutant system to behave like the wild type system

We applied the optimal control framework presented in simulation
3 to each node of the mutant hippocampal circuits and searched the op-
timal node in making the mutant system behave like the healthy wild
type system. We set the mutant and wild type as an initial system and
a target system with adjustment plasticity g = 0.15 at all nodes. Here,
we assumed that the adjustment parameter f is inherent, and is not al-
tered by any treatment. In the Bayesian optimization, the search ranges
for parameters a« and § were set to [-0.5, 0.5] and [0, 0.3]. The ten
treatments were initially planned, but it stopped when treatment did
not improve the MSE (a = 0).

Figs. 8A and 8B show the initial effective connectivity of the mutant
system and the difference of the target wild type effective connectiv-
ity from that of the mutant (initial) system. Using the optimal control
scheme presented in simulation 3, each node was treated one by one.
According to the previous optimal control scheme, treatment at node
E21 was optimal when treated with a(E21) = 0.051, a(E21) = 0.220, and
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a(E21) = 0.180 for each subsequent treatment. Treatment at node 112
was optimal when treated with a(112) = —0.051, and a(112) = —0.001 for
the first and second treatments. Figs. 8C and 8D show examples of the
changed effective connectivity after treatments at node E21 and I12.
The VSDI signals from the initial mutant and targeted wild type sys-
tems, and VSDI signals at the system after treatments at E21 and 112
were presented in Figs. 8G and 8H. For the system with g = 0.15, the
best treatment target node was E21, as it showed the lowest final MSE
(MSE = 9.679) (Fig. 8E).

We also tested this scheme for diverse systems that possess different
adjustment plasticity values: g = 0.0, 0.07, 0.15, 0.2, and 0.3 (Figs. 8E
and 8I). The node E21 was not the optimal target node for the systems
with very small adjustment plasticity g = 0.0 and g = 0.07. However, for
the systems that have larger plasticity values: g = 0.15, 0.2, and 0.3,
E21 was the optimal target to make the system behave like wild type.

3.5. Simulation 5. Neural-type specific treatment as an analogy of
medication

We simulated treatment with a medication, which affects drug-
specific neurons distributed throughout the system. We set the mutant
and wild type hippocampal circuits as an initial system and a target sys-
tem with adjustment plasticity g = 0.15 for all nodes, as in the simulation
4.

We simulated the effects of GABA receptor agonists and antagonists
by changing the maximal PSP parameters (H;) of all inhibitory neurons.
To distinguish the effects of drug treatment from those of the node-
specific treatment «, we used a,, to represent the amount of drug effects
(or drug doses in terms of optimal control). Fig. 9A shows the mutant

system’s initial effective connectivity and Fig. 9B shows the effective
connectivity differences between the target wild type and the mutant
(initial) systems, and between the stabilized system after treatment and
the initial system. By marginalizing the MSE landscape (Fig. 9C), the
optimal amount of medication treatment, a,,*, was chosen (Fig. 9D).
The VSDI signals from the initial mutant and the target wild type sys-
tems, and VSDI signals at the system after treatments were presented in
Figs. 9E and 9F.

3.6. Simulation 6. Sequential medication treatments with optimization at
each trial

As an extension of previous simulation 5, where the mutant system
was treated with one-time medication, we simulated sequential medi-
cation treatments. For the first treatment, where a treatment-response
experimental data is not available, we estimated an optimal medica-
tion dose by minimizing marginalized MSE along g, and obtained a,,* =
—0.1 (explained in Figs. 9). After the system’s adaptive process for the
first treatment, VSDI signal y, was obtained from a stabilized system.
From this data, we estimated the optimal activity-dependent plastic-
ity parameter § = 0.15, with which MSE between the observed y, and
the signal generated with the previous treatment «,,* was minimized
(Figs. 10A and 10C). In the subsequent treatments, based on the esti-
mated parameter ﬁ , we searched the optimal treatment parameter a,,*
to minimize MSE between the target system’s response and the signal
generated with a variable a), and the estimated § (Fig. 10D). The MSE
between the target and finally stabilized system was 24.503 (Fig. 10E,
the third row).



J. Kang, J. Eo, D.M. Lee et al.

Neurolmage 230 (2021) 117805

A B
a* =0.133 10 =
(1] MSE =9.015 =5 0 MSE = 4.304 = for
— — initial =) S treatment 1 8 he ﬁGT
w407 - - target i ---target . 6 -+ ﬂ&LT
= oy
E I o R E 20 M\ ] 4
kg I A S >
4 AW TN ONG N SN NN NG )
0 100 200 300 400 0 100 200 300 400 0 -
time [ms] time [ms] 0 1 2 3
/ | Number of treatments
B =016 a* =017 f=0.16 a*=0.17 f=016 a*=0.17
C D E \
(3) MSE = 2.840 (3) MSE = 0.287 (3) MSE = 1.09
— — treatment 2 Bar=0.11 — — treatment 2 ﬂGT =0.16 — — ftreatment 2 By =021 ]
§40 --- target §40 --- target 5\:40 - - - target GT--\.
=] [’ == K
Sk Sal Al S
< < <
0 - - - - 0 0 - - - -
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
time [ms] time [ms] time [ms]
p=011 j=0.16 a*=0.0 j =021 a* =00
l a* = 0.06 =0 ‘ i
(4] MSE = 2.310 : ﬁr{ish A
— ,» | — treatment 3 ~ = treatment reatmen
x40 - - target % GT 0.06
= s
E 20 N ] i o YA O\
< A
0 I I I I
0 100 200 300 400
time [ms]

l f =0.06 a* = 0.0

finish
treatment

Fig. 7. Results of simulation 3 with the systems of three different time-varying self-adjustment parameters of fisr; 1) decreasing plasticity f;, by 0.05 from the
initial f;; =0.16, 2) a fixed plasticity, f;; =0.16, and 3) increasing plasticity g, by 0.05 for each increasing treatment number. (A) The VSDI signals from the target
system (dotted lines) and the initial system (solid lines) are displayed in the left panel. The strength of the first treatment a* = 0.133 was determined by previous
simulation 2 (see Fig. 5C). The treatment reduced the MSE between the desired and the treated systems from 9.015 to 4.304 (right panel). (B) The MSE curves for
the three different systems are presented along the treatment from the initial 9.015. In the system with decreasing plasticity parameter ., the system converged
to MSE = 2.31 after three treatment. In the fixed and increasing plasticity systems with f;; and g, the systems became optimal after two treatments and their
final MSE were 0.29, and 1.09. (C-E) The VSDI signals that were obtained after treatment 2 and 3 are presented for each system. The second treatment strength
was estimated with activity-dependent plasticity § = 0.16, which was obtained by minimizing MSE between the response signal y,, and signals generated with a*
and § (Fig. 6B). (C) In the decreasing plasticity system, the third treatment’s optimal treatment strength was a* =0.06, and the final treatment reached the minimal
MSE = 2.31. (D-E) In the fixed and increasing plasticity systems, after the second treatments, the systems converged to MSE = 0.287 and MSE = 1.09, respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.7. Simulation 7. Combined treatments with a neural-type specific
treatment and a single node treatment

In this simulation, we simulated combined treatments using both
medication treatment and a single treatment to control the mutant sys-
tem. Medication affects the type-specific neurons distributed globally
throughout the system as in simulations 5-6 and node-specific treat-
ment affects locally as shown in simulation 4.

We restricted the range of medication effects within —0.2 ~ 0.2,
and explored optimal strengths of the combined treatments, medica-
tion that affects all inhibitory neurons and a single node treatment at
node E21. Node E21 was chosen as a target of the single node treat-
ment since it showed better improvement compared to the other nodes.
For the first treatment, where a treatment-response experimental data
is not available, we estimated an optimal medication effect (a,,*) and
node treatment (ag*) by selecting ), and ag at the minimal point

of the marginalized MSE landscape MSE(y,, y |a,,, ag, ) along B,

bus
ie, ay, a0 =argmin [ MSE(y, ylay, as, Hdp, and obtained a),* =
ay, as frp

—0.1 and ag* = 0.15 (Figs. 11A and 11B). VSDI signal y, from a stabi-
lized system after the first treatment was used to estimate the system’s
activity-dependent plasticity parameter g (Eq. (2) in Fig. 11A). We ob-
tained # = 0.15 that minimizes MSE between the observed y, and the
signal generated with the previous combined treatment a,,*, ag*, for
a variable g (Figs. 11A and 11C); ﬂA = arg;nin MSE(®y,, yslay,ag,p).

Based on the estimated parameter ﬁ , we explored the optimal treat-

ment parameter a,,* and ag* of subsequent treatments to minimize the

MSE between the target system and the stabilized system after treat-

ment (Figs. 11D and 11E); a’;/,,(x:; = argmin M SE(y,, y,lay., as,ﬁ). The
a a

M- Q&S
MSE value between the target and finally stabilized system was 1.793
(Fig. 11E, the fourth row), which was the smallest MSE compared to the
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node
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treatment number and the MSE that an optimal nodal treatment at the node reached the minimum MSE. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

best optimal single node treatment (simulation 4) and to the medication
only (simulation 6).

4, Discussion

We presented a general framework for optimal control of the brain
circuitry. The optimal control of the brain has many inherent challenges
in clinical treatment, not only due to ethical issues but also due to
the complexity of the brain. Because of ethical and practical issues, re-
search remains mostly theoretical and based on virtual systems. Several
models have been proposed to control the brain, including the graph-
theoretic controllability perspective (Karrer et al., 2020; Lee et al., 2019;
Stisoet al., 2019; Tang et al., 2017) and the optimal control perspec-
tive of the dynamic state model (An et al., 2019; Falcon et al., 2016;
Jirsa et al., 2017; Olmi et al., 2019; Proix et al., 2017). Although the two
approaches are similar in perturbing the system (Menara et al., 2018),
the purposes differ, i.e., to characterize the system in the graph-theoretic
perspective or to find an optimal way to alter the system to generate the
desired function.

Despite the differences in these models, they all assume a linear
or passive nonlinear brain system without considering the system’s dy-

10

namic configuration after treatment. In the current study, we introduce
the brain’s self-adjusting nature that responds non-linearly to external
treatments or perturbations, in terms of activity-dependent plasticity
and homeostatic plasticity. Based on the estimation of unknown pa-
rameters for these adjustment processes, we propose an optimization
framework to treat plastic brain circuitry.

In the brain system, activity-dependent plasticity refers to func-
tional and structural changes that arise from endogenous experience
or sensation, which is evident in the literature. For example, the func-
tional response map may contract or expand according to reduced or
increased input to the brain at the macroscopic level (Jones, 2000).
These macroscopic changes can be induced by changes in synaptic ef-
ficacy (Andreae and Burrone, 2014), which occurs at either the post-
synapse or pre-synapse sides (Yang and Calakos, 2013). In electrophys-
iology, the increased activity-dependent synaptic changes are reflected
in the long-term potential (LTP) and spine gain, whereas decreased
activity-dependent synaptic changes induce long-term depression (LDP)
and spine loss (Fauth and Tetzlaff, 2016). The mechanism of activity-
dependent plasticity is still not fully understood at the microscopic level
yet. It may be associated with Hebbian plasticity (Bienenstock et al.,
1982; Sanger, 1989), which describes the strength of a synapse between
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respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Results of simulation 7 that illustrate the strategy for optimizing combined treatments. In this simulation, a medication effect «,,* and a node-specific
treatment a¢* were optimized for each treatment. (A) The entire control scheme used in simulation 7 is explained here. (B) For the first treatment, the optimal

BUB
treatment a,,* = —0.1 and ag* = 0.15 were chosen to minimize marginalized MSE along g, i.e., a%,,a% = argmin / M.SE(y,, y,|lay, ag,f)dp. (C) For the subsequent
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treatment, by utilizing the response signals y,, after the first treatment, the activity-dependent plasticity B =0.15 was estimated which minimize the MSE between
the response signal y,; and signals generated with a,,* = —0.1 and a* = 0.15, and diverse f; § = argmin MSE(y,;, y,|a},, s, f). (D-E) The optimal parameter for
y K

the second treatment (D) a,,* = —0.04 and a¢* = 0.4 and for the third treatment (E) a,,* = —0.05 and ag* = —0.01 were estimated based on the obtained ﬁ s Ao =
argmin M SE(y,, y,lay, ag, 7). (F) Differences of effective connectivity from the initial system after treatments 1-3 are displayed with the optimal treatment «,,*

Ay, g

at each treatment. The signals of the initial system (panel in the first row) and systems after the first to third treatments (panel in the second to fourth rows) are
shown. The target system’s signals are displayed with dotted lines and those from the initial system and treated systems are displayed in solid lines. The blue, red,
and yellow lines represent signals from the hilus, CA3, and CAl. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

two neurons depending on their correlated activity (Hebb, 1949). Post- Since homeostatic plasticity works as a negative feedback process
synaptic receptors or receptor efficacy may increase due to synchronous (Turrigiano and Nelson, 2000), it contributes to stabilizing neural and
firing in the neural population level (multitudes of neurons may com- circuit activity. Many studies have uncovered the mechanism of home-
pose a neural context in the form of PSP in the post-synaptic neuron and ostatic synaptic scaling in cell cultures in vitro (Turrigiano et al., 1998)
thus, the incoming firing from a pre-synaptic neuron may induce firing and in vivo (Diering et al., 2017; Keck et al., 2013) and have shown
in the post-synaptic neuron together). Increased neurotransmitter re- the essential role of homeostatic synaptic scaling in forming mem-
lease from the pre-synaptic membrane due to increased sensitivity may ory (Turrigiano and Nelson, 2000). Diering et al. (2017) reported that
increase neuroreceptors in the post-synaptic neurons. Based on this neu- homeostatic scaling-down occurs during sleep and contributes to the
ral mechanism, the treatment effect in the current simplified model is remodeling of synapses that participate in contextual memory con-
constructed with the following logic: when a nodal activity is increased solidation. The remodeling of synapses can be done by controlling
due to increased sensitivity, increased activation occurs in the connected the trafficking of glutamate receptors such as the AMPA-type gluta-
regions and thus leads to increased connectivity between the two nodes, mate receptors (AMPARs) to modulate synaptic transmission efficiency
leading to changes in the system’s behavior. (Shepherd and Huganir, 2007). Increasing or decreasing numbers of AM-

Homeostatic plasticity opposes increases in synaptic strength, in- PARs according to homeostatic demand induces strengthened or weak-
trinsic excitability, and synapse number (Fauth and Tetzlaff, 2016). ened synapses (Diering and Huganir, 2018). To incorporate homeostatic
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plasticity in the model, we applied the rescaling of incoming connections
(Turrigiano, 2008) to keep the total number of synapses or receptors
constant.

Activity-dependent plasticity and homeostatic plasticity do not work
independently from each other. It has been suggested that they work to-
gether, which can explain various system functions such as memory for-
mation and consolidation (Diering et al., 2017), recovery processes after
brain damages (Malone and Felling, 2020; Murphy and Corbett, 2009),
and development (Turrigiano, 2012; Turrigiano and Nelson, 2004). In
the recovery process of the brain from a stroke, the reconstruction of
brain circuits is associated with Hebbian and homeostatic plasticity
(Malone and Felling, 2020; Murphy and Corbett, 2009), in a process
similar to the development of circuits (Turrigiano, 2012; Turrigiano and
Nelson, 2004).

Although activity-dependent plasticity and homeostatic plasticity
have been investigated at the microscopic level, simplifying the process
remains a crucial challenge in computational modeling. In contrast to
Hebbian plasticity, which has widely been used in machine learning and
computational neuroscience due to its effectiveness and simplicity, the
formulation for activity-dependent plasticity has not been thoroughly
researched. This study simplified the homeostatic process by scaling the
total amount of synaptic properties despite its complexity at the molec-
ular or cellular level. The details of modeling the biological reality for
these adjustive processes could be clarified in future studies.

By simulation, we argue that the self-adjustment plasticity should be
considered in the treatment plan. The simulation 1 (and Fig. 4) showed
that the control model with a self-adjusting plasticity term (f > 0.0), if
not highly accurate, is better than without the plasticity term (f = 0.0) in
producing the desired function. Simulation 4 (Fig. 8) also confirms the
need for plasticity term in the control model. In simulation 4, the best
node to control without considering the plasticity was not optimal and
showed higher MSE than the treatment with the plasticity term. If not
a direct clinical evidence, the resistive process in the clinical treatment
may support the current argument. Several studies have argued that the
individual differences in the treatment may be associated with diver-
sity in the treatment-resistant process, found in various brain disorders
such as schizophrenia (Patel et al., 2014; Potkin et al., 2020), depres-
sion (Bennabi et al., 2019), and Parkinson’s diseases (Vorovenci et al.,
2016). These studies suggested that optimal treatments for individuals
need to consider the target systems’ treatment-resistant processes. Sim-
ilarly, we argue the activity-dependent and homeostatic plasticity is a
factor to consider in the treatment as those types of plasticity are widely
known in the neurobiological system.

Considering various situations of clinical treatments, we presented
simulations corresponding to major clinical treatment settings. We pri-
marily focused on treating a single brain node (region) since a choice
in multiple nodes is generally difficult in the clinical setting, except for
some special cases using TMS, which allow treating different nodes at
different times but is less effective than other treatments. We also lim-
ited the treatment target to a node (intra-regional circuit) rather than an
edge (inter-regional circuit) since most clinical treatments are primar-
ily associated with the regulation of a target region (or local circuitry).
We disregarded some cases involving white matter treatments such as
callosotomy or cingulotomy. In treating a single node (a local neural
population), we conceptualized the regulation of maximal PSP using «
as a representation of sensitivity at the node. When the maximal PSP at
a node increases, the node may induce action potentials more frequently
and deliver increased signals (firing rates) to post-synaptic neurons. In
clinical treatment, changing the local sensitivity of a target node may
be possible through invasive electrical stimulation, non-invasive high-
frequency TMS, or medications that enhance or suppress neural activity
at the node. Functional neurosurgery is one of most common treatments
in altering nodal sensitivity. If the surgical treatment resects a specific
region completely, the plasticity may occur among neighbors to com-
pensate for the deficit caused by the lesion. In much of functional neu-
rosurgery such as thalamotomy, a treated region is not entirely removed,
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but a portion of the region is lesioned to alter the regional sensitivity or
activity. To show the current optimal control concept, we didn’t specify
the exact way to achieve the desired maximal PSP. How to achieve the
desired treatment level and evaluate the treatment level are still clinical
challenges in the practical application.

We also simulated medication, which regulates neural-type depen-
dent diffuse effects on a neural system. In particular, we simulated a
medication treatment analogous to GABA receptor antagonists or ago-
nists. Considering limited regional or functional specificity of medica-
tion (i.e., all inhibitory neurons do not play the same function), com-
bining medication and single node treatment provides more freedom to
control a brain circuitry. This was evident in the simulation 6. When we
compared the best-stabilized system for each treatment, the best result
was obtained from the combined treatment (simulation 7) than a single
node treatment or medication only. By adopting combined treatments,
we could also reduce the drug dose, which may decrease the high dose
medication’s side effects.

In modeling the system’s response to an external treatment, we ab-
stracted the system’s adjustment process using a parameter f. Besides
this simplification, we also assumed that g is constant across trials. How-
ever, we showed that we could estimate g by using a response signal
after each treatment. By doing this, we can apply the current control
strategy to the state-dependent or treatment-dependent changes in the
system’s plasticity.

Reliable construction of a neural circuit to be treated is another big
challenge in clinical treatment. The current framework of optimal con-
trol can be practical when we know the system’s mechanism, i.e., how
it works. The mechanism is often formulated with state dynamics over
the effective connectivity among brain regions. Since the functional cir-
cuit to be treated is not generally accessible, the effective connectivity
of an individual brain circuit should be determined using empirical data
for each individual. In this respect, DCM may play an essential role as
it provides a Bayesian solution to estimate each individual’s effective
connectivity using the observed data. In this study, DCM was used to
infer the target circuit’s effective connectivity from VSDI signals of the
rodent’s hippocampus. For the optimal control, reliable estimation of a
neural circuit using observed signals or other prior knowledge is neces-
sary, particularly for individuals in the clinical setting.

This study is designed to restore the normal response to a stim-
ulus or function, rather than matching the abnormal connectivity of
the mutant mice to that of the wild type directly. According to the
top-down and bottom-up signaling in the hierarchical brain framework
(Friston, 2008), the hippocampal circuitry generates signals (for a stim-
ulus) required by the other neural populations in different layers. Here,
we view each nodal activity as a function that transforms a stimulus
into a signal for other brain regions and is determined by the parame-
ter. Thus, the treatment issue is to make the system generate the desired
function, which is represented by the activity for a given stimulus. In this
respect, we chose to match the response activity to that of the desired
system, not necessarily matching the same connectivity of the desired
system, based on the degeneracy principle (Edelman and Gally, 2001)
— the same activity can be produced by diverse circuitry (Marder and
Goaillard, 2006). The current framework may guide the direction of
treatment in the case of epilepsy. Instead of treatment or prevention of
seizures in the mouse model of epilepsy, one may focus on the alter-
ation of the epilepsy-associated (interictal) circuit dysfunction itself, for
example, by normalizing response to stimulation at a certain step of the
cascaded signaling hierarchy in the epileptic mice.

Although we propose a framework of optimal control to match clin-
ical situations, we acknowledge that clinical treatment is more restric-
tive than is assumed in the current framework. We cannot disregard the
validation issues of the current framework using empirical data. It re-
quires longitudinal data for treated populations using diverse treatment
strategies. With more clinical data and scientific knowledge, a more bi-
ologically plausible model can be established. Conversely, the modeling
and prediction steps would increase our understanding of how the brain
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works. It may be a long journey before the optimal control of the brain
can be applied to clinical practice. Nevertheless, the current conceptual
framework and simplified simulations take a first step toward the final
goal of optimal control of the brain.

In summary, we propose an optimal treatment framework by intro-
ducing the estimation of adjustment processes in the brain system af-
ter treatment. Simulation results showing the responses and movement
of an abnormal circuit towards a healthy circuit in diverse testing sets
suggest the plausibility of the framework and the possibility of opti-
mal control within a restricted treatment environment. Although further
research on a more complex system should be conducted for clinical
purposes, we believe the proposed computational framework of the ad-
justment system would help optimal control of the dynamic brain after
treatment.
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