골육종환자에서 다방면 복합요법의 효과 및 P-Glycoprotein 과다발현의 임상적 의의

연세대하교 의과대학 연세 암뻰터, 연세 암연구소 내과학교실 및 정형외과학표실*

윰용석 - 노재경 • 정 헌철 - 조재용
신규호* • 한수봉* • 깁범석 • 박준오
공 수 정•라 선 영•유 내 춘 깁 추 항•민 진 식•깁 병 수

=Abstract $=$

Effect of Combined Modality Treatment and Clinical Significance of P-Glycoprotein Overexpression in Patients with Osteosarcoma

Yong Seok Yun, M.D., Jae Kyung Roh, M.D., Hyun Cheol Chung, M.D. Jae Yong Cho, M.D., Kyoo Ho Shin, M.D.*, Soo Bong Hahn, M.D.* Beom Seok Kim, M.D., Joon Oh Park, M.D., Soo Jung Gong, M.D.
Sun Young Rha, M.D., Nae Choon Yoo, M.D., Joo Hang Kim, M.D. Jin Sik Min, M.D. and Byung Soo Kim, M.D.
Yonsei Cancer Center, Institute for Cancer Research, Department of Internal Medicine, Orthopaedic Surgery*, Yonsei University College of Medicine, Seoul, Korea

Osteosarcoma is a highly malignant bone tumor and usually encountered in the first three decades of life. The prognosis of osteosarcoma treated with surgery alone had been poor, with 20% of the patients surviving 5 years. The addition of adjuvant chemotherapy after surgery has siginificantly improved the outcome of osteosarcoma. The new concept of pre-operative chemotherapy has permitted histological assessment of treatment effect and limb salvage procedures. As the role of chemotherapy has been raised, the resistance of tumors to multiple drugs, such as p-glycoprotein overexpression, has become a major problem in the treatment of osteosarcoma.

We retrospectively reviewed the clinical records of 53 patients with stage IIB osteosarcoma who were treated at Yonsei Medical Center and Yonsei Cancer Center between March 1, 1986 and June 30, 1996. The purpose of this study was to assess the efficacy and toxicity of cisplatin(IA)-adriamycin(IV) combination pre-operative chemotherapy and the clinical significance of p-glycoprotein status and histologic response as prognostic factors. Among 53 patients, 33 were male and 20 were female with a median age of 21 years(range: $5 \sim 61$). The tumor locations were as follows: distal femur $24(45.3 \%$), proximal tibia $17(32.1 \%$), humerus $7(13.2 \%)$, proximal femur $3(5.4 \%)$, fibular $1(1.9 \%)$, radius $1(1.9 \%)$. Histologic subclassifications were as follows: osteoblastic type $42(78.2 \%$), telangiectatic type $4(7.5 \%)$, chondrablastic type $3(5.7 \%$), fibroblastic type $2(3.8 \%)$ and undetermined $2(2.8 \%)$.
-골육종 한자에서 다방면 복합요법의 표과 및 P-Glycoprotein 과다발현의 임상적 의의-

The three year overall survival and disease-free survival rates were 66.1% and 61.9% respectively in all patients. Thirty-two patients were treated by pre-operative cisplatin(IA)adriamycin(IV) combination chemotherapy and 21 patients were taken only post-operative adjuvant chemotherapy. No significant difference was found between the two groups in probability of survival and recurrence rates. The histological response to pre-operative chemotherapy was scored by degree of tumor necrosis. Twenty-two patients had a good response [grade IV, $13(40.6 \%$);grade III, $8(25.0 \%)$] and 11 patients had a poor response [grade II, $6(18.8 \%$);grade I, $5(15.6 \%)$]. The histological response was not significantly related to the probability of the survival rate. However, the recurrence rate was higher in the poor-response group $(p=0.04)$. Overexpression of p-glycoprotein was found in tumors from 11 of 18 patients $(61.1 \%$) who were given only post-operative adjuvant chemotherapy. No relation was found between the p-glycoprotein expression and survival rate. The degree of tumor necrosis after pre-operative chemotherapy and initial serum alkaline-phosphatase level were considered as prognositic factors. Other clinicopathologic features including age, gender, anatomical site, histological subclassification, operation types, tumor size, p-glycoprotein expression were not associated with patient outcome. Treatment-related side effects were relatively tolerable and reversible by conservative treatment.

Pre-operative cisplatin(IA)-adriamycin(IV) combination chemotherapy in our study did not show improved survival than conventional post-operative chemotherapy with limited follow-up duration. The degree of histologic response after chemotherapy and the initial alkaline phosphatase level were found to be the major predictor for tumor recurrences, while p-glycoprotein overexpression did not alter the clinical outcome. Further studies are warranted to improve the efficacy of adjuvant chemotherapy and to evaluate the significance of multiple resistance gene overexpression in osteosarcoma.

Key Words: Osteosarcoma, Preoperative chemotherapy, p-glycoprotein, Tumor necrosis

서

골육중은 골격성장이 할발한 성장기에 주로 장굘의 골간단부에 호발하는 악성 골종양이다". 과거 수술적 단독치료시 과반수의 한자에서 사지절단후 6개월내에 육안적 전이가 발생하저나 2 년내에 80% 이상이 재발 함에 따라, 1970 년대부터 다방면 복합요법이 시도되어 그 치료성적이 향상되었다. 특히 수술전 선행약물요법 이 시도됨에 따라 사지보존술의 시행이 점차 증가되었 으며, 치료반융을 병리학적 중양괴사정도로 평가하여 수술훈 보조약물요법의 약재선정에 옹용하는 개념으로 까지 발전하였다 ${ }^{2,3)}$.

약물요법의 역할이 중가함에 따라 약제내성 또한 치 료효과 및 예후에 중요한 요인으로 제시되었다. 1985 년 Kartner둥은 세포막 단백질인 p-glycoprotein 이 약제의 유입과 축적올 역재하여 anthracycline, vinka alkaloid, epiphodophyllotoxin, actino-
mycin-D 둥에 교차내성올 나타낸다고 보고하였다 ${ }^{4 \sim 6)}$. 이에 따라 p-glycoprotein의 과다발현과 치료효과와 의 상관성에 대하여 많은 연구가 진행되었으며, 일부 고형암과 백혈병에서 상관관계가 보고되었다 ${ }^{7,8}$.

본 연구에서는 초진당시 전이가 없고, 사지에 발생 한 병기 IIB 이하의 골육종 한자를 대상으로 수술전 선행약물요법 시행여부에 따른 생존율과 재발율을 비 교하였다. 아울러 수술전 선행약물요법에 의한 병소조 직의 병리조직학적 치료쵸과, 면역조직화학엽색으로 축정한 p-glycoprotein 과다발현 등을 비교하여, 보 조약물요법의 약제선정 지침 및 생존율과 재발율을 예 축하는 예측인자로서의 p-glycoprotein의 임상적 유 용성을 검토하였다.

대상 및 방버๙

1) 대 상

1986년 3월부터 1995년 6월까지 연세대학교 의과

대학 부속 세브란스병원 및 연세암샌터에 내원하여 골 육종으로 진단반은 한자 67 예률 후향적으로 조사하여, 수술올 반지 않은 8 예와 약물요법중 자의로 치료률 중 단한 6 예롤 제외하고, 입원기록 및 추적이 가능한 53 예를 대상으로 하였다. 병기는 병소의 핵자기공명 영 상과 동맥조영술, 폐 전산화단충촬영 및 전신 골주사 둥올 시행한 후 결정하였으며9), 초진당시 폐 전이가 없고 사지에 발생한 병기 IIB 이하의 골욱종 환자로 써 치료효과 퐌정이 가능하였던 환자를 대상으로 하였 다. 32 예는 수술전 선행약물요법, 수술 및 수술후 보 조약물요법을 시행 받았고, 21 예는 수술과 수술후 보 조약물요법을 시행 받았다. 이들 환자중, 병소의 파라 핀 포매조직이 보존된 45예에서 p-glycoprotein에 대한 면역조직화학염색올 시행하였다.

2) 선행약율요법이 시형된 홤자의 치료약제 및 용 량

수술전 선행약물요법은 제 1 얼째에 원발병소의 혈관 조형술을 시행한 뒤, 종과에 분포하는 혈관 근위부에 도관을 위치시키고 cisplatin $100 \sim 120 \mathrm{mg} / \mathrm{m}^{2}$ 욜 2 시간 동안 동맥내로 투여하였으며, 제 2 일부터 4 일까 지 adriamycin $20 \sim 30 \mathrm{mg} / \mathrm{m}^{2} /$ day을 24시간 연속 적으로 정주하였다. 한자의 수행상태와, 약물요법에 대 한 임상적, 방사선학적 반웅율 관찰하며 $3 \sim 4$ 주 간격 으로 반복투여 하였다. 수술후 보조약물요법은 환자의 경과와 전신상태에 따라 수술후 $2 \sim 4$ 주에 시행하였으 며, 수술전 선행약물요법과 동일한 약제로 $3 \sim 4$ 주 간 격으로 반복하였다. 병리조직학적 치료 효과 평가 후, 선행약물요법에 의한 종양괴사가 미흡하였던 2 예에서 는 제 1 일째 methotrexate $10 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{day}$, 제 1 일 째부터 3 일째까지 etoposide $120 \mathrm{mg} / \mathrm{m}^{2} /$ day, 제 1 일째부터 5 일째까지 ifosfamide $1,500 \mathrm{mg} / \mathrm{m}^{2} /$ day 로 수술후 보조약물요법을 시행하였다. Cisplatin올 투여시에 신독성을 방지하기 위하여 수액 및 전해질을 공급하였고, 20% mannitol과 이뇨제(furosemide) 블 투여하였다.

3) 수슬후 보조약뮬요법만 시행된 활자의 치료약 제 딫 용량

수술후 보조약물요법온 환자의 회복경과와 수행상태 에 따라 수술후 $2 \sim 4$ 주에 시행하었다. 치료는 제 1 일

째, cisplatin $100 \sim 120 \mathrm{mg} / \mathrm{m}^{2}$ 을 2 시간 동안 정주하 였고, 제 2 일부터 4 일까지 adriamycin $20 \sim 30 \mathrm{mg} /$ $\mathrm{m}^{2} /$ day을 24 시간 연속적으로 정주하였다. 환자의 수 행상태와, 약룰요법에 대한 임상적, 방사선학적 반응을 관찰하며 $3 \sim 4$ 주 간격으로 반복 투여 하였다.

4) 연구 방법

본 연구는 후향적 연구(retrospective study)로서 대상환자의 입원 및 외래기록올 검토하여, 수술전 선 행약물요법, 수술 및 수술후 보조약물요법을 시행받은 군(A군)과 고식적인 수술 및 수술후 보조약물요법올 시행 받은 군(B 군)으로 구분하였다. 수술전 선행약물 요법올 시행한 경우는 수술조직의 종양괴사정도가 90 $\%$ 이상인 선행약물요법 반응군과, 90% 미만인 비 반 응군으로 분류하였다. 수술후 보조약물요법만 시행한 군은 원발병소조직으로 p-glycoprotein 면역조직화 학염색을 시행하여, 양성인 군과 옴성인 군으로 분류 하였다(Fig. 1). 각 군의 치료반응 및 치료효과 평가 는 전체생존율, 무병생존율 및 재발율로 비교하였다. 전체 생존기간온 병소가 조직학적으로 확진된 날부터 사망일 혹은 최종 추적일까지로 하였고, 무병 생존기 간을 수술일부터 재발이 확인된 날 홈은 최종 추적일 까지로 하였다. 치료 부작용은 WHO 독성 기준에 의 해 조사하였다.

5) P-glycoprotein 면역조직화학염색 및 가검 을 판독

대상환자 원발병소의 파라퓐 포매조직을 이용하여 avidin-biotin system으로 면역조직화학염색을 시 행하였다. 인채의 p-glycoprotein항원에 대한 항체는 mouse 단흘론항체(JSB-l, Sanbio, Holland)를 사 용하였다. 방볍은 원발병소의 파라핀 포매조직을 $5 \mu \mathrm{~m}$ 두께로 절편하여 slide에 고정시킨 후, $55 \sim 57^{\circ} \mathrm{C}$ 온 열기에서 1시간 동안 가열하여 조직의 파라핀을 녹인 뒤, xylene에서 10 분씩 3 차례 세척하여 파라핀을 제 거하였다. Ethyl alcohol에서 10 분간 수화시킨 다 옴, 암세포 표면의 비튝이적 항체 수용제를 제거하기 위하여 ABC kit(Vector, Burlingame, CA, USA) 의 blocking 항체액 $100 \mu 1$ 룔 조직위에 점적한 후 wet gause률 도포한 humid chamber에 넣고 $37^{\circ} \mathrm{C}$ 배양기에서 30 분간 배양하였다. 배양후 slide는 세척
-골육중 환자에서 다방면 복합요법의 효가 및 P-Glycoprotein 과다발현의 임상적 의의-

Fig 1. Study scheme.

하지 않고 기울여서 과다한 항체용액을 제거한 뒤, 단 클론항체 $1: 50$ 회석액을 $100 \mu \mathrm{l}$ 점적하였다.

1 차 항체롤 점적한 slide롤 다시 humid chamber에 넣고 $4^{\circ} \mathrm{C}$ 에서 12 시간 배양후 phosphate-buffered-saline(PBS)에서 10 분간 세컥한 뒤, 2 차 항체를 부착시켰다. 2 차 항졔는 peroxidase-conjugated biotinylated antibody(Vector, Burlingame, CA, USA)를 100μ 씩 점적 후 humid chamber에 넣고 $37^{\circ} \mathrm{C}$ 에서 40 분간 배양하였다. 2 차 항체 배양이 끝난 후 PBS 에 10 분간 세척하고 ABC 용액(Vector, Burlingame, CA, USA)올 2방울씩 조직에 점적한 후 실온에서 30 분간 배양하고 PBS 에 10 분간 세척하였다. Substrate와 발색제는 250 ml PBS에 250 mg 의 3 '-3'diaminobenzidine(DAB) (Sigma chemical Co, St.Louis, Mo, USA)을 용 해시키고 $30 \% \mathrm{H}_{2} \mathrm{O}_{2} 87 \mu \mathrm{l}$ 률 첨가하여 은박지로 싸서 반웅시켰다. 최중 세척이 끝난 slide를 DAB용액에 답근후, 수시로 꺼내어 현미경 하에서 갈색의 색소 침 착이 일어나는가튤 관찰하여 양성 대조군 slide에서의

반웅이 관찰되면 중단하혔다. 다시 PBS로 10 분, 중류 수로 10 분간 세척하고 공기에서 건조 시킨후 hematoxyline염색으로 대조염색을 하였다. 옴성 대조군 slide는 동일한 조직절편 slide에 1 차항체만 점적하지 않고 나머지 모든 과정은 동일하게 시행하였고, 양성 대조군은 p-glycoprotein 양성반응올 보인 대장암 세포조직을 이융하였다. 가검물 판독은 병리학자가 임 상적 정보를 받지 않은 상태에서 slide률 검토하여 대 조군과 비교한 후 양성 및 음성군을 판정하였다(Fig. 5). 양성 기준은 전체 암세포수에서 세포막이나 골지 체에 면역화학염색 양성반웅을 나타내는 세포의 백분 비에 의해 적용하였으며, 10% 이상을 양성, 10% 미만 을 음성으로 판정하였다 ${ }^{10}$.

6) 수숄전 선형약을요범에대한 병리조직학적 치료 반용

수술전 선행약물요법을 시행한 환자의 수숱조직을 병리학자가 판독하여 종양조지의 괴사정도를 Huvos 둥의 기준에 따라 4 단계로 분류하였다 ${ }^{[1]}$. Grade I온

종양괴사가 50% 미만으로 수술전 선행약뮬요업에 의 한 반웅이 미햡한 경우, Grade II는 종양괴사가 50% 이상이며 90% 미만으로 부분반옹올 나타낸 경우, Grade III는 종양 괴사가 90% 이상이나 종양세포가 일부 관찰되는 경우, Grade IV는 종양이 완전히 괴 사된 경우로 하였다. Rosen둥의 기준에 따라 조직괴 사 정도가 90% 이상인 간(grade III, IV)을 선행약 물요법 반응군, 90% 미만인 군(grade I, II)을 으로 분류하여 치료성적을 비교하였다 ${ }^{12}$.

7) 등게 처리

재발과 콴계되는 예후인자의 비교는 비모수 검정인 two-tailed Fisher's exact test, Kruscal-Wallis test 및 Mann-Whitney 점정율 이용하였다. 중앙생 존기간 및 생존율은 Kaplan-Meier 방법을 사융하였 으며, 생존율의 비교는 log-rank test로 검정하였고, 유의도는 0.05 이하로 하였다.

견 과
 1) 대상환자의 임상젹 득징

대상환자 53 예중 남자 33 예, 여자 20 예로 중앙연령 은 17 세 (범위: $5 \sim 61$ 세)였다. 줗양의 발생부위는 대퇴 원위부 24 예 $(\mathbf{4 5 . 3} \%)$, 경골근위부 17 예 (32.1%), 상완 골 7 에 (13.2%), 대퇴근위부 3 예 (5.4%), 비골 1 예 (1.9 $\%)$, 요골 1 예 (1.9%) 였고, 원발병소의 조직항은 Osteoblastic type 42예(78.2\%), Telangiectatic type 4몌(7.5\%), Chrondroblastic type 3 예 (5.7%), Fibroblastic type 2 예 (3.8%) 였으며 판정이 불가능한 경우가 2 예였다. 32 예 (60.4%) 는 수술전 선행약물요 법, 수술 및 수술후 보조약물요법율 시행 받았고(A 군), 21 예 (39.6%) 는 수술 및 수술후 보조약물요법율 시행 받았다(B군)(Table 1).

2) 전채 환자의 생존요

중앙추적관찰기간은 38 개월이었고(범위: $7 \sim 99$ 개 월), 53 예중 50 예 $(94.3 \%$)에서 추저시까지 생사률 확 인할 수 있었다. 대상환자의 3 년 전제생춘율은 66.1%, 3년 무병 생존율은 61.9% 이었다(Fig. 2).

3) 치료유힝빈 생존을 비교

A군 32예의 중앙추적관찰기간은 19개월(범위: 7~

Table 1. Patients characteristics

Number of patients	53
Gender(ratio)	$1.7: 1$
\quad Male: Female	
Age(year)	$17(5 \sim 61)$
\quad Median(range)	
Site	$24(45.3 \%)$
\quad Distal femur	$17(32.1 \%)$
Proximal tibia	$7(13.2 \%)$
Humerus	$3(5.4 \%)$
Proximal femur	$1(1.9 \%)$
Fibular	$1(1.9 \%)$
\quad Radius	$42(78.2 \%)$
Pathological type	$4(7.5 \%)$
Osteoblastic	$3(5.7 \%)$
Telangiectatic	$2(3.8 \%)$
Chondroblastic	$2(3.8 \%)$
Fibroblastic	181 ± 123
Undetermined	
Alkaline phosphatase (IU/L)	$32(60.4 \%)$
Mean 5 standard deviation	
Chemotherapy	$21(39.6 \%)$
Group A: Pre-operative	
\quad chemotherapy and post-operative	
adjuvant chemotherapy	
Group B: Only post-operative	
adjuvant chemotherapy	

47개월)이었고(추적관찰율: 96.8%), B 군 21 예의 중 앙추적관찰기간은 39 개월(범위: $13 \sim 108$ 개월)이었다 (추져관찰율: 90.4%). 양군의 3 년 전채생존율은 각각 $70.5 \%, 65.3 \%(\mathrm{p}=0.75)$, 무병생존율은 각각 60.9%, 63.5% 로 두군간에 차이가 없었다 $(\mathrm{p}=0.46$)(Fig. 3). A 군 21 몌 (65.5%) 에서 사지 보존술이 가능하였고, 11 예 (34.5%)는 사지 절단술욜 시행 반았다.

4) A 군예서 봉리조직학저 치료반용에 따를 생존 을 비교

(1) 병리조직확저 반용: 수술전 선행약물요법에 대 한 병소의 병리조직학져 괴사정도는 Huvos둥의 기준 에 의해, Grade I 6 예 (18.8%), Grade II 5 예(15.6 \%), Grade III 8예(25.0%), Grade IV 13 예(40.6 \%)였다(Table 2).
-골육종 한자에서 다방면 복합요법의 효과 및 P-Glycoprotein 과다발현의 입상적 의의-

Fig. 2. Kaplan-Meier plot of survival for all patients.

Table 2. Histological response to pre-operative chemotherapy

Histologic response	No. of patients(\%)
Grade I	$6(18.8 \%)$
Grade II	$5(15.6 \%)$
Grade III	$8(25.0 \%)$
Grade IV	$13(40.6 \%)$

(2) 생존을 비교: 조직학적인 괴사정도가 90% 이상 인 21 예 (65.6%) 를 선행약물요법 반응군으로, 90% 미 만인 11 예 (34.4%) 를 비 반응군으로 하여 생존율을 비 교하였다. 선행약물요법 반웅군과 비 반웅군의 3년 전 체생존율은 $\quad 78.3 \%, \quad 58.4 \%(\mathrm{p}=0.11)$, 무병생존율은 $73.3 \%, 48.4 \%$ 로 반응군에서 중가되는 경향이었다(p

A. Overall survival curve

B. Disease-free survival curve

Fig. 3. Kaplan-Meier plot of survival according to treatment.
$=0.13)($ Fig. 4).

5) B군에서 P-glycoprotein 과다반현에 따뵨 생존을의 비교

(1) 골육종에서 P-glycoprotein 과다발현도: 대 상환자 53 예중 조직의 보관상태가 양호하고, 기록이 보촌된 45 예의 원발병소 파라핀 포매조직을 대상으로, p-glycoprotein 단클론항체를 이용하여 면역조직화 학염색을 시행하였다. 수술전 선행약물요법을 시햄한 27 예 (A군)의 약물요법전 생검조직 20 예는 종양세포의 양이 부족하고 탈 찰슘화과정에서 일부 조직의 소실이 있어 면역화학염색 결과 판정에 적합하지 않았고, 이 중 1 예만 양성으로 판독되어 분석에서 제외하였다. 선 행약물요법후 수술조직은 중양의 괴사정도가 심한 치 료 반응군의 경우, 잔존하는 종양세포가 거의 없어서

Fig. 4. Kaplan-Meier plot of survival according to histologic response after pre-operative chemotherapy.

면역조직화학염색 판정이 매우 어려웠다. 비표적 판독 이 가능하였던 23 예중 5 예 (21.4%) 가 양성이었으며, 선행약물요법 비 반응군 4 여, 반응군 1 예에서 관찰되 었다. 고식적인 수술후 보조약물요법을 시행한 18 예에 서 수술조직 파라핀 포매조직을 대상으로 시행한 면역 화학엽색 결과, 11 예 $(61.1 \%$)에서 양성으로 판정되었 다 (Fig. 5).
(2) 생존율 비교: B군에서 p-glycoprotein 면역 조직화학엽색 양성인 11 예 $(61.1 \%$)와 음성인 7 예 (38.8 $\%$)의 전체 생존율과 무병생존율 비표시, 양성군과 음 성군의 3 년 전체생존율은 각가 $63.6 \%, 67.5 \%(\mathrm{p}=$ 0.81), 무병생존율은 각각 $58.1 \%, 57.4 \%$ 로 양군 사이 에 차이가 없었다 $(\mathrm{p}=0.95)$.

A.Low power field (X100)

B. High power field (X 400)

Fig. 5. Immunochemical staining of p-glycoprotein in osteosarcoma with monoclonal antibody (JSB-1).

6) 각 예후인자별 재발을 비교

총 53 예중 20 예 (37.7%) 에서 재발하였고, 수술후 보 조약물요법만 시행한 A 군에서 10 예 (31.3%), 수술전 선행약물요법을 시행한 B 군에서 10 예 (47.6%) 가 재발 하여 양군사이에 재발율의 차이는 없었다 $(\mathrm{p}=0.36)$. 재발부위는 A 군에서 1 예가 원발병소에서 재발하였고, 그외는 모두 폐에서 재발하여 선행약물요법 시행에 여 부에 따른 치료실폐유형의 차이는 관찰되지 않았다. 수술전 선행약물요법에 의한 종양의 조직학적 반응이 90% 이상인 선행약물요법 반응군에서 4 예 (19.0%), 비 반응군에서 6 예 $(60.0 \%$) 가 재발하여 재발율과 병리 조직학적 반응의 상관성이 관찰되었다 $(\mathrm{p}=0.04)$. 재발 군과 비 재발군의 진단 당시 혈청 alkaline phos-
-골육종 한자에서 다방면 복합요법의 ㅌ․과 및 P-Glycoprotein 과다발현의 임상적 의의-
Table 3. Patient characteristics to predict of recurrences in the univariarte analysis

	Relapse group $(\mathrm{n}=20)$	Non-relapse group $(\mathrm{n}=33)$	P -value
Sex ratio			0.21
Male : Female	$4.5: 1$	1:1.1	
Age(year)			0.51
Median(range)	16(9~57)	17(5~61)	
Site			0.88
Distal femur	10(50.0\%)	14(42.4\%)	
Proximal tibia	$6(30.0 \%)$	$11(33.3 \%)$	
Humerus	3(15.0\%)	4(12.1\%)	
Proximal femur	$1(5.0 \%)$	2(6.0%)	
Fibular	$0(0.0 \%)$	$1(3.0 \%)$	
Radius	0(0.0\%)	1(3.0%)	
Pathological type(\%)			0.20
Osteoblastic	18(90.05)	24(72.7\%)	
Telangiectatic	2(10.0\%)	$2(6.1 \%)$	
Chondroblastic	O(0.0%)	3(6.1\%)	
Fibroblastic	O(0.0%)	2 9.1\%)	
Unknown	O(0.0\%)	2(6.1%)	
Alkaline phosphatase(IU/L)			0.01
Mean(range)	$251.9(80 \sim 804)$	158.8(44~602)	
Tumor size(cm)			0.08
Mean(range)	12.6(5~30)	$9.2(2 \sim 20)$	
Operation			0.62
Limb salvage	12(60.0\%)	22(66.7\%)	
Amputation	8(40.0\%)	11 (33.3\%)	
Chemotherapy			0.36
Group A	10(50.0\%)	22(66.7\%)	
Group B	10(50.0\%)	$11(33.3 \%)$	
Tumor necrosis**			0.04
90\% \leq	4(40.0\%)*	17(77.3\%)*	
90\%>	6(60.0\%)*	$5(22.7 \%)^{*}$	
p-glycoprotein			0.67
Positive	$6(60.0 \%)^{* *}$	$5(62.5 \%)^{* *}$	
Negative	$4(40.0 \%)^{* *}$	$3(37.5 \%)^{* *}$	

Group A: Pre-operative chemotherapy and post-operative adjuvant chemotherapy
Group B: Only post-operative adjuvant chemotherapy
*For group A(Relapse group: 10 cases, Non-relapse group: 22 cases)
**For group B(Relapse group: 10 cases, Non-relapse group: 8 cases)
phatase는 각각 평균 $251.9 \mathrm{IU} / \mathrm{L}, 158.8 \mathrm{IU} / \mathrm{L}$ 로 재발군에서 유의하게 높았다 $(\mathrm{p}=0.01)$. 그의 성붤, 나 이, 발생부위, 조직형, 수술방볍, 종괴의 크기, p-glycoprotein 퐈다발현 둥은 재발율과 유의한 상관성이

없었다(Table 3).

7) 후착용

A군에서는 위장관계 부작용중 오심 및 구토가 30

Table 4. Treatment related-toxicities

Toxicity		$(\mathrm{n}=32)$	$(\mathrm{n}=21)$
GI tract			
Nausea/vomiting	Grade I	$8(25.0 \%)$	$4(19.0 \%)$
	II	$14((43.7 \%)$	$7(33.3 \%)$
	III	$6(25.0 \%)$	$6(28.6 \%)$
Mucositis	IV	$2(6.3 \%)$	$1(4.8 \%)$
	Grade I	$7(21.9 \%)$	$2(9.5 \%)$
	II	$5(15.6 \%)$	$4(19.0 \%)$
Diarrhea	III	$3(9.4 \%)$	$1(4.8 \%)$
	Grade I	$1(3.1 \%)$	$5(23.8 \%)$
	II	$12(37.5 \%)$	$6(28.6 \%)$
Hematology	III	$1(3.1 \%)$	$1(4.8 \%)$
Anemia			
	Grade I	$1(3.1 \%)$	$2(9.5 \%)$
	II	$15(46.8 \%)$	$8(38.0 \%)$
	III	$13(40.6 \%)$	$4(19.0 \%)$
Leukopenia	IV	$1(3.1 \%)$	$1(4.8 \%)$
	I	$0(0.0 \%)$	$0(0.0 \%)$
	II	$3(9.4 \%)$	$1(4.8 \%)$
	III	$222(68.7 \%)$	$12(37.5 \%)$
	IV	$7(21.9 \%)$	$7(33.3 \%)$
Thrombocytopenia	Grade I	$2(6.2 \%)$	$1(4.8 \%)$
	II	$8(25.0 \%)$	$5(23.8 \%)$
	III	$14(43.7 \%)$	$10(47.6 \%)$
	IV	$8(25.0 \%)$	$4(19.0 \%)$

예 (93.8%) 로 가장 많았고, 이중 WHO grade III 이 상은 8 예 (25%) 였으며, 구강점막염 15 예 (46.8%), 설사 14 예 (43.8%) 둥의 순으로 관찰되었다. 쳘액학적 부작 용으로 백쳘구감소중과 혈소판감소중이 전 한자에서 나타났고, 빈헐은 30 예 $(93.8 \%$) 였으며, WHO Grade III 이상인 백혈구 감소중은 29 예 (90.6%), 혈소판 감 소중은 22 예 $(68.8 \%$) 였다. B 군에서는 백혈구 감소중 과 혈소판 감소중이 각각 20 예 (95.5%) 였고, 빈혈은 15 에 (71.4%) 였으며, 이중 WHO Grade III 이상인 백혈구 감소중은 19 예 (90.5%), 혈소판 감소중은 14 예 (66.6%) 로 양 군에서 차이가 없었다. 대다수의 빈혈, 벼쳘구 감소중, 훨소판 감소중온 수혈, 조혈촉진인자 둥 보존적인 치료로 호전되었으나, 수술후 보조약물요 법만 시행한 군에서 1 예, 수술전 선행약물요법을 시행 한 2예중 1예는 수술전, 1예는 수술후 보조약물요법중 백혈구감소중에 의한 패헐중으로 사망하였다(Table

4).

고 출

골육중은 20 세 이하의 골종양중에서는 비교적 발생 빈도가 높으나, 성인중양에서 발생율이 1% 미만을 차 지하는 드문 중양이다. 골격성장이 중가된 10 세에서 15 새 사이의 성장기에 발병율이 높으며, 방사선 노출, Paget's disease, 섭유성 이형성중 둥과 연관이 있 다 ${ }^{1,13}$. 퐈거 수술걱 치료만 시행하였던 경우, 진단 당 시 원격전이가 없는 한자의 80% 가 2 년내에 재발하여 5 년 생존욜이 20% 미만이었다 ${ }^{1516)}$. 따라서 현미경적 전이를 근절하기 위하여 전신적 약물요법의 병행이 시 작되어, 1974년 methotrexate와 adriamycin에 의 한 수술후 보조약물요법으로 한자의 생존율이 향상되 었고 ${ }^{14,17]}$, Pratt둥은 methotrexate와 adriamycin 의 투여량을 중가하여 5 년 생존율율 56% 까지 향상시 켰다 ${ }^{18)}$. 이후 무작위화법에 의한 비교연구에 의해 보 조약물요법에 의한 무병생존률의 향상을 중명함으로서 골육종 치료의 표준화 방법으로 인정받게 되었다 ${ }^{19}$. 현재 까지 수술후 보조약물요법의 약제로는 adriamycin과 cisplatin의 병용요법이 인정되었고, methotrexate, cyclophosphamide, bleomycin, dactinomycin 의 효.과는 명확히 밝혀지지 않고 있다 ${ }^{201}$.
1976년 Rosen 둥은 골육종 환자에서 수술전에 일 차적으로 약물요법을 시행한 후 수술을 시행하는 선행 약물요법의 치료성적올 보고하면서, 선행유도약물요법 이 미세전이된 붕변을 조기에 치료하고, 사지보존술의 가능성을 중가시켜서 침범뒨 부위의 기능을 보존할 수 있게 하며, 치료효과를 조직학적으로 평가하여 수술후 보조요법시의 약제를 조정할 수 있다는 장점올 제시하 였다 ${ }^{211}$. 1979년 Rosen둥은 고용량 methotrexate 와 bleomycin, cyclophosphamide, dactinomycin 및 adriamycin에 의한 선행유도약물요법으로 무 병 생존율이 84% 까지 중가하였다고 보고하였고 ${ }^{22)}$, Jaffe둥은 cisplatin을 국소동맥내로 투여합으로써, methotrexate를 투여한 경우보다 무병생존률을 더 욱 향상시켰다 ${ }^{233}$. 이같이 methotrexate, adriamycin, cisplatin둥을 이용한 수술전, 후의 보조약물요 법의 병행에 따라 골육종의 5 년 무병생존율이 $50 \sim 80$ $\%$ 로 중가한 반면 ${ }^{(9)}$, 생존율의 중가가 중명되지 않은

연구결과도 보고되고 있어 아직까지는 확정적인 결론 이 유도되지 않고 있다 ${ }^{24 \sim 26)}$. 본 연구 결과 cisplatin (intra-arterial:IA)과 adriamycin(intravenous: IV)으로 수술전 선행유도약물요법을 시행한 군퐈 시 행하지 않은 군의 3 년 무병생존열이 각각 $60.9 \%, 63.5$ $\%$ 로 유의한 차이가 없었다. 이는 본원에서 선행유도 약물요법올 1992 년 5월부터 시행한 바, 선행유도약물 요범울 시행한 군의 추적관찰 기간이 고식적인 수술후 보조약물요법만 시행한 군에 비하여 짦으므로, 아직 명확한 결론을 내릴수 없다고 판단되며 향후 계속적인 비교관찰이 필요하리라 생각된다.

선행유도약물요법의 효과는 입상적으로 중괴의 크기 와 동퉁의 감소, 방사선학적으로 혈관조영술, 단충줠영 및 핵자기공명괄영에 의한 중괴의 변화로 확인하거 나, 수술조직의 조직학적 괴사정도.로 판정할 수 있다. Rosen둥은 고용량의 methotrexate로 수술전 선행 유도약물요법을 시행한 후, 선행약물요법 반웅군이 비 반용군에 비교하여 생존율이 중가되었다고 보고하였 다 ${ }^{2)}$. 반면 Baldini둥은 98 예의 골육종환자에서 methotrexate, adriamycin, cisplatin으로 선행유도약 물요법을 시행한 후, 치료반응율은 70% 였으나 치료반 응에 따른 생존율의 차이는 없었다고 보고하였다 ${ }^{(0)}$. 본 연구에서는 33 예의 환자중 grade III가 8 예 (25.0 $\%$), grade IV가 13 예 (40.6%)로 치료반웅군이 21 예 (65.6%) 였고, 이는 Baldini듬의 보고와 유사한 성적 이었다. 선행약물요법 반웅군과 의 3 년 무병생존율은 각각 $73.3 \%, 48.4 \%$ 로, 치료반응군에서 중가된 경향이 었던 반면 $(\mathrm{p}=0.13)$, 재발율온 선행야ㄱㅜㅜㄹ요법 반응군에 서 4 예 $(19.0 \%), 6$ 예 (60.0%) 로 중가되어 $(\mathrm{p}=0.039)$, 중양괴사정도가 재발혜측인자로서의 암상적 응용가능 성이 제시되었다. 중양의 괴사정도에 따라 수술전 선 행약물요법의 효과를 판정하여, 이를 수술후 보조약물 요법의 약제를 선택하는 기준으로 사용하려는 시도가 최근 시행되고있다 ${ }^{27)}$. Rosen뚱은 고용량의 methotrexate와 adriamycin으로 수술전 선행유도약물요 법을 시행한 뒤 중양괴사가 90% 미만인 비 반웅군을 대상으로 cisplatin을 포함한 약제로 수술후 보조약 물요법을 시행하여 2 년 생존율이 78% 가지 항상되었 음을 보고하였다 ${ }^{(2)}$. 본 연구애서도 조직학저 반웅이 미音한 2예에서 수수ㄹㅜㅜㅇㅔ methotrexate, etoposide, ifosfamide로 보조약물요법을 시행하였고, 2 예

모두 재발없이 생존해 있어 조지한적 반웅에 따른 수 술후 보조약물요법시의 약제 선정에 대하 비교연구가 계속되어야 할 것으로 사료된다.

수술전과 후에 시행되는 약불요법의 역할이 강조됩 에 따라 압세포의 약제저항이 중요한 예후인자로 제 시되었다. 암세포의 약제저항기전은 약동학적 요인 (pharmacokinetic factor), 병리세포 혛과 생물학적 특성, 개체의 면역상태, 약제 침투경로 및 약제내성으 로 설명되고있다 ${ }^{28 \sim 31)}$. 1973년 Dano는 선택된 몇 개 의 약제에 대하여 내성을 나타내는 암세포를 대상으로 조사한 결과 암세포가 약제를 세포 외로 배출합으로써 내성이 유발됨을 확인하였다". 1985 년, Kartner등은 이러한 암세포의 약제배출이 세포막 단백질인 p-glycoprotein에 의함을 관찰하였고 ${ }^{5}$, Roninson둥이 pglycoprotein올 발현시키는 다약제내성 유전자(MDR 1)를 확인하여 다약제내성 유전자의 과다발현에 의한 약제내성을 중명하였다 ${ }^{6)}$. P-glycoprotein은 크기가 170 Kd 인 세포막 단백질로 6 개의 소수성 부위와 2 개 의 ATP결합 부위로 이루어져 있어, 박테리아 세포막 의 수숭단백질과 유사한 구조률 가지고 있다 ${ }^{32)}$. 이는 종양세포의 세포막 및 골지체에 존재하여, ATP 의존 성에 의해 항암제가 암세포에 유입, 축적되는 것을 역재한으로써 서로 교차내성이 없는 anthracycline (daunomycin, doxorubicin), vinka alkaloid (vinblastine, vincristine), epiphodophyllotoxin (tenoposide, etoposide), actinomycin-D둥의 약 제에 대하여 저항성을 나타내게 된다 ${ }^{7,32}$. P-glycoprotein mRNA 의 과다발현은 유방암, 신장암, 간암, 대잠암, 악성임파종, 임파구성 백혈병 및 비 임파구성 백훨병 등에서 보고되었고${ }^{8,33)}$, 항암약물요법의 치료효 퐈와 상관성은 일부 고형암에서 보고되었다. 고형암중 육종은 p-glycoprotien이 환자의 예후와는 무관한 것으로 보고된 반면, 혈액질환인 임파종, 다발성 골수 종, 급성백혈병과 유방암에서는 p-glyoprotien의 과 다발현이 한자의 예후와 치료반웅에 대한 예후인자로 제시되고 있다 ${ }^{34-377}$. 본 연구에서는 p-glycoprotein 에 대한 단큘론항재블 이용하여 면역조직화학염색을 시행하였으며, 이 방법온 Western blot방법과 동일 한 결과률 얻을 뿐 아니라, 방법이 실용적이고 간편하 여 윕게 이용할 수 있는 장점이 있다. 그러나 항원의 교차 반웅에 의한 위양성이 있어 immunoblot방법에

비해 특이도가 낮은 단점이 제시되기도 한다. P-glycoprotein과 반웅하는 단큘론항체는 p-glycoprotein의 external domain과 반웅하는 MRK16과 internal domain과 반웅하는 C219, JSB-1둥이 있 는데, Stein둥은 11 예의 골육종 조직율 대상으로 MRK16 단를론항체(Behring-Werke, Marburg) 률 이용하여 p-glycoprotein 면역조직화학염색울 시 행한 다음, 10 예 (90.9%) 에서 양성을 보고한 반면 ${ }^{38)}$, Baldini등온 92예畳 대상으로 MRK16과 JSB-1 단 클론항체롤 사용하여 시행한 결과 28 예(30.4%)에서 양성으로 보고하였다 ${ }^{10)}$. 본 연구에서는 JSB-1 단클론 항쳬룔 사용한 바, 수술전 선행약물요.법을 시행한 27 예중 약물요법전 생검조직 20 예는 중양의 세포양이 부족하고 탈 찰슘화과정에 의한 일부조직의 손실로, 위옴성의 가능성이 많아서 분석에서 제외하였다. 또한 선행유도약물요법후 수술조직은 종양의 괴사정도가 심 한 치료 반응군의 경우, 잔존하는 종양세포의 부족으 로 면역조직화학염색 판정이 어려워, 단지 23 예에서만 비교적 판독이 가능하였다. 그 결과 23예중 5예(21.4 $\%$)가 양성이었으며, 5 예는 선행약물요법 비 반옹군 4 예, 반옹군 1 예였다. 고식적인 수술후 보조약물요법만 올 시행한 군에서 수술조직 18 예는 종양세포의 양이 충분하고 잘 보존되어 있어, 11 예 (61.1%) 가 양성으로 판독되었다. A 군의 선행약물요법 시행후 이차적 p glycoprotein 과다발현율이 21.4% 로, B 군의 선행약 물요.법올 시행하지 않은 조직의 일차적 p-glycoprotein 과다발현율 61.4% 에 비해 감소되어 있었는데, 이는 이차적 p-glycoprotein 과다발현이 주로 선행 약물요법에 괴사되지 않은 종양세포에서 관찰되어야 하나, 중양의 괴사정도가 높아 잔존하는 종양세포가 많지 않았기 때문으로 사료된다. 이잩이 일차적 p glycoprotein 과다발훤율이 높윰에도 불구하고 선행 약물요법에 의한 종양의 괴사정도가 높은 것으로 보 아, 육중에서 p-glycoprotein 과다발현이 예후와 무 관하다는 보고와 일치하는 점이 있으나, 본 치료에서 는 p-glycoprotein과 무관한 cisplatin이 병용투여 된 점을 고려하여 이점에 대한 추가적 연구가 펼요하 리라 사료된다. P-glycoprotein 과다발현 여부에 따 론 치료성적에 대해서는 논란이 많아, Stein둥은 골육 종을 포함한 골종양에서 p-glycoprotein 과다발현에 따른 임상겅과가 차이가 없었다고 하였고 ${ }^{38}$, Baldini

둥은 p-glycoprotein이 과다발현 되지 않온 경우 무 병생존율이 유의하게 중가된다고 보고하였다 ${ }^{(0)}$. 본 연 구에서는 p-glycoprotein양성인 11 예와 음성인 7예 의 3 년 무병 생존율을 비교하 결과 각각 $63.6 \%, 67.5$ $\%$ 로 차이가 없었고, 재발율도 $54.5 \%, 57.1 \%$ 로 역시 차이가 없어 아지까지 면역조직화학염색으로 측정한 골욱종의 일차적 p-glycoprotein 가다발현여부와 골 육종의 임상경퐈 및 재발율과의 상관성율 관찰할 수 없었다. 특히, 본 연구에서는 45 예의 파라퓐 포매조직 중 일차적 p-glycoprotein 과다발현 간독이 가능한 경우가 18 예에 붗과하였으므로, 향후 란 칼슘화를 시 행하지 않은 조직을 파라핀에 보관하거나, 신선조직을 냉동보권하여 면역조직화학염색과 Northern blot을 동시에 시행함으로써, 다약제내성유전자의 과다발현에 따른 임상경과의 추저ㅇㅔㅔ 대한 연구가 필요하젰다.

본 변구결과 재발예촉인자로 병리조직학적 반웅과 내원당시 alkaline phosphatase가 제시되었다. 따 라서 종양의 괴사정도가 약제선정에 많은 도움올 줄 수 있을 것으로 생각되나 초기 진단시에 평가할 수 있 는 예후예축인자가 아니므로, 향후 진단 초기에 약재 선정 및 예후예측에 도움이 둴 수 있는 새로운 인자블 제시하기 위한 연구가 필요하며, 선행약물치료후 비 반웅군을 대상으로한 수술후 보조 약물요법의 비교연 구도 필요한 시점이라 하겠다.

수술전 선행약물요법올 시행한 군에서 WHO grade III 이상인 백혈구 감소중이 29 예 $\mathbf{(9 0 . 6 \%}$), 혈소판 감 소중이 22 예 (68.8%)관찰되어, 치료후 감염과 출혈에 대한 면밀한 주의가 요구되었다. 본 연구에서는 조혈 촉진인자(ganulocyte-macrophage colony stimulating factor) 및 혈소판 수혈 등의 보존적인 치료 가 일부 환자에서 시행되었고, 환자의 나이가 젊고, 수 행상태가 양호하여, 패혈중으로 사망한 경우를 제외하 고 모두 희복되었다.

이상의 결과로, cisplatin(IA)퐈 adriamycin(IV) 을 이용한 수술전 선행약물요법은 65.6% 의 치료반웅 율과 65.6% 의 사지보촌술을 유도하였으나, 고식적인 수술후 보조약물요법을 시행한 경우에 비해 아직까지 생존율과 재발율의 차이가 없었다. 수술전 약물치료 비 반웅군에서 재발율이 높아, 선행약물요넙에 의한 중양괴사정도가 재발예축인자로 졔시되었다. P•glycoprotein의 과다발현율는 61.1% 였고, 생존율 및 재

발율과는 유의한 상관관계가 없었다. 추후 선행약물요 법을 대상으로한 수술후 보조약물요법의 역할에 대한 비교연구와 약제전한의 지침으로 사묭할 수 있는 예측 인자에 대한 연구가 필요하리라 사료된다.

겳

골육종환자애서 cisplatin(IA)파 adriamycin(IV) 을 이용한 수술전 선행약물요법은 고식적인 수술후 보 조약물요법을 시행한 경우에 비해 관찰기간이 짧아 생 존율과 재발율에 차이는 관찰되지 않았다. 선행약물요 법 비 반응군에서 재발욜이 높아 수술전 선행약물요 법에 의한 중양괴사정도가, 치료전 혈청 alkaline phosphatase와 핡께 재발예측인자로 이용 가능성을 제시하였다. 약물치료가 시행되지 않은 조직의 p-glycoprotein의 과다발현도는 61.1% 였으나, 과다발현여 부와 생존율 및 재발율과는 유의한 상관관계가 없었 다. 추후 치료반응을 높이기 위한 수술전 선행약물요 법과 치료 비반응군을 대상으로 한 수술후 보조약물요 법에 대한 전향적인 연구가 필요하며, 재발위험 및 약 제의 전환에 지침이되는 예축인자에 대한 연구가 계속 되어야 하겠다.

참 고 문 헌

1) Rubin P, MacDonald S, Qazi R: Pediatric osteogenic sarcoma. Clin Oncol 7: 282, 1992
2) Rosen G: Preoperative(neoadjuvant) chemotherapy for osteogenic sarcoma: A ten years experience. Orthopaedics 8: 659, 1985
3) Benjamin RS, Chawla SP, Carrasco C: Arterial infusion in the treatment of osteosarcoma:Recent concepts in sarcoma treatment. The Netherand, Klumer Academic 1988, pp269-274
4) Dano K: Active outward transport of 1daunomycin in resistant Ehrlich ascites tumor cells. Biochemi Biophys Acta 83: 466, 1973
5) Kartner N, Everden-Porelle D, Bradley G, Ling V : Detection of p-glycoprotein in multidrug resistance cell line by monoclonal antibodies. Na ture 316: 820, 1985
6) Roninson IB, Chin JE, Choi KG: Isolation of human mdr DNA sequences amplified in multidrug-resistant hamster cells. Proc Natl Acad

Sci USA 83: 337, 1986
7) Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I: Expression of a multidrug resistance gene in human tumors and tissues. Proc Natl Acad Sci USA 84: 265, 1987
8) Goldstein LJ, Galski H, Fojo A, Willingham M, Lai SL, Gazdar A, Pirker R: Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst 81: 116, 1989
9) Enneking WF, Spanier SS, Goodman MA: A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop 153: 106, 1980
10) Baldini N, Scotlandi K, Barbanti-Brodano G, Manara MC, Mauriei D, Bertoni F, Picci P, Scottili S, Campanacci M, Serra M: Expression of p-glycoprotein in high grade osteosarcomas in relation to clinical outcome. N Engl J Med 333: 1380, 1995
11) Huvos AG, Glasser DB, Lane JM, Marcove RC, Rosen G: Survival, prognosis and therapeutic response in osteogenic sarcoma. Cancer 69: 698, 1992
12) Rosen G, Caparros B, Huvos AG, Kosloff C, Nirenberg A, Cacavio A, Marcove RC, Lane JM, Urban C: Preoperative chemotherapy for osteogenic sarcoma. Cancer 49: 1221, 1982
13) Cortes EP, Holland JF, Wang JJ: Amputation and adriamycin in primary osteosarcoma. N Eng J Med 291: 98, 1974
14) Crenshow AH: Malignant tumor of bone. Campbell's operative orthopaedics III, St. Louse, MosbyYear Book Inc, 1992, pp 266-269
15) Marcove RC, Mike V, Hajek JV: Osteogenic sarcoma under the age of twenty-one: A review of 145 operative cases. J Bone Joint Surg 52: 411, 1970
16) Uribe-Botero G, Russel WO, Sutow W, Martin RG: Primary osteosarcoma of bone: A Clinicopathologic investigation of 243 cases, with necropsy study in 54. Am J Clin Pathol 67: 427, 1977
17) Jaffe N, Frei E, Traggis D: Adjuvant methotrexate and citrovorum factor treatment of osteogenic sarcoma. N Eng J Med 291: 994, 1974
18) Pratt CB, Champion JE, Fleming ID, Rao B, Kumar M, Evan WE, Green AA, George S : Adjuvant chemotherapy for osteosarcoma of the extremity: Long-term results of two consecutive prospective protocol studies. Cancer 65: 439, 1990
19) Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, Belasco JB, Malpas JS, Baker AR, Kirkpatrick JA, Ayala AG, Shuster JJ, Abelson HT, Simone JV, Vietti TJ: The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 314: 1600, 1986
20) Mazanet R, Antman KH: Adjuvant chemotherapy for sarcoma. Semin Oncol 18: 603, 1991
21) Rosen G, Murphy L, Huvos AG, Gutierrez M, Marcove RC: Chemotherapy, en bloc resection, and prosthetic bone replacement in the treatment of osteogenic sarcoma. Cancer 37: 1, 1976
22) Rosen G, Marcove RC, Caparros B: Primary osteogenic sarcoma. The rationale for preoperative chemotherapy and delayed surgery. Cancer 43: 2163, 1979
23) Jaffe N, Robertson R, Ayala A: Comparision of intra-arterial cis-diamminedichloro-platinum II with high dose methotrexate in the treatment of primary osteosarcoma. J Clin Oncol 3: 1101, 1985
24) Ettinger L, Douglass A, Higby D: Adjuvant adriamycin and cis-diamminedichloro-platinum in primary osteosarcoma. Cancer 47: 248, 1981
25) Simon MA, Aschliman MA, Thomas N, Mankin HJ: Limb-salvage treatment versus amputation for osteosarcoma of the distal end of the femur. J Bone Joint Surg 68: 1331, 1986
26) Taylor WF, Ivins JC, Unni KK, Beabout JW, Golenzer HJ, Black LE: Prognostic variables in osteosarcoma: A multi-institutional study. J Natl Cancer Inst 81: 21, 1989
27) Winkler K, Beron G, Delling G, Heise U, Kabisch H, Purfurst C, Berger J, Ritter J, Jurgens H, Gerein V, Graft N, Russe E, Gruemaer R, Ertilt W, Kotz R, Preusser P, Prindull G, Brandeis W, Nandbeck G: Neoadjuvant chemotherapy of osteosarcoma: Results of a randomized cooperative trial(COSS-82) with salvage chemotherapy based on histologic tumor response. J Clin Oncol 6: 329, 1988
28) Borst P: Genetic mechanism of drug resistance.

Rev Oncol 4: 87, 1991
29) Brown R: Gene amplication and drug resistance. J Pathol 163: 287, 1991
30) Adrian L, Hochhauser D: Mechanisms of multidrug resistance in cancer treatment. Acta Oncol 31: 205, 1992
31) Harris A, Hochhauser D: Mechanism of multidrug resistance in cancer treatment. Acta Oncol 31: 205, 1992
32) Chin KV, Pastan I, Gottesmann MM: Fuctional and regulation of the human multidrug resistance gene. Adv Cancer Res 60: 157, 1993
33) Gold LJ, Galski H, Fojo A, Willingham M, Lai SL, Gazdar A, Porker R, Green A, Crist W, Brodeur GM, Lieber M, Cossman J, Gottesman MM, Pastan I: Expression of a multidrug resistance gene in human cancers. J Natl Cancer Inst 81: 116, 1989
34) Dalton WS, Grogan TM, Helzer PS, Scheper RJ, Durie BMG, Tayor CW, Miller TP, Salmon SE: Drug-resistance in multiple myeloma and non Hodgkin's lymphoma; Detection of p-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. JClin Oncol 7: 415, 1989
35) Chan HSL, Thorner RS, Haddad G, Ling V: Immunohistochemical detection of p-glycopretein; Prognostic correlation in soft tissue sarcoma of child. J Clin Oncol 8: 689, 1990
36) 점현철, 임호영, 고은희, 김주항, 노재경, 민진식, 최정 주, 윤정구, 김병수: 항암약물치료전위암조직에서 면역宜소법에 의하 p-glycoprotein의 overexpression의 포 현. 대한암학회지 23: 485, 1991
37) Koh EH, Chung HC, Lee KB, Lim HY, Kim JH, Roh JH, Min JS, Lee KS, Kim BS: The value of immunohistochemical detection of p-glycoprotein in breast cancer before and after induction chemotherapy. Yonsei Med J 33: 137, 1992
38) Stein U, Wunderlich V, Haensch W, Schmidt P: Expression of the mdr 1 gene in bone and soft tissue sarcoma of adult patients. Eur J Cancer 29A: 1979, 1993

