내독소로 유발시킨 섬유조직증식에서 아스코르빈산의 역할

이 성 철•권 오 웅

= 요 약 $=$

고농도의 아스코르빈산은 생체외 실험에서 망막색소상피세포의 증식올 억제하지만 섬유조직형성은 자극한다. 본 연구는 내독소로 유발시킨 섬유조직증식에서 아스코르빈산의 역할올 알아보고자 하였 다. 대조군은 내독소를 유리체강에 주사하고 실험군은 내독소와 함께 아스코르빈산을 주사하여 유리 체섬유화를 유발시키고 섬유조직형성의 정도를 비교하였다. $1 \mu \mathrm{~g}$ 의 내독소룰 유리체강에 주사하면 심 한 염증반웅이 1 일째부터 적어도 3 일동안 계속되었으며 아스코르빈산의 농도는 내독소 주입 후 현저 하게 감소하였고 7일째는 기질화된 섬유막을 관찰할 수 있었다. 내독소를 아스코르빈산과 동시에 주 입하면 내독소만을 주입하였을 때보다 염증반응이 적게 나타났으나 유리체 섬유조직 형성에는 영향 을 미치지 않았다. 고농도의 아스코르빈산이 안염증시 안구조직을 보호할 수 있어도 섬유조직형성은 억제하지 돗하였다(한안지 $37: 1663 \sim 1669,1996$).
$=$ Abstract $=$

The Effect of Ascorbic acid on Endotoxin-induced Fibrosis

SungChul Lee, M. D., OhWoong Kwon, M.D.

Ascorbic acid, which is toxic to retinal pigment epithelial cells in vitro, can stimulate fibrotic tissue formation. This study investigated the influence of ascorbic acid on endotoxin-induced fibrosis. Experimental vitreal fibrosis was induced in the rabbit by injecting endotoxin with or without ascorbic acid into the vitreous, and compared the degree of fibrosis. Inflammation induced by $1 \mu \mathrm{~m}$ of endotoxin first appeared on day 1 , remained on day 3 . On day 7 , organized

[^0]membrane was developed. The striking decrease in ascorbic acid occurred after the intravitreal injection of endotoxin. In a series of experiment in which ascorbic acid were used, endotoxin produced less inflammatory response compared to the control. Rabbits which were injected lug of endotoxin (with or without ascorbic acid) had shown significant vitreal fibrosis. Even though the high conentration of ascorbic acid can provide extacellular protection for the ocular tissues during ocular inflammation, It was not effective in preventing the formation of membrane (J Korean Ophthalmol Soc 37:1663~1669, 1996).

Key Words : Ascorbic acid, Endotoxin, Fibrosis

유리체는 아스코르빈산의 놓도가 때우 높은 곳으 로 혈청의 약 10 배에 해당한다". 유리체에서 아스코 르빈산은 자외선을 홉수하고 광선에 의해 발생하는 유해한 자유라디칼 (free radical) 로 부터 안조직을 보호하는 것으로 알려져 있으멸.31 테논낭 섬유아세 포의 증식을 억제하고 ${ }^{455}$ 염증반응에도 관여하는 것 으로 보고되어 있다 ${ }^{6.77}$.
증식유리체망막병중은 망막의 내외측과 유리체에서 비정상적으로 세포가 증식하여 섬유막이 형성되고 견 인망막박리가 발생하는 질환으로 아스코르빈산의 세 포증식 억제능력과 항염증 역할로 미루어 볼 때 유리 체에 존재하는 고농도의 아스코르빈산은 증식유리체 망막병증의 발생을 억제할 것이란 기대를 할 수 있 다. 그러나 아스코르빈산과 망막색소상피세포룰 유리 체에 주입하여 발생시킨 증식유리체망막병증의 실험 에서는 아스코르빈산의 세포증식 억제능력에도 불구 하고 아스코르빈산이 섬유조직 형성을 자극하여 ${ }^{83}$ 아 스코르빈산의 섬유형성에 대한 역할규명이 필요하게 되었다. 따라서 내독소를 유리쳬강에 주사하여 섬유 화가 일어나는 경우 아스코르빈산의 항염증 역할이 섬유형성욜 억제할 수 있는가를 조사할 필요가 있다.
본 연구에서는 내독소와 아스코르빈산을 유리체에 주입하여 발생시킨 염증반응과 그 결과로 형성된 섬 유조직의 정도를 평가하고 아스코르빈산의 농도 변 화를 관찰하여 내독소로 유발시킨 섬유형성에서 아 스코르틴산의 역할을 알아보고자 하였다.

재료 및 방법

아스코르빈산의 ㄴ5ㅎ도측정 : 유리체강 아스코르빈산

의 농도변화률 간찰하기 위하여 내독소(Lipopolysaccharides from Escherichia Coli, Sigma, st. Louis, MO, USA) $1 \mu \mathrm{~g}$, 아스코르빈산 0.5 mg , 그리 고 내독소 1 ug 과 아스코르빈산 0.5 mg 을 $2-3 \mathrm{~kg}$ 의 사육 한 유색토끼의 유리체강에 주사하였다. 주사 1 주일전 유리체강내로 가스를 주입하여 유리체가 액화되도록 하였으며 주사전 동공을 산대시키고 콘택트렌즈의 도 움으로 망막을 보면서 각공막운부 2 mm 뒤에서 튜버크린 주사기의 27 G 주사침으로 위에 기술한 양을 토끼의 유리체강에 각각 주입하였다. 각각의 경우에서 2 안씩 주사 1 시간, 3 시간, 6 시간, 24 시간 그리고 7 일 후 유 리체를 채취하였으며 채취한 재료는 모두 둥량의 메타 포스포린산(meta-phosphoric acid)을 혼합하여 -70 ${ }^{\circ} \mathrm{C}$ 냉동실에 보관하였다.

아스코르빈산의 농도는 HPLC(High Performance Liquid Chromatography, Waters Associates) 방법으로 측정하였다. 펌프는 $\mathrm{M}-6000 \mathrm{~A}$, 시료 주입기는 M-U6K universal injector, 검출기는 series 440 absorbance detector, 기록계는 M730 data module을 사용하였다. UV검출기 파장은 254 nm 로 하였고 감도는 $0.02 \mathrm{a} . \mathrm{u} . \mathrm{f} . \mathrm{s}$. 로 고정 하였다. 이동상의 속도는 $1 \mathrm{ml} / \mathrm{min}$, 기록용지의 속 도는 $0.5 \mathrm{~cm} / \mathrm{min}$ 로 하였다.

이동상 (mobile phase)은 0.8% 트리메타포스포 린산을 사용하였으며 정지상 (staionary phase) 은 U-Bondapak C 18 ($30 \mathrm{~cm} \times 3.9 \mathrm{~mm}$ I.D.) column (Waters Associates) 을 사용하였다. 표준시료는 L-아스코르빈산(Sigma, st. Louis, MO, USA) 을 10% 트리메타포스포린산에 $1.4 \mathrm{mg} / 10 \mathrm{ml}$ 로 녹인 후 $14 \mathrm{\mu g} / \mathrm{ml}$ 로 회석하여 사용하였다.

내독소에 의한 섬유막의 형성 : 토끼눈의 유리체 에서 내독소에 의해 섬유조직이 형성되는 것을 관찰 하기 위하여 0.2 CC BSS 용액속의 내독소 100 ng , $200 \mathrm{ng}, 500 \mathrm{ng}$ 과 $1 \mu \mathrm{~g}$ 을 각각 토끼눈의 유리체에 주 입하였다. $1 \mu \mathrm{~g}$ 의 내독소률 3 일간 주입하였을 경우 내독소 주입 1 주일 후 유리체강이나 유수신경섬유위 에서 섬유띠률 관찰할 수 있었으며, 아스코르빈산과 의 비교실헙을 위해서 $1 \mu \mathrm{~g}$ 올 내독소의 주입양으로 정하였다.

아스코르빈산이 섬유조직형성에 미치는 영향올 조 사하기 위하여 대조군은 토끼눈 16 안에 0.2 cc BSS 용액 속의 내독소 1 ug 을 3 일간 주입하였으며, 실험 군은 토끼눈 16 안에 0.2 cc BSS 용액속에 $1 \mu \mathrm{~g}$ 의 내 독소와 함께 아스코르빈산 0.5 mg (유리체 아스코르 빈산의 양) 을 매일 3 일간 계속하여 주사하였다.

7 일, 14 일, 그리고 21 일째 내독소로 유발시킨 섬 유조직증식의 정도를 간접검안경으로 관찰하였다. 형성된 섬유조직은 유리체내에 섬유막이나 섬유띠, 국소적인 망막견인이 있는 경우률 경도, 유수신경섬 유의 국소적인 망막박리나 망막색소변성이 있는 경 우를 중등도, 망막열공이나 망막주름, $1 / 3$ 이상의 망 막색소변성과 광범위한 망막박리가 있으면 고도로 분류하였다.

유리체염중의 측정 : 간접 검안경으로 망막을 관찰 하여 망막의 유수신경섬유가 명확히 보이는 정도에 따라서 등급율 결정하였다. 유수신경섬유가 명확하게 보이지만 작고 불규칙한 모양의 혼탁이 군테군데 있 는 경우를 +1 , 부분적으로 흔탁이 있으면서 유수신경 섬유가 다소 가려 보이는 경우를 +2 , 유리체의 전체 적인 흔탁으로 유수신경섬유의 경계부위를 확인할 수 없으면 +3 , 유리체혼탁으로 유수신경섬유률 포함한 망 막이 관찰되지 않는 경우를 +4 로 하였다.

결 과

아스코르빈산의 농도변화 : 토끼 정상 유리체의 아스코르빈산의 평균 농도는 $68.4 \mathrm{\mu g} / \mathrm{ml}$ 이었으며 0.5 mg 의 아스코르빈산울 추가로 유리체강에 주사하 면 아스코르빈산의 평균 농도는 주사후 1 시간에 $179.9 \mu \mathrm{~g} / \mathrm{ml}, 3$ 시간에 $187.1 \mu \mathrm{~g} / \mathrm{ml}$ 로 증가하였고 적 어도 하루동안 높은 농도의 아스코르빈산이 유리체

강에 존재하였으며 7 일에는 $84.5 \mathrm{ug} / \mathrm{ml}$ 로 정상 아스 쿄르빈산의 농도에 가까왔다, 내독소를 유리체강으 로 주입하면 주사 후 1 시간에 $21.9 \mu \mathrm{~g} / \mathrm{ml}$, 3 시간에 $48.8 \mu \mathrm{~g} / \mathrm{ml}, 6$ 시간에 $35.4 \mu \mathrm{~g} / \mathrm{ml}$ 로 첫 6 시간동안 아 스코르빈산의 농도는 정상치보다 현저히 감소하였고 내독소 주입 후 7일 에도 아스코르빈산의 농도는 $44.4 \mu \mathrm{~g} / \mathrm{ml}$ 이었으며 정상으로 회복되지 아니하였다. 내독소와 아스쿄르빈산을 동시에 주입하면 아스코르 빈산의 농도는 주입후 3 시간쩨 $154.4 \mu \mathrm{~g} / \mathrm{ml}$ 로 증가 하였으나 곧 감소하여 정상치에 가까왔다(Fig. 1).

유리체 혼탁의 정도 : $1 \mu \mathrm{~g}$ 의 내독소률 유리체강에

Fig. 1. The concentration of ascorbic acid in the vitreous.

Table 1. Average vitreous inflammatory reaction in ascorbic acid and control groups.

	Eyes	
Days after injection	A	C
1	+4.0	+4.0
4	+3.7	+4.0
7	+1.5	+2.0
14	+1.0	+1.0

A : Injection with endotoxin 1 us and ascorbic acid 0.5 mg

C: Injection with endotoxin 1 ug
Grade 1: A Few scattered irregular opacities.
2: Medullary ray somewhat obscured.
3 : Many opacities and blurring of medullary ray.
4 : Dense opacities that make fundus invisible.

Fig. 2. Fundus photograph shows localized vitreous opacity and strand with focal elevation of medullary ray

Fig. 3. Extensive retinal detachment with pigmentary degeneration

Table 2. Effects of ascorbic acid on the formation of fibrosis in the rabbit model

stage of	Experimental fibrosis	group	No. of eyes		
Normal	A	7 days	14 days	21 days	
	C	2	1	0	
Mild	A	0	0	0	
	C	9	1	2	
Moderate	A	10	4	3	
Severe	C	4	3	2	
	A	5	3	3	
	C	1	11	12	

mild : vitreous strand and fibrous membrane.
moderate : focal detachment of medullary ray with pigmentary degeneration.
severe : extensive pigmentary degeneration with retinal detachment.
A : Injection with endotoxin 1 mg and ascorbic acid 0.5 mg
C : Injection with endotoxin 1 ug

주사하면 주사 1 일째부터 염증반응으로 인한 유리체 흔탁의 정도가 +4.0 으로 토끼 망막의 유수신경섬유 를 관찰할 수 없었다. 유리체혼탁은 4 일째 +4.0 으로 변화가 없었으며 7 일째에는 유리체혼탁의 정도가 +2.0 으로 맑아져서 유리체강이나 망막표면에 형성된 섬유조직을 관찰할 수 있었다. (100 ng 가 200 ng 의 주사시에도 염증반용으로 인한 유리체혼탁은 관찰되 었으나 그 정도는 작았으며 1 주일이 지나면서 섬유 형성 없이 투명한 유리체로 환원되었다.) 아스코르 빈산과 내독소를 같이 주입한 경우 4,7일째 유리체

혼탁의 정도가 각각 $+3.7,+1.5$ 로 내독소만을 주입 한 경우에 비하여 다소 적은 경향을 보였으나 퉁계 적으로 유의한 차이는 아니었다(Table 1).
내독소에 의한 섬유막의 헝성 : 내독소 주사 1 주 일 후 16 안 모두 유리체와 망막은 정상소견이 아니 었으며 이 중 10 안에서는 유리체섬유막 (Fig. 2) 이, 5 안에서는 국소적인 망막견인이나 색소변성이, 1 안 에서는 색소변성을 동반한 망막박리가 발생하였다 (Fig 3). 3 주일째 16 안중 10 안이 색소변화를 동반 한 망막박리로 진행하였다. 내독소와 아스코르빈산

을 동시에 주사하면 1 주일 관찰에서 16 안중 9 안에서 유리체 섬유막이나 섬유띠가 관찰되었으며 5 안에서 는 국소적인 망막박리가, 1 안에서는 이미 색소변화 와 망막박리가 발생하였고 3 주일째 16 안중 12 안이 색소변화률 동반한 망막박리로 진행하여 아스코르빈 산이 섬유화를 억제하지 못하였다(Table 2).

고 찰

유리체나 망막표면에 형성된 섬유조직은 비정상적 으로 상처가 치유된 결과이며 망막의 투명성을 옳게 하고 견인망막박리를 발생케하여 실명을 초래한다. 섬유막에서 섬유세포, 대식세포, 신경교세포, 망막 색소상피세포의 변혈된 모습을 관찰할 수 있는 것으 로 보아 섬유조직 헝성은 이들 세포의 중식과 세포 외기질 생성에 기인한 것으로 생각할 수 있다. 세포 의 이동, 증식과 세포외기질 생성의 기전이 밝혀져 있지 않으나 증식유리체망막병증이나 염증발생시 초 기예 안구혈액장벽이 파괴된다는 것은 이미 알려진 사실로 많은 cytokine들이 조정역할을 하는 것으로 알려져 있으며 유리체에도 세포증식 자극능력과 억 제능력이 있을 것으로 추측된다 ${ }^{9}$.12).

전방수와 유리체는 아스코르빈산의 농도가 혈중보 다 매우 높은 곶으로 아스코르빈산은 여러가지 산화 환원 반웅에 관여하고 황산화제로서 자유 라디칼을 중화시켜 안조직을 보호할 뿐 아니라 염증시에 나타 나는 백혈구에 의한 손상으로부터 안조직을 보호하 는 역할을 한다 ${ }^{6,7,13,14}$. 방수의 성분은 대부분 혈청의 성분과 비숫하나 아스코르빈산은 보고자에 따라 혈 청의 15 -69배까지 높게 보고되어 있으며 ${ }^{15.16 t} \mathrm{HPLC}$ 방법을 이용한 초자체 아스코르빈산의 농도는 $59 \mu \mathrm{~g} /$ $m l$ 로 보고되어 있다 ${ }^{17}$. 본 연구에서 측정한 토끼 초 자체 아스코르빈산의 농도는 $68.4 \mu \mathrm{~g} / \mathrm{ml}$ 로 이전의 보 고들과 큰 차이를 보이지 않았다.

또한 아스코르빈산 0.5 mg 을 유리체강에 주사하면 유리체 아스코르빈산의 농도는 적어도 하루동안 2 배 이상 증가한 상태로 유지되어 아스코르빈산 농도의 증가는 주사량에 비례한 것으로 생각되었고 1 주일 후 정상놓도로 환원되었다.

박테리아 내독소률 실험동물의 발바닥이나 피하 또는 유리체강에 주사하면 tumor necrosis factor
alpha, interleukin, interferon gamma둥의 cy^{-} tokine이 훙채나 모양체에서 유리되고 ${ }^{9 \cdot 11}$ nitric oxide생성을 자극하여 포도막염이 발생한다 ${ }^{181}$. 이때 전방과 유리체에서 염증세포수와 단백질농도의 증가 를 볼 수 있으며 주입 3시간 후에 증가한다는 보고 와 주입 6시간 후부터 중가하기 시작하여 24 시간에 정점을 이루고 그후 감소한다는 보고가 있다 ${ }^{19,201}$. iron농도의 증가도 관찰되었는데 ${ }^{241}$ 이들은 모두 안구 혈액장벽이 파괴된 것으로 생각할 수 있다. 또한 내 독소로 유발시킨 포도막염은 망막혈관염, 출혈성삼 출물, 시세포의 파괴와 맥락막침윤을 일으킨다 ${ }^{221}$. 본 연구에서는 섬유조직형성을 유도하기 위하여 내독소 를 주사하였으며 섬유조직이 형성될 때까지 염증반 응의 척도로서 유리체흔탁의 정도를 관찰하였다. 먼 저 섬유성 반흔을 형성하는 내독소의 양을 결정하기 위하여 포도막염을 일으키기에 충분한 농도인 $100 \mathrm{ng}, 200 \mathrm{ng}, 500 \mathrm{ng}, 1000 \mathrm{ng}$ 이 유리체강으로 직접 주사되었는데 모든 농도에서 첫 3 일동안은 유 리체혼탁으로 안저관찰이 불가능하였다. 주사 후 1 주일째 관찰에서 유리체강은 1 일, 4 일째에 비교하여 맑아져 있었으며 100 ng 과 200 ng 을 주사한 경우는 섬유화률 관찰할 수 없었고, 1000 ng 의 경우는 섬유 반흔을 남기기 시작하였다. 내독소롤 유리체강에 주 사한 후 발생한 유리체흔탁은 망막혈액장벽이 파괴 되고 cytokine 들이 유리되어 포도막염이 발생한 것으로 생각할 수 있다. 본 실험에서 내독소를 주사 한후 아스코르빈산의 농도변화가 함께 조사되었는데 첫 24 시간동안 아스코르빈산이 감소하는 것으로 관 찰되었으며 이는 염중반웅으로 인한 유리체혼탁의 시기와 일치하여 아스코르빈산이 항염증역할을 위하 여 소모된 것으로 평가할 수 있다. 아스코르빈산의 항염증역할이 임상적으로 유리체혼탁을 감소시킬 수 있는지률 관찰하기 위하여 토끼 유리체 아스코르빈 산 양의 한배이상인 0.5 mg 을 내독소와 같이 주사한 결과 유리체 아스코르빈산의 놓도는 정상치 가까이 에서 유지되었으나 유리체흔탁은 통계적으로 의의있 게 감소하지 않아서 아스코르빈산이 염증반웅 전체 를 억제하고 있지 못한 것으로 생각하였다. 아스코 르빈산이 유리체강의 단백질, 다핵백혈구 그리고 cytokine의 농도에 어떠한 영향을 미칠 수 있는가 에 대한 조사는 앞으로의 과제로 생각되었다.

아스코르빈산은 생체외실헙에서 세포독성작용이 있으며 녹내장수술 후의 불완전한 창상치유는 아스 코르빈산이 결막하섬유아세포의 증식을 억제한 것으 로 생각할 수 있다리. 아스코르빈산의 항염즁 역할과 세포중식억제 능력을 고려할 때 아스코르빈산이 섬 유조직생성올 억제할 것이란 기대를 할 수 있으나 망 막색소상피세포를 유리체강에 주입하여 증식유리체 망막병증을 발생시킨 실험에서는 아스쿄르빈산이 섬 유조직생성율 억제하지 못하였다. 본 연구에서는 내 독소를 유리체장에 주사하여 섬유조직형성을 유도하 였으며 1000 ng 의 내독소를 유리체강에 추사하면 1 주일이 지니면서 유리체강에 섬유조직이 형성되면서 망막색소상피세포의 색소변화가 나타났으며 3 주일째 관찰에서 16 안중 10 안에서 색소변화를 동반한 망막 박리가 꽌찰되었다. 아스코르빈산이 섬유조직형성을 억제할 수 있는가를 알아보기 위하여 1000 ng 의 내 독소를 아스코르빈산과 함께 유리체강에 주사하였는 데 3 주일째 관찰에서 16 안중 12 안에서 색소변화률 동반한 망막박리가 관찰되어 아스코르빈산이 임상적 으로 섬유조직형성을 억제하지 못하였다. 고농도의 아스코르빈산이 임상적으로 섬유조직형성욜 억제하 지 못하였는데 이것은 아스코르빈산 또한 섬유조직 형성자극물질을 유리시키며 아스코르빈산의 항산화 작용결과로 만들어진 $\mathrm{H}_{2} \mathrm{O}_{2}$ 가 망막혈액장벽울 파괴 한 결과로 추측할 수 있다. 따라서 어떠한 환경에서 아스코르빈산이 prooxidant 또는 antioxidant로 작용하느냐의 연구가 뒷받침되어야 할 것이다.

REFERENCES

1) Mc Gahn MC : Ascorbic acid levels in aqueous and vitreous humors of the rabbit. Exp Eye Res 41:291-298, 1985.
2) Reiss GR, Werness PG, Zollman PE, Brubaker RF : Ascorbic acid levels in the aqueous humor of nocturnal and diurnal animals. Arch Ophthalmol 104:753-755, 1986.
3) Varma SD, Richards RD : Ascorbic acid and the eye lens. Ophthalmic Res 20:164-173, 1988.
4) Jampel HD : Ascorbic acid is cytotoxic to dividing human tenon's capsule fibroblasts.

Arch Ophthalmol 108:1323-1325, 1990.
5) Peterkofsky B, Prather W : Cytotoxicity of ascorbate and other reducing agents towards cultured fibroblasts as a result of hydrogen peroxide formation. I Cell Physiol 90:61-70, 1976.
6) Williams RN, Paterson C : a protective role for ascorbic acid during inflammatory episodes in the eye. Exp Eye Res 42:211-218, 1986.
7) Williams RN, Paterson C : The influence of topical corticosterold therapy upon polymorphonuclear leukocyte distribution. Exp Eye Res 44:191-198, 1987.
8) 이성철 : 초자체에서 ascorbic acid의 세포중식 억제 효과에 대한 연구. 대한안과학회지 $35: 508-513$, 1994.
9) Rosenbaum JT, Boney RS : Failure to inhibit endotoxin-induced uveitis with antibodies that neutralize tumor necrosis factor. Rec immunol 5:299-303, 1993
10) Planck SR, Huang XN, Robertson JE, Rosenbaum JT : Cytokine mRNA levels in rat ocular tissues after systemic endotoxin treatment. Invest Ophthlalmol Vis Sci 35:924930, 1994.
11) Yoshida M, Yoshimura N, Hangai M, Tanihara H , Honda Y : Interleukin-1 alpha, in-terleukin-1 beta, and tumor necrosis factor gene expression in endotoxin induced uveitis. Invest Ophthalmol Vis Sci 35:1107-1113, 1994.
12) Sebag $\mathrm{J}:$ The vitreous, New York, SpringerVerlag, 1989, PP. 108-113.
13) Ringvold A : aqueous humour and ultraviolet radiation. Acta Ophthalmol 58: 69-80, 1980.
14) Russell P, Garland D, Zigler S, Meakin SO : Aging effects of vitamin C on a human lens protein produced in vitro. Faseb J 1:32-35, 1987.
15) Becker B : Chemical composition of human aqueous humor. Arch ophthalmol 57:793-800, 1957.
16) Fox RR, Cam kw, Lewen R, Lee PF : Ascorbate concentration in tissues from and buphthalmic rabbits. I heredity 73:109-111, 1982
17) Mc Gahn MC : Ascorbic acid levels in aqueous and vitreous humors of the rabbit. Exp Eye Res 41:291-298, 1985.
18) Parks DJ, Cheung MK, Chan CC, Roberge FG : The role of nitric oxide in uveitis. Arch Ophthalmol 112:544-546, 1994.
19) Ishiguro M, Katayama T, Tachinami K, Hiraki S, Kuboto Y : The effects of various doses of lipopolysaccharide on endotoxin induced uveitis in rats. Nippon Ganka Gakkai Zasshi 98;183-186, 1994.
20) Kogiso M, Tanouchi Y, Mimura Y, Nagasawa H , Himeno K : Endotoxin-induced uveitis in mice. Jpn J Ophthalmol 36:281-290, 1992.
21) McGahan MC : Does the lens serve as a
'sink' for iron during ocular inflammation ? Exp Eye Res 54:525-530, 1992.
22) Ruiz-Moreno JM, Thillaye B, de Kozak Y : Retino-choroidal changes in endotoxin-induced uveitis in the rat. Ophthalmic Res 24:162168. 1992.
23) Herschler J, Claflin AJ, Fiorentino G : The effect of aqueous humor on the growth of subconjunctival fibroblasts in tissue culture and its implications for glaucoma surgery. Am J Ophthalmol 89: 245-249, 1980.

[^0]: 〈접수일 : 1996년 2월 5 일, 심사통과일 : 1996 년 8월 14 일〉
 연세대학교 의과대학 안과학교실, 시기능개발 연구소
 Department of Ophthalmology, College of Medicine, Yonsei University, Seoul, Korea
 본 연구는 1995 년 연세대학교 학술연구비로 이루어졌음.

