직장암에서 $\mathrm{c}-\mathrm{erbB}$-3의 발현과 예후인자로서 임상적 응용

연세대하됴 외과대학 연세암연구소, 연세암센터, 녀과학교실 및 외퐈학료실

이 종 인 • 라 선 영 • 박 준 오 - 정 현 철 • 조 재 용 - 안 증 배
유내츤 - 김태수 - 김주항 - 노재경 - 최진섭 - 민진식 - 김병수

연세대하교 원주의과대학 내퐈하교실, 아주대학교 의과대학 내과학표 실', 병리하효실ㄹㄹ
이화여자대한교 의과대학 내과학교실 ${ }^{s}$

장우익 • 심영확 • 임호영 • 이기범 ${ }^{2}$ •최진혁 ${ }^{3}$

=Abstract $=$

Expression and Clinical Relevance of c-erbB-3 in Rectal Cancer

Chong In Lee, M.D., Sun Young Rha, M.D., Joon Oh Park, M.D., Hyun Cheol Chung, M.D.
Jae Yong Cho, M.D., Joong Bae Ahn, M.D., Nae Choon Yoo, M.D., Tae Soo Kim,M.D., Joo Hang Kim, M.D.
Jae Kyung Roh, M.D., Jin Sup Choi, M.D., Jin Sik Min, M.D. and Byung Soo Kim, M.D.

Institute for Cancer Research, Yonsei Cancer Center
Department of Internal Medicine, General Surgery
Yonsei University College of Medicine, Seoul, Korea

Woo Ick Jang, M.D., Young Hak Shim, M.D., Ho Young Lim, M.D.'
Kyi Beom Lee, M.D. ${ }^{2}$ and Jin Hyuk Choi, M.D. ${ }^{3}$
Department of Internal Medicine, Yonsei University Wonju Chllege of Medicine, Wonju, Korea
Department of Internal Medicine', Pathology', Ajou University School of Medicine, Suwon, Korea
${ }^{3}$ Department of Internal Medicine, Ewha Women's University College of Medicine, Seoul, Korea

Recently, there is an increasing tendency of colorectal cancer in Korea, probably due to changes of diet pattern to western style. In rectal cancer, as the local recurrence is a common and major problem despite of radical resection, it is recommended to use 5 -fluorouracil(5-FU)based chemotherapy in combination with pelvic radiation after radical operation in MAC B_{2} - C_{3} cancers.

But until now, there are many controversies about the effective chemotherapeutic agent, radiation dose, route, and chemo-radiation schedule. There is increasing evidence that genes involved in normal cell growth and differentiation(oncogenes) or genes that encode for growth factor are important in determining the development and biologic aggressiveness of various cancers. Among many oncogenes thought to be related with cancer, c-erbB-2 is a relatively well known protein to be associated with cancers, especially in breast and colorectal cancers. In addition to c-erbB-2 and Epidermal Growth Factor Receptor(EGFR), c-erbB-3 belongs to Type -I

Growth Factor Receptor Family(EGFR-related Family) and is the most recently identified protein in EGFR-related Family.
There have been a few reports about the prognostic value of c-erbB-3 in breast and prostate cancers. In this study we performed immunohistochemical staining of 114 surgically resected specimens of rectal cancers to investigate the expression rate and clinical relevance of c -erbB-3 as a prognostic factor and drug selection marker. c -erbB-3 expression rate was 46% in 114 rectal cancers and there were significant differences in recurrence rate and survival rate between c-erbB-3 positive and negative group. Twenty-one cases (40%) recurred in 52 c-erbB-3 positive cases and 10 cases (16%) recurred in $62 \mathrm{c}-\mathrm{erbB}-3$ negative cases $(\mathrm{p}=0.004$). The difference in recurrence rate between $\mathrm{c}-\mathrm{er} b \mathrm{~B}-3$ positive and negative group was significant exclusively in MAC stage $C(p=0.0126)$, but not in MAC stage $B(p=0.4357)$. In c-erbB-3 positive and negative group. 2-year disease free survival rate was 66% and 87%, respectively $(p=0.0052$), and 2 -year overall survival rate was 84% and 95%, respectivel $y(p=0.005)$. Again, the difference in 2 -year disease free survival rate between the two groups was significant only in MAC stage $C(p=0$. $0137)$, not in stage $\mathrm{B}(\mathrm{p}=0.4182)$. There were no significant differences in recurrence rate and 2year disease free survival rate in chemo-radiation group regardless of c-erbB-3 expression and stage. But in adjuvant radiotherapy alone group, increased recurrence rate and decreased survival rate were found in $\mathrm{c}-e r b \mathrm{~B}-3$ positive group. This finding suggested $\mathrm{c}-e r b \mathrm{~B}-3$ as a possible relative radioresistance marker, in whom a higher radiotherapy dose is needed.
In conclusion, c-erbB-3 may be regared as a prognostic marker and as a possible indicator of radioresistance in the treatment of rectal cancer.

Key Words: Rectal cancer, c-erbB-3, Prognostic factor, Radioresistance

서 론

직장압은 우리나라에서도 식생활의 서구화에 따라 발생률이 점차 증가하는 추세이며, 예후도 불량하여 근치적 절제술이 시행되어도 국소재발률이 50% 에 이 른다". 전이성 혹은 재발성 대장압 치료시 1960년대 부터 5 -fluorouracil($5-\mathrm{FU}$)이 대표적인 항암제로 사 용되었으나 관해율은 $15 \sim 20 \%$ 에 불과하였으며, 1970 년대에 와서 5-FU에 methyl-CCNU, vincristine 둥이 병용투여되기 시작하였으나 $5-\mathrm{FU}$ 단독투여보다 우수한 치료결과률 얻지 못하였다 ${ }^{2 ?}$.
직장압에서 근치적 수술 후 보조치료로서 Gastrointestinal Tumor Study Group(GITSG)과 North Central Cancer Treatment Group (NCCTG)에서 방사선치료에 5-FU와 methylCCNU를 병용투여하여 국소재발률의 감소와 생존율 의 증가가 유도되었다 ${ }^{3.4}$, 그러나 methyl-CCNU의 신독성과 이차성 백혈병 유발이 문제점으르 지적되었

을 뿐 아니라 방사선치료에 $5-\mathrm{FU}$ 를 단독투여한 군과 5-FU와 methyl-CCNU量 병용투여한 군에서 생존 율이 동일하게 관찰되어 ${ }^{56}$, $5-\mathrm{FU}$ 단독투여와 방사선 치료가 직장암에서 수술 후 보조치료의 표준요법으로 추천되었다.

1980 년대에 와서 $5-\mathrm{FU}$ 의 생화학적 조절에 대한 연 구가 활발해짐에 따라 leucovorin이 5-FU 의 대사 물인 fluorodeoxyuridine monophosphate(FdUMP)와 강력하계 결합하여 $5-\mathrm{FU}$ 의 작용이 중강합 이 화ㅇㅣㅣ되었다". 실제로 $5-\mathrm{FU}$ 와 leucovorin을 병용 투여한 제 1 상 및 제 2 상 연구결과에서 $20 \sim 40 \%$ 의 관해율과 한께 생존율와 향상이 관찰되었고 ${ }^{5.99}$, 국내에 서도 진행성 대장압에서 5-FU와 leucovorin병용시 25% 의 관해율이 보고된 바 있다 ${ }^{(0)}$. 5 -FU와 leucovorin의 병용투여가 5-FU 단독투여보다 반웅룰이 높 음이 보고된 이후, 근치적 절졔술어 시행된 직장암에 서 방사선요법과 함께 5-FU와 leucovorin의 병용투 여가 표준 보조치료로 미국의 National Cancer Institute(NCI)와 National Surgical Adjuvant

Breast and Bowel Project(NSABP)에 의해 제시 되었고 ${ }^{3.11}$, 현재까지 NSABP와 Intergroup Study 에서 6 개의 protocol이 완료되었거나 진행중이다 ${ }^{12)}$.

이와같이 5-FU와 leucovorin을 병용투여함으로써 5-FU 의 활성을 중가시켜 치료율이 향상되었으나 아 직도 상당수의 환자가 재발하며, 재발의 원인은 암유 전자 발현, $5-\mathrm{FU}$ 에 대한 약제저항성 발현 등이 제기 되고 있다. 실제 유방암에서는 c-erbB-2 발현시 불럄 한 예후와 관련이 있음이 밝혀졌으멱,14, 약제저항성 과도 관련이 있는 것으로 보고되었다 ${ }^{151}$. c-erbB-3단백 은 EGFR, c-erbB-2 및 c-erbB-4와 합께 Type I Growth Factor Receptor Family에 속하며 유방 암의 약 20% 에서 과표현되고 ${ }^{(6)}$, 이외에 소화기암, 췌 장암 및 전립선암 등에서도 발현이 보고되고 있다 ${ }^{17 \sim 199}$. 저자들은 대장압 및 직장암에서 c-erbB-2 발현의 예 후인자 및 약제선정의 기준으로서의 역할에 대해 조사 한 바 ${ }^{201}, \mathrm{c}-e r b \mathrm{~B}-2$ 와 같운군에 속하는 $\mathrm{c}-\operatorname{er} b \mathrm{~B}-3$ 의 직 장암에서의 예후인자로서의 가치와 약제선정 지표로서 의 의미를 조사하기 위해 본 연구를 시행하였다.
따라서 본 연구에서는 직장암환자들을 대상으로 하 여 (1) $\mathrm{c}-e r b \mathrm{~B}-3$ 단백의 발현빈도를 조사하고, (2) $\mathrm{c}-$ $e r b \mathrm{~B}-3$ 발현군과 비발현군에서 환자의 임상경과를 비 교하여 예후인자로서의 가치를 평가하며, (3) c-erbB3 단백 발현시 $5-\mathrm{FU}$ 투여유무에 따른 생존율 및 재발 유무 비표로 종양조직내의 c-erbB-3단백 발현과 5FU 에 대한 약제내성과의 상관성을 후향적으로 조사 하였다.

대상 및 방법

1) 연구대상

1990년 1월부터 1993년 2월까지 연세의료원 및 연 세암센터에 내원하여 직장암으로 진단받고 근치적 절 제술 시행 후 병리학적 병기가 MAC B $2-\mathrm{C}_{3}$ 로 확인된 환자 114 예률 대상으로 하였다.

2) 환자의 병리학적 병기 및 분화도 분浂

수술 후 적출된 암조직의 조직절편을 이용하 $\mathrm{He}-$ matoxylin \& $\operatorname{Eosin}(\mathrm{H} \& E$)염색 후 암의 침윤도 및 림프절 전이에 따른 병기와 종양분화도를 Modified Astler-Coller(MAC) 병기와 American Joint

Committee on Cancer(AJCC, 4th ed.)기준에 따 라 정하였다 ${ }^{21}$.

3) 약뮬치료방법

본원에서는 1992년 이전에는 수술 후 보조치료로서 주로 방사선치료률 시행하였으며, 1992년 부터는 미국 NCI 에서 제시하는 방사선과 약물 병용치료를 주로 시행하여온 바, 본 연구에서 대상환자들의 치료는 의 무기록을 통하여 확인하였다. 수술 후 항암약물치료는 5-FU가 주축이된 요법이 사용되어 5-FU 단독투여시 는 $500 \mathrm{mg} / \mathrm{m}^{2} /$ day이 매 주기마다 5 일간 정주되었 고, $5-\mathrm{FU}$ 와 levamisole 병용시는 $5-\mathrm{FU} 450 \mathrm{mg} /$ $\mathrm{m}^{2} /$ day가 매 주기마다 5 일간 정주되고, levamisole $150 \mathrm{mg} /$ day이 매 2 주마다 3 일씩 경구 투여되었다. $5-\mathrm{FU}$ 와 leucovorin 병용시는 $5-\mathrm{FU} 425 \mathrm{mg} / \mathrm{m}^{2} /$ day, leucovorin $20 \mathrm{mg} / \mathrm{m}^{2} /$ day이 매 4 주마다 5 일 간 정주되었다. 재발 후 시행되었던 $5-\mathrm{FU}$ 와 cisplatin 의 병뵹요법은 $5-\mathrm{FU} 1000 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{day}$ 이 24 시간 연 속정주하여 제 1 일부터 제 5 일까지 투여되었고, cisplatin은 $80 \mathrm{mg} / \mathrm{m}^{2} /$ day로 제 1 일에 정추되었다.

4) 환자의 추적관찰

수술 후 퇴원한 환자는 외래에서 약물 및 방사선치 료를 시행하면서 정기적 검진에 의해 추시 관찰하였으 며, 추적이 중단되었던 환자는 엽서 및 전화로 추적하 였다. 무병생존기간은 수술시행일로 부터 재발이 확인 된 날까지로 하였고, 전체 생존기간은 수술시행일로 부터 최종관찰일(1995년 3원) 혹은 사망일꺄지로 하 였다.

5) c-erbB-3의 면역조직화하 염색법

면역조직화학 염색 시행시 사용한 c-erbB-3 단클 론 항체는 사람의 c-erbB-3항원에 대한 mouse항체 (Novocastra Laboratories Ltd, UK)였다. 먼저 조직표면에 존재하는 비특이 수용체를 제거하기 위해 blocking액 100μ 를 조직이 고정된 슬라이드에 점적 하 후, $37^{\circ} \mathrm{C}$ 가습항온기에서 20 분간 배양하였다. 배양 후 슬라이드를 세척하지 않고 기울여서 과다한 용액을 제거하고, $1: 200$ 으로 희석한 일차항체 $50 \mu 1$ 를 점적 하였다. 일차항채를 점적한 슬라이드를 다시 $37^{\circ} \mathrm{C}$ 가 습항은기에 넣고 30 분간 배양하고 phosphate-buff-

Fig. 1. c-erbB-3 immunohistochemical staining in rectal cancer (grade-0/negative, $\times 400$).

Fig. 2. c-erbB-3 immunohistochemical staining in rectal cancer (grade-II, $\times 400$).
ered saline (PBS) 으로 10 분씩 3 회 세척하였다. 다음 에 2 차향체를 $100 \mu 1$ 점적한 후 $37^{\circ} \mathrm{C}$ 가습항온기에서 30 분간 배양하였다. 2 차항체 배양이 끝난 다옴 PBS 로 10 분씩 3희 세척하고, Avidin-Biotin Complex (ABC) 용액을 2 방울씩 슬라이드에 점척 후 실온에서 30 분간 배양하고, 다시 PBS로 10 분씩 3회 세척 후 Diaminobenzidine(DAB) 용액에서 발색시킨 후, PBS로 10 분, 증류수로 10 분간 세척하고 methylgreen으로 대조염색하였다.

결과판독은 병리의사를 포함한 2 인의 판독자가 입상

정보를 받치않은 상태에서 판독하였다. 광학 현미경하 중배율 시야에서 종양의 괴사가 없는 부위를 선택하여 검색하였으며, 종양세포의 세포막이 갈색으로 염색된 경우만을 먕성으로 판정하였다(Fig. 1, 2). c-erbB-3의 표쳔정도는 전채 종양부위에서 양성반웅올 보인 부위 의 백분율을 구하여 다음과 같이 5 등급으로 구분하였 다. 양성부위의 백분율이 5% 미만은 grade $0,5 \sim 25$ $\%$ grade $I(+), 26 \sim 50 \%$ grade $\mathrm{II}(++), 5 \mathrm{I} \sim 75 \%$ graed III $(+++), 76 \sim 100 \%$ 인 경우는 grade IV $(+$ +++)로 정의하였으며, 본 연구에서는 grade I부터

Table 1. Patient characteristics

	OP	OP +RT	OP +CT	OP+CRT	Total
No. of patients	22	31	9	52	114
Male $:$ Female	$13: 9$	$18: 13$	$4: 5$	$30: 22$	$65: 49$
Age, median(year)	62	52	56	55	56
range	$(34-82)$	$(26-78)$	$(33-82)$	$(22-76)$	$(22-82)$

Histologic differentiation

well	3	5	2	6	16
moderate	16	18	6	32	72
poor	1	0	0	8	9
mucinous	2	8	1	5	16
signet-ring	0	0	0	1	1
Tumor size, median(cm)	5	5	7	5	5
range	(1-11)	(2-9)	(2-9)	(2-10)	(1-11)
" T " stage T_{2}	1	1	1	3	6
T_{3}	20	28	7	48	103
T4	1	2	1	1	5
"N" stage N_{0}	13	11	3	23	50
N_{1}	5	14	5	12	36
N_{2}	4	6	1	17	28
Stage I	11	11	3	25	50
III	11	20	6	27	64
B	11	11	3	25	50
B_{2}	11	11	2	25	49
B_{3}	0	0	1	0	1
C	11	20	6	27	64
C	0	2	1	3	6
C_{2}	10	16	5	24	55
C_{3}	1	2	0	0	3

OP: operation, RT: radiation, CT: chemotherapy, CRT: chemoradiation

양성으로 판정하였다. Positive control은 위암세 포주 및 internal control을 사용하였고, negative control은 일차항체를 색략한 염색멉을 사용하였으 며, 염색의 강도는 고려하지 않았다.

6) 통계학적 처리

각 군잔의 비교는 Fisher's exact test와 chisquare test로 하였으며, 생존율은 Kaplan-Meier 법으로 구하고 유의성 검정은 log-rank test로 하였 다.

결 과

1) 대상한자의 록성

총 대상환자 114예의 남녀비는 $1.3: 1$ (남 65 예, 여 49 예)이었으며, 중앙 연령은 56 세 ($22 \sim 82$ 세)였다. 종양 의 조직학적 유형은 고분화 선암 16 예, 중등도분화 선 암 72 예, 미분화 선암 9 예, mucin쳥 16 예, 인한세포 형(signet-ring cell)이 1 예였고, 종양크기의 중앙값 은 $5 \mathrm{~cm}(1 \sim 11 \mathrm{~cm})$ 이었다. T 병기상 $\mathrm{T}_{2} 6$ 예 $(5 \%), \mathrm{T}_{3}$ 103 예 $(90 \%), \mathrm{T}$, 5 예 (5%))였고, 림프절 전이가 없는 경우 $\left(\mathrm{N}_{0}\right)$ 가 50 예 $(44 \%), 4$ 개 미만의 럼프절 전이가 있 는 경우 $\left(\mathrm{N}_{1}\right)$ 가 36 예 $(32 \%), 4$ 개 이상의 림프절 전이가 있는 경우 $\left(\mathrm{N}_{2}\right)$ 가 28 예 (24%) 였다. TNM병기상 병기 II 50 예 (44%), 병기 III 64 예 (56%) 였으며, MAC 병 기상 B 병기 50 예 (44%), C 병기 64 예 $(56 \%$)였다 (Ta ble 1). 치료로 수술만 시행된 예가 22 에(19%), 수술 후 방사선치료만 시행된 예가 31 예 (27%) 였다. 수술 후 약물치료만 시행된 예는 9 예 (8%)로, $5-\mathrm{FU}$ 단독투

여가 2 예, $5-\mathrm{FU}$ 와 levamisole 병용투여가 1 예, 5 FU와 leucovorin 병용투여가 6예(4예는 면역치료로 picibanil추가)였다. 수술 후 항압약물치료와 방사선 치료가 병행된 예는 52 예 $(46 \%$)로 $5-\mathrm{FU}$ 단독투여가 13 예, $5-\mathrm{FU}$ 와 levamisole 병용투여가 1 예, $5-\mathrm{FU}$ 와 leucovorin 병용투여는 38 예(23예는 면역치료로 picibanil추가)였다.

2) 임상경과

전체환자 114 예중 31 예 (27%) 에서 재발하였으며, 치료 유형별 재발예는 수술 단독치료시 22 예중 6 예 (27%), 수술 후 보조적 방사선치료시 31 예중 11 예 (36 $\%$), 수술 후 보조 약물치툐시 9 예중 2 예 (22%), 수술 후 방사선치료와 약물치료 병용시 52 예중 12 예 (23%) 였다. 재발양상은 수술 단독치료시 6 예중 3 예 (50%), 수술 후 방사선 치료시 11 예중 1 예 (9%), 수술 후 약 물치료시 2 예중 1 예 (50%), 수술 후 약물치료와 방사 선치료 병용시 12 예중 3 예 $(25 \%$)에서 국소재발하여, 방사선치료가 시행된 예에서 국소재발이 감소하는 경 향을 보였다(Table 2). 중앙 추적관찰기간 33 개월 $(7$ ~ 63 개월)에서 전페 환자의 2 년 무병생존율은 78%, 전체생존율은 90% 였으며, 4 년 무병생존율은 66%, 전 체생존율은 77% 이었다.

3) c-erbB-3 발형을

전체 114 예중 $\mathrm{c}-e r b \mathrm{~B}-3$ 양성인 예는 52 예, 음성인 예는 62 예로 c-erbB-3 발현율은 46% 였다. 병기별로 MAC 병기 B에서는 50 예중 15 예 (30% : grade-I 5 예, grade-II 10 예)에서 양성이었으며, MAC 병기

Table 2. Recurrence pattern \& rate according to treatment modalities

Treatment modalities	Recurrence pattern			Total
	Local	Systemic	Local+Systemic	
$\mathrm{OP}(\mathrm{n}=22)$	3	2	1	6(27\%)
$\mathrm{OP}+\mathrm{RT}(\mathrm{n}=31)$	1	8	2	$11(36 \%)$
$\mathrm{OP}+\mathrm{CT}(\mathrm{n}=9)$	1	1	0	2(22\%)
$\mathrm{OP}+\mathrm{CRT}(\mathrm{n}=52)$	3	8	1	12(23\%)
Total $(\mathrm{n}=114)$	8	19	4	$31(27 \%)$

OP: operation, RT : radiation, CT: chemotherapy, CRT: chemoradiation

C에서는 64예중 37예(58\%: grade-I 15예, gradeII 15예, grade-III 7예)에서 양성으로 $(\mathrm{p}=0.0685)$, MAC 병기 C에서 발현율이 높은 경향이 있었다(Table 3).

4) c-erbB-3 반현유무에 따폰 재반들

c-erbB-3 양성군 52 예중 21 예 (40%), 음성군 62 중 10 예 (16%) 가 재발하여 c-erbB-3 발현유무에 따라 재

Table 3. c-erbB-3 expression rate according to MAC stage

Grade	0	I	II	III	IV	c-erbB-3(+) staining	p-value
MAC B $(\mathbf{n}=50)$	35	5	10	0	0	$15(30 \%)$	
MAC $(\mathbf{n}=64)$	27	15	15	7	0	$37(58 \%)$	
Total $(\mathbf{n}=114)$	62	20	25	7	0	$52(46 \%)$	0.0685^{*}

MAC: Modified Astler-Coller
*: comparison of $\mathrm{c}-\mathrm{er} b \mathrm{~B}-3$ expression rate between MAC stage B and C

Table 4. recurrence rate according to stage, c-erbB-3 expression, and treatment modalities

	MAC stage B		MAC stage C	
	c-erbB-3(+)	c-erbB-3(-)	c-erbB-3(+)	c-erbB-3(-)
	(\%)		(\%)	
Total	4/18(22)	4/32(13)	17/34(50)*	$6 / 30(20)^{*}$
Treatment modalities				
Radiotherapy	1/4(25)*	0/7(0)	** 7/10(70)**	2/10(20)**
Chemoradiation	$3 / 7(43){ }^{\text {* }}$	2/18(11)	* 6/14(43)	2/13(15)

MAC: Modified Astler-Coller
*: comparison between c-erbB-3 positive and negative group ($\mathrm{p}=0.0126$)
**: comparison between c-erbB-3 positive and negative group ($p=0.03$)
\because comparison between radiotherapy and chemoradiation group ($p=1.0000$)
*: comparison between radiotherapy and chemoradiation group ($p=1.0000$)

Fig. 3. Disease free survival curves according to c-erbB-3 expression in rectal cancer patients.

Fig. 4. Overall survival curves according to c-erbB-3 expression in rectal cancer patients.

발률의 유의하 차이가 관찰되었다 $(\mathbf{p}=0.004)$. 병기별 로는 MAC 병기 B 에서는 양성군이 18 예중 4 예 (22 $\%$), 음성군이 32 예중 4 예 (13%) 에서 재발하였고 $(\mathrm{p}=$ 0.4357), MAC 병기 C 에서는 양성군이 34 예중 17 예 (50%), 음성군이 30 예중 6 예 (20%) 에서 재발하여 $(p=$ 0.0126), MAC 병기 C에서만 c-erbB-3 양성시 재발 률이 높았다. 치료유형별로는 MAC 병기 C 에서 수술 후 방사선 단독치료군에서 양성군 10 예줌 7 예 $(70 \%$), 음성군 10 예중 2 예 (20%) 에서 재발하여 양성군에서 재발률이 높았다 $(\mathrm{p}=0.03)$ (Table 4).

5) c-erbB-3 발현유무에 따뽄 생촌을

c-erbB-3 양성군과 음성군의 2년 무병생존율은 각 각 $66 \%, 87 \%(\mathrm{p}=0.0052)$ 였으며, 2 년 전체생존율은 각각 $84 \%, 95 \%(\mathrm{p}=0.005)$ 로 양성군에서 예후가 불량 하였다(Fig. 3, 4). 병기별 2년 무병생존율온 MAC 병기 B 에서는 $\mathrm{c}-\operatorname{erbB}-3$ 양성군 83%, 음성군 90% (p $=0.418$), MAC 병기 C 에서는 양성군 56%, 옴성군 $83 \%(\mathrm{p}=0.0137)$ 로 MAC 병기 C 에서만 양성군의 생 존율이 낮았다(Fig. 5). 치료유형별로는 MAC 병기 C 에서 수술 후 방사선 단독치료군에서만 2 년 무병

생존율이 c-erbB-3 양성군 50%, 옴성군 82% ($\mathbf{p}=$ 0.0392)로 양성군에서 낮았다(Table 5).

6) c-erbB-3 발현에 따른 치료유형별 재발을 및 2년 무형생존을

MAC 병기 B에서 c-erbB-3양성인 경우 재발률은 방사선치료군이 4 예중 1 예 (25%), 약물 및 방사선 치 료. 병용군이 7 예중 3 예 $(43 \%$)에서 재발하였고 $(\mathrm{p}=$ 1.0000), 2 년 무병생존율은 방사선치료군 75%, 약물 및 방사선치료 병용군 $71 \%(p=0.5503)$ 로 각 치료유 형간에 유의하 차이가 없었다. MAC 병기 C에서는 c-erbB-3 양성인 겸우 재발률온 방사선치료군이 10 예 중 7 예 (70%), 약물 및 방사선치료 병용군이 14 예 중 6 예 (43%) 에서 재발하여 병용치료시 낮은 경향이었고 $(\mathrm{p}=1.0000), 2$ 년 무병생존율은 방사선치료군 50%, 약물 및 방사선치료 병용군 $56 \%(\mathrm{p}=0.2096)$ 로 유의 한 차이는 없었다(Table 4,5).

7) 예후인자의 다변량분석 걸과

c-erbB-3의 독립된 예후인자로서의 역할올 검중하 기 위하여 MAC 병기, 장벽의 침윤도 (T), 립프절 전

Fig. 5. Disease free survival curves according to c -erbB-3 expression and stage in rectal cancer patients (MAC stage $B=0.418$, MAC stage $C: p=0.0137$).

Table 5. 2-year disease free survival rate according to stage, c-erbB-3 expression, and treatment modalities

	MAC stage B		MAC stage C	
	c-erbB-3(+)	c-erbB-3(-)	c-erbB-3(+)	c-erbB-3(-)
Total	83\%	90\%	56% *	83% *
Treatment modalities				
Radiotherapy	75\% ${ }^{\text {- }}$	100\%	${ }^{*} 50 \%$ **	82\%**
Chemoradiation	71\%	94\%	${ }^{*} 56 \%$	85\%

MAC: Modified Astler-Coller

*: comparison between c-erbB-3 positive and negative group ($p=0.0137$)
**: comparison between c-erbB-3 positive and negative group ($p=0.0392$)
\because comparison between radiotherapy and chemoradiation group ($p=0.5503$)
${ }^{*}$: comparison between radiotherapy and chemoradiation group ($\mathrm{p}=0.2096$)

Table 6. Results of uni- and multivariate analysis

Variables	Univariate p-value	Multivariate p-value
T stage	0.0000	0.0000
MAC stage	0.0171	0.0047
Nodal status	0.0171	0.0114
c-erbB-3	0.0055	0.0835
Radiotherapy	0.8096	0.3106
Chemotherapy	0.7699	0.6778

MAC: Modified Astler-Coller

이(N), 치료유형 및 c-erbB-3를 변수로 한 다변량 분 석을 시행한 결과 $\mathrm{c}-\mathrm{er} b \mathrm{~B}-3$ 는 독립된 예후인자다서의 통계적 의미는 없었요나 $(\mathrm{p}=0.0835)$, 예후인자로서의 가능성은 제시하였다(Table 6).

8) 재발 후 치료결과

c-erbB-3 양성군에서 재발한 환자 21 예중 9 에에서 약물치료가 시행되었다. 재발전의 치료로서 수술 후 방사선치료가 시행되었던 예는 4 예, 수술 후 방사선치 료와 약물치료가 병용되었던 예는 3 예였고, 수술만을 시행한 경우와 수술 후 야물치료만을 시햄한 경우가 각각 1 예씩 이었다. 6 예에서 5 -FU와 leucovorin, 2 예에서 5-FU와 leucovorin 및 cisplatin, 1 예에서 5-FU와 cisplatin으로 치료하였으나 이둘 모두 사망

하여 재발 후 중앙 생존기간은 14 개월 ($3 \sim 27$ 개월)이 었다. c-erbB-3 음성군에서 재발한 한자 10 예중 2 예 에서 재발 후 약물치료가 시행되었다. 재발전에 수술 단독치료와 수술 후 약물치료률 시행한 경우가 각각 1 예씩이었다. 1 예에서는 $5-\mathrm{FU}$ 와 leucovorin 및 cisplatin, I 예에서는 5-FU와 levamisole로 치료하였 으나 모두 사망하여 재발 후 중앙 생존기간은 19 개월 (18~20애월)이었다.

고

직장압은 수술 후 국소재발률이 원격장기 재발률에 비해 약 2 배 이상 높고 ${ }^{221}$, 톡히 병기 III에서는 국소재 발률이 현저히 높아서 근치적 절제술 후에도 국소재발 이 주된 문제접으로 지적되고 있다 ${ }^{233}$. 따라솨 1990년 National Institute of Health(NIH) Consensus 에서는 병기 II와 병기 III의 직장암에서논 근치적 수 술 후 보조치료로서 함압약물치료와 방사선치료 병용 요법이 국소재발을 감소시키고 생존율을 향상시키는 것으로 보고하였고, 가장 호과적인 약제로는 $5-\mathrm{FU}$ 아 methyl-CCNU롤, 적절한 방사선 조사량은 4,500~ $5,500 \mathrm{cGy}$ 를 추천하였으나, methyl-CCNU의 이차 성 백혈병과 만성신부전의 유발가능성으로 인하여 현 재는 $5-F \mathrm{FU}$ 를 주축으로한 항암약물요법과 방사선치료 병용요법이 표준치료로 추천된다. 그러나 아직도 가장 독성이 적으면서 가장 효과적인 약재의 선택, 약물치

료의 기간, 방사선치료의 용량과 조사방법, 약물치료와 방사선치료 병용시 투여방법둥에 관해 많은 논란이 있 어, NSABP(NSABP-R02)와 Intergroup Study (INT-0114)에서 이에 대한 연구가 진행중에 있다 ${ }^{12)}$. 치료방법을 표준화 하려는 시도 외에도 생물학적으로 불랑한 예후를 나타내는 인자를 찾기 위해 절제된 압 조직의 DNA flow cytometry상 이수배수채 (aneuploidy)와 고세포증식지표(high cell proliferation index)에 대한 연구가 시행되고 있으며, 이외에도 세 포중식도를 반영하는 다양한 분자생물학적 지표와 면 역조직화학 염색기법이 직장압의 고위험도군을 선별하 기 위하여 연구되고 있다 ${ }^{24,25)}$.
c-erbB-3단백은 제 1 형 성장조절인자 수용체군 중 에서 가장 최근에 밝혀진 분자량 약 160 kd 인 당단백 으로 Kräus 등 ${ }^{26}$ 과 Plowman 둥 ${ }^{27 \%}$ 이 처음으로 cloning하였으며, c-erbB-3수용체 유전쟈는 chromosome 12 의 long arm에 위치하는 것으로 알려져 있다. c-erbB-3가 속해있는 졔 1 형 성장조절인자 수 용체군은 세포의 성장과 분화에 중요한 역할을 하며, 이미 많은 연구가 되어 있는 c-erbB-2와 EGFR은 유방압을 비롯하여 난소암, 폐압 및 위압등의 병태생 리와 성상에 판여한다 ${ }^{281}$. c-erbB-2 압유전자는 유방암 세표주에서 처음 관찰되었고, tyrosine kinase의 활 성을 갖는 분자량 $185,000 \sim 190,000$ 의 transmembrane glycoprotein을 생성하며, 이는 EGFR퐈 구 조적으로 유사한 일종의 성장조절인자 수용체(growth factor receptor)이다. 아직까지 c-erbB-2의 정상적 인 생러학적 기능은 밝혀져 있지 않고, 정상에서도 유 방, 기관지 및 위선의 상패세포 표면에 저역가르 표현 되며 ${ }^{293303}$, 유방압, 쳬장압, 폐선암 및 위압 조직에서 발 현되는 것으로 알려져 있다 ${ }^{(4,31 \sim 35)}$. c-erbB-3단백은 유 방압에서는 주로 세포질 염색의 양상을 보이나 췌장암 이나 위암 등 소화기계의 암종에서는 주로 세포막에 염색되는 것으로 보고되며⑹, 본 연구에서.도 c-erbB-3 단백은 주로 세포막 염색의 양상을 보였으며 드물게 세포질에 비톡이적인 dotting형태로 염색이 되었다. 직장압 전체 114 예중 52 예에서 양성반응을 보여, C $e r b \mathrm{~B}-3$ 발현율은 46% 였으며, 병기별로는 MAC 병기 B 에서는 $30 \%, \mathrm{MAC}$ 병기 C 에서는 58% 의 발현율을 보여 진행된 병기에서 양성률의 중가 경향을 관찰학 수 있었다.
c-erbB-3의 세포외 영역(extracellular domain) 의 EGFR과의 구조적 유사성은 c-erbB-3가 EGFlike receptor와 상호작용 할것으로 생각되며 ${ }^{26)}$, c -erbB-2도 그 자체로는 neuregulin에 결합이 불가능 하고, $\mathrm{c}-e r b \mathrm{~B}-3$ 및 $\mathrm{c}-e r b \mathrm{~B}-4$ 와 이종이합체(heterodimer)를 형성하여 neuregulin과 결합하여 작융 하는 것으로 알려져 있다 ${ }^{15)}$. 이와같이 c-erbB-3와 c-erbB-2 및 EGFR간에는 상호 밀접한 관련성을 관찰 할 수 있음에도 불구하고 c-erbB-2와 EGFR은 여러 악성종양에서 예후인자로서의 가치가 보고 되였으나, c-erbB-3에 대한 항체는 최근에 연구되어 c-erbB-3 의 임상적 예후인자로서의 가치에 대한 보고는 림프절 음성 유방암퐈 전립선압 등에서 소수의 보고만이 있 다. Lemoine 동 ${ }^{16)}$ 은 212 예의 유방암환자중 47 예 (22 $\%)$ 에서 c-erbB-3단백이 과표현되며 림프절 전이와의 관련성은 관찰하였으나 예후와의 상관성을 밝히지는 못하였다. Russel 등 ${ }^{(9)}$ 은 22 예의 전립선 상피내압 (intraepithelial tumor) 환자들에서 근치적 전립선 절제술 후 절제된 조직에서 c-erbB-3에 대한 면역 조직화한 염색을 시행하여, 정상조직에서는 기저세포 (basal cell)에서만 양성반응올 보인 반면에, 암조직에 서는 기저세포 뿐 아니라 관강세포(luminal cell)에 서도 세포질 또는 세포막에서 양성반웅을 보여, c-erb B-3의 발현정도와 subcellular distribution이 정상 상피와 이형상피(dysplastic epithelium)에서 차이 가 있음올 관찰하였다. 아울러 이러한 c-erbB-3의 발 현과 subcellular distribution이 국소 전립선암 및 전이성 전립선암에서도 관찰됨을 보고하여, 전립선 상 피내암이 전립선암의 전구단계로 알려진 바, 전립선암 의 진행과 전이의 한 지표로서의 가능성을 제기하였 다. 본 연구에서 각 병기별 비교시, MAC 벙기 B 에 서는 c-erbB-3 양성군과 음성군간에 재발률 및 2 년 무병생존율의 유의한 차이가 없었으나, MAC 병기 C 에서는 양군간에 유의한 차이를 관찰할 수 있었다. c$e r b \mathrm{~B}-3$ 의 독립된 예후인자로서의 역할올 검증하기 위 하여 MAC 병기, 장벽의 침윤도(T), 림프절 전이(N), 치료유형 및 c-erbB-3률 변수로 한 다변량 분석 을 시행한 결과, c-erbB-3는 독립된 예후인자로서의 통계적 의미는 없었으나 $(\mathrm{p}=0.0835)$, 상기한 바와 같 이 c-erbB-3 발현유무에 따른 재발률 및 생존율의 차 이를 고려할 때 직장암에서 근치적 수술 후, 특히

MAC 병기 C군에서 생존올 예측할 수 있는 예후인자 로서의 가능성이 제시되었다.

방사선치료가 시행된 예에서 c-erbB-3 양성인 경우 c-erbB-3 음성인 경우에 비해 재발률이 증가하고 생 존율이 감소하는 불량한 예후롤 나타내었다. 톡히 이 러한 결과는 MAC 병기 C 에서 뚜렷하여 $\mathrm{c}-\operatorname{erbB}-3$ 발현이 방사선치료의 저항요인(resistance factor)임 을 암시하거나 흑은 c-erbB-3 양성인 겸우 방사선 조 사량의 중량올 고려해야 할 것으로 생각된다.

반면 약물치료와 방사선치료 병영군에서는 c-erbB3 양성군과 옴성군간에 재발률과 2 년 무병생존율의 유의한 차이가 없었다. 그러나 c-erbB-3 양성군에서 병용치료군이 방사선 단독치료군에 비해 재발률이 감 소하는 경향이 관찰된 점은 c-erbB-3 발현이 약제감 수성을 시사할 가능성이 있으므로 추후 이에 대한 검 토가 필요할 것으로 생각된다.

겼 뽄

직장암에서 근치적 절제술 후 절제된 조직으로 C $e r b \mathrm{~B}-3$ 면역조직화학 열색을 시행하여 $\mathrm{c}-e r b \mathrm{~B}-3$ 의 예후인자로서의 임상적 유용성을 조사한 바, MAC 병 기 C 에서 $\mathrm{c}-e r b \mathrm{~B}-3$ 발현시 재발률이 중가하고 $(\mathrm{p}=$ $0.0126), 2$ 년 무병생존율이 감소하였으나 $(\mathrm{p}=0.0137)$, 다변량 분석시 c-erbB-3는 독립된 예후인자는 아니었 다 $(\mathrm{p}=0.0835)$. 그러나 MAC 병기 C 에서 수술 후 방 사선 단독치료시 c-erbB-3 양성군이 음성군에 비해 예후가 불량하였던 반면, 각군에 약물치료를 추가하여 도 재발률 및 생존율의 변화가 없어 c-erbB-3 발현이 기존의 방사선 조사량에 반웅이 없거녀 고용량의 방사 선조사가 필요한 대상을 선정할 기준으로 사용될 가능 성을 제시하였다.

찹 고 문 헌

1) Killingback MJ: Indications for local excision of rectal cancer. Br J Surg 72: 54, 1985
2) Moertel CG: Chemotherapy of gastrointestinal cancer. N Engl J Med 299: 1049, 1978
3) Douglass HO, Moertel CG, Mayer RJ, Thomas PRM, Lindbled AS, Mittleman A, Stablein DM, Bruckener HW: Survival after postoperative combination treatment of rectal cancer. N Engl J Med

315: 1294, 1986
4) Krook JE, Moertel CG, Gunderson LL, Wieand HS, Collins RT, Beart RW, Kubista TP, Poon MA, Meyers WC, Mailliard JA, Twito DI, Morton RF, Veeder MH, Witzig TE, Cha S, Vidyarthi SC: Effective surgical adjuvant therapy for high risk rectal carcinoma. N Engl J Med 324: 709, 1991
5) Folkson G, Falkson HC: Fluorouracil. MethylCCNU + Vincristine in cancer of the colon. Cancer 38: 1468, 1976
6) Keynomari K, Moran R: Folinic acid augmentation of the effects of fluoropyrimidines on murine and human leukemia cells. Cancer Res 46: 5229, 1985
7) Brucker HW, Ohnuma T, Hart R, Jaffrey JA, Wilfinger C, Goldberg J, Biller H, Holland JF: Leucovorin potentiation of 5-fluorouracil efficiency and potency. Proc Am Asso Cancer Res 23: 111, 1982
8) Madajewicz S, Petrelli N, Rustum YM, Campbell J, Herrera L, Mittleman A, Perry A, Creaven PJ: Phase I-II trial of high dose calcium leucovorin and 5-fluorouracil in advanced colorectal cancer. Cancer Res 44: 4667, 1984
9) Zakem M, Hines JD, Adelstien DJ, Rustum YM: High dose leucovorin and 5-fluorouracil in refractory and relapsed colorectal carcinoma. Proc Am Soc Clin Oncol 5: 81, 1986
10) 임호영, 정현철, 최진혁, 유내춘, 김동립, 고은희, 김주 항, 노재경, 김병수: 진햄성 및 재발성 대장암예서 5fluorouracil과 저영량 leucovorin 병용요법에 대한 제 M 상 임상연구. 대한암학회지 23: 563,1991
11) Krook JE, Moertel CG, Wieand HS, Collins RT, Gunderson LL, Kubista TP, Beart RW: Radiation vs sequential chemotherapy-radiation therapy: A study of the north central cancer treatment group, Duke University and the Mayo Clinic. Proc Am Soc Clin Oncol 5: 82, 1986
12) Cohen AM, Minsky BD, Friedman MA: Rectal Cancer. In: Devita VT Jr., Hellman S, Rosenberg SA, eds. Cancer, Principles and Practice of Oncology. 4th edit, Philadelphia: JB Lippincott. 1993: 9781005
13) Paik SM, Hazan R, Fisher ER, Sass RE, Fisher B, Redmond C, Schlessinger J, Lippman ME, King CR: Pathologic findings from the national surgical adjuvant breast and bowel project: prognostic significance of erbB-2 protein overexpression in primary
breast cancer. J Clin Oncol 3: 103, 1990
14) Paterson MC, Dietrich KD, Dunyluk J: Correlation between c-erbB-2 amplification and risk of recurrence disease in node negative breast cancer. Cancer Res 51: 556, 1991
15) Gusterson BA, Gelber RD, Goldhirsch A, Price KN, Save SJ, Anbazhagan R, Styles J, Rudenstam CM, Golouh R, Reed R, Martinez TF, Tiltman A, Torhorst J, Griglato P, Bettelheim R, Neville AM, Burki K, Castiglione M, Colins J, Lindtner J, Senn HJ: Prognostic importance of c -erbB-2 expression in breast cancer. J Clin Oncol 10: 1049, 1992
16) Lemoine NR, Barnes DM, Hollywood DP, Hughes CM, Smith P, Dublin E, Prigent SA, Gullick WJ, Hurst HC: Expression of the ERBB3 gene product in breast cancer. Br J Cancer 66: 1116, 1992
17) Poller DN, Spendlove I, Baker C, Church R, Ellis IO, Plowman GD, Mayer RJ: Production and characterisation of a polyclonal antibody to the c erbB3 protein: Examination of c-erbBB protein expression in adenocarcinomas. J Pathol 168: 275, 1992
18) Lemoine NR, Lobresco M, Leung H, Barton C, Hughes CM, Prigent SA, Gullick WJ, Kloppel G: The erbB3 gene in human pancreatic cancer. J Pathol 168: 269, 1992
19) Russel BM, Sudhir S, Denise KO, William EG: Expression of p $160^{\text {ribs-3 }}$ and p185 $5^{\text {ats } 2}$ in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. J Natl Cancer Inst 86: 1140, 1994
20) 정현철, 라선영, 박준오, 송승훈, 조재용, 안중배, 이혜 란, 이종인, 유내춘, 김주항, 노재경, 성진실, 감귀언, 민진식, 이경식, 김병수, 임호영, 이기범, 최진혁, 이경 희: 근치적 절제술이 시행된 대장 및 직장앆에서 c $e r b B-2$ 의 표현과 임상적 의의. 대한암학회지 27 : 389. 1995
21) Beahrs OH, Henson DE, Hutter RV, Kennedy BJ: Colon and Rectum. In: American joint committee on cancer, eds. Manual for staging of cancer. 4 th edit, Philadelphia: JB Lippincott 1993, p75-79
22) Fisher B, Wolmark N, Rockette H, Redmond C, Deutsch. M, Wickerham DL, Fisher ER, Caplan R, Jones J, Lerner H, Gordon P, Feldman M, Cruz A, Poisson SL, Wexler M, Lawrence W, Andre R, other NSABP Investigators: Postoperative adjuvant chemotherapy or radiation therapy for rectal cancewr: results from NSABP protocol R-01. J Natl

Cancer Inst 80: 21, 1988
23) Enker WE, Pilipshen SJ, Heilweil ML, Stearns Jr. MW, Janov AJ, Hertz RL, Sternberg SS: En bloc pelvic lymphadenectomy and sphincter preservation in the surgical management of rectal cancer. Ann Surg 203: 426, 1986
24) Moertel CG, Fleming TR, Macdonald JS: Effective surgical adjuvant therapy of colon carcinoma. A National Intergroup Study. N Engl J Med 322: 352, 1990
25) Witzig TE, Loprinzi CL, Gonchoroff NJ, Reiman HM, Cha SS, Wieand HS, Katzmann JA, Paulsen JK, Moertel CG: DNA ploidy and cell kinetic measurements as predictors of recurrence and survival in stage B_{2} and C colorectal adenocarcinoma. Cancer 68: 879, 1991
26) Kraus MH, Issing W, Miki T, Popescu NC, Aaronson SA: Isolation and characterization of ERBB3, a third member of the ERBB epidermal growth factor receptor family: evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci 86: 9193, 1989
27) Plowman GD, Whitney GS, Neubauer MG, Green JM, McDonald VL, Todaro GJ, Shoyab M: Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proc Natl Acad Sci 87: 4905, 1990
28 Prigent SA, Lemoine NR: The type I(EGFR-related)family of growth factor receptors and their ligands. Prog Growth Factor Res 4: 1, 1992
29) Coussens L, Yang-Feng TL, Liao YC, Chen E, Gray A, McGrath J, Seeburg PH, Libermann TA, Schlessinger J, Francke U, Lerinson A, Ullrich A: Tyrosine kinase receptor with extensive homology to $E G F$ receptor shares chromosomal location with neu oncogenes. Science 230: 1132, 1985
30) Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N, Saito T, Toyoshima K: Similarity of protein encoded by the human c-erbB2 gene to epidermal growth factor receptor. Nature 319: 230, 1986
31) Shin C, Padhy LC, Murrey M: Transforming genes of carcinomas and neuroblastomas induced into mouse fibroblasts. Nature 290: 261, 1981
32) Wright C, Angus B, Nicholson S: Expression of c-erbB-2 oncoprotein: a prognostic indicator in human breast cancer. Cancer Res 19: 2087, 1989
33) Kern JA, Schwartz DA, Nordberg JE: p185 neu
expression in human lung cancer adenocarcinoma predicts shortened survival. Cancer Res 50: 5184, 1990
34) Yonemura Y, Ninomiya I, Ohoyama S, Kimura H, Yamaguchi A, Fushida S, Kosaka T, Miwa K, Miyazaki I, Endon Y, Tanaka M, Sasaki T: Expression of c-erbB-2 oncoprotein in gastric carcino-
ma. Cancer 67: 2914, 1991
35) Jang WI, Yang WI, Lee CI, Kim HS, Song KS, Cho MY, Park JK, Shim YH: Immunohisto-chemical detection of $p 53$ protein, c-erbB- 2 protein, epidermal growth factor receptor protein and proliferating cell nuclear antigen in gastric carcinoma. Journal of Korean Medical Science 8: 293, 1993

