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Abstract: Early diagnosis and treatment of bacterial meningitis in children are essential, due to the
high mortality and morbidity rates. However, lumbar puncture is often difficult, and cerebrospinal
fluid (CSF) culture takes time. This meta-analysis aims to determine the diagnostic accuracy of
blood procalcitonin for detecting bacterial meningitis in children. We conducted a systematic search
on electronic databases to identify relevant studies. Pooled sensitivity, specificity, and diagnostic
odds ratio (DOR) were calculated, and a hierarchical summary receiver operating characteristic
curve and area under the curve (AUC) were determined. Eighteen studies with 1462 children were
included in the analysis. The pooled sensitivity, specificity, and the DOR of blood procalcitonin
for detecting bacterial meningitis were 0.87 (95% confidence interval (CI): 0.78–0.93); 0.85 (95% CI:
0.75–0.91), and 35.85 (95% CI: 10.68–120.28), respectively. The AUC for blood procalcitonin was
0.921. Blood procalcitonin also showed higher diagnostic accuracy for detecting bacterial meningitis
than other conventional biomarkers, including serum C-reactive protein and leukocyte count, CSF
leukocyte and neutrophil count, and CSF protein and glucose levels. Blood procalcitonin can be
a good supplemental biomarker with high diagnostic accuracy in detecting bacterial meningitis
in children.

Keywords: bacterial meningitis; procalcitonin; children; diagnosis; meta-analysis; systematic review

1. Introduction

Bacterial meningitis is an inflammation of the meninges associated with bacterial in-
vasion [1,2]. The causative pathogens vary by age and geographic region, but Streptococcus
pneumoniae, Neisseria meningitidis, Haemophilus influenzae type b (Hib), group B Streptococcus,
and Listeria monocytogenes are the most common causes of bacterial meningitis. Introduction
of the conjugate Hib vaccine (in 1990) and the heptavalent pneumococcal conjugate vaccine
(in 2000), resulted in a decrease in the overall incidence of bacterial meningitis in countries
where it has been implemented [3,4]. However, the mortality rate (up to 34% even if treated
with antibiotics) and incidence of long-term sequelae (up to 50%) from bacterial meningitis
among those affected have not changed and remain substantial [2,3]; thus, urgent diagnosis
and prompt administration of appropriate antibiotics are crucial in patients with suspected
bacterial meningitis.

Pediatric bacterial meningitis is diagnosed by the presence of clinical symptoms (i.e.,
fever, headache, lethargy, irritability, altered mental state, photophobia, nausea, vomit-
ing, and stiff neck) and the examination of cerebrospinal fluid (CSF) obtained by lumbar
puncture [3,5]. Specifically, identification of bacteria by culture or bacterial antigen detec-
tion (e.g., via a latex agglutination test) in the CSF can confirm a diagnosis. Typical CSF
findings including elevated protein content (>100–150 mg/dl), a CSF: blood glucose ratio
<0.4–0.5, or decreased glucose (<40 mg/dl) with >80–90% neutrophils suggest the presence
of bacterial meningitis [3,5,6].
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Although CSF parameters (cell counts with differential protein and glucose levels) can
help in the differential diagnosis of various types of meningitis, Gram staining and CSF
culture are still traditionally the gold standard in confirming the diagnosis and identifying
the bacterial pathogen [5]. However, false-negative results can occur when children receive
antibiotic therapy before lumbar puncture. In addition, the likelihood of detecting bacteria
on a CSF Gram stain depends on the pathogen and the number of organisms present, and
CSF culture generally take time to produce a result [1,5].

In addition, lumbar punctures in children are difficult to perform and often cause
bleeding (i.e., a traumatic lumbar puncture). Approximately 14–18% of attempted lum-
bar punctures are either traumatic or unsuccessful [7]. In neonates, incidence of trau-
matic/unsuccessful lumbar puncture is up to 46% [8]. Moreover, the results of CSF testing
from traumatic lumbar puncture can be ambiguous and difficult to interpret [7]. Therefore,
it is clinically important to find useful supplementary blood biomarkers to complement
CSF examination for emergency diagnosis and timely antibiotic therapy in children with
bacterial meningitis.

Thus far, there have been no exceptional biomarkers for diagnosing bacterial meningi-
tis. Excluding existing CSF parameters (i.e., an increased percentage of polymorphonuclear
leukocytes or decreased glucose concentration), CSF lactate has been suggested as a good
single indicator for diagnosing bacterial meningitis [9–11]. However, for the aforemen-
tioned reasons, CSF lactate is not a suitable biomarker that can be easily tested in children.
Conventional blood biomarkers, such as white blood cell (WBC) counts and C-reactive
protein (CRP), have been widely used for diagnosing bacterial infections [12,13]. However,
WBC counts and CRP levels can also be elevated in various types of systemic inflamma-
tions and viral infections [14], thus limiting their ability to distinguish bacterial from viral
etiologies of meningitis [15,16].

Procalcitonin (PCT), one of the most validated markers of sepsis, is the precursor
to the hormone calcitonin [17]. PCT is produced in the C cells of the thyroid gland and
converted to calcitonin before it enters circulation under normal conditions [13,18,19]. In
healthy individuals, PCT levels are typically under 0.10 ng/mL [12,20]. When a bacterial
infection occurs, significant production of PCT by non-thyroidal tissues occurs throughout
the body [18]. PCT levels have been shown to increase rapidly between 2–6 h and peak
within 24 h following bacterial infection [18].

Previous systematic reviews have reported very high values for the sensitivity and
specificity of blood PCT for bacterial meningitis in both children [21] and adults [22].
However, recent results of pediatric observational studies have not yet been pooled and
reported; thus, our study aimed to provide an updated overview of the diagnostic accuracy
of blood PCT for pediatric bacterial meningitis and compared it with that of the conven-
tional blood and CSF biomarkers, which would determine whether blood PCT can replace
the diagnostic role of blood or CSF parameters.

2. Materials and Methods

This systematic review was registered in the International Prospective Register of Sys-
tematic Reviews (PROSPERO; CRD42021186913) and conducted according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [23].
Two reviewers (S.H.Y. and H.K.) independently searched and selected the literature and
performed data extraction and quality assessment. Any disagreements were resolved
through discussion.

2.1. Search Strategy, Study Selection, and Eligibility Criteria

We searched PubMed, Embase, and the Cochrane Library for articles published until
30 March 2020. Search terms included “procalcitonin” and “meningitis,” and we restricted
the database searches by the age filter (newborn to adolescent). Studies assessing the
diagnostic accuracy of procalcitonin in serum or plasma for pediatric bacterial meningitis
with sufficient data to construct a contingency table were included. Bacterial meningitis
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was defined as the presence of clinical symptoms of meningitis (i.e., fever, headache, neck
stiffness, bulging fontanelle, or mental status changes) with detection of bacteria in the
CSF by culture, Gram stain, or the bacterial antigen test [6]. Probable cases of bacterial
meningitis were also included if patients had clinical symptoms of meningitis with CSF
laboratory findings of leukocytosis >100 cells/mL with >80% neutrophils, CSF protein >
80 mg/dL, and glucose < 40 mg/dL; or CSF: blood glucose ratio < 0.4, with or without a
positive blood culture [6,24,25].

We defined the pediatric age range as aged <18 years. No date restrictions were
applied on the publication period. Bibliography of any eligible articles identified were
also screened for additional relevant articles. Publications were excluded if they did not
address bacterial meningitis or the accuracy of blood procalcitonin. We also excluded the
following article types: reviews, letters, case reports, editorials, guidelines, and animal
experiments. Repeated publications and non-English articles were also excluded.

2.2. Data Extraction

We retrieved the following data on each eligible study: first author, year of publica-
tion, location, age, sample size, sample type, cutoff value, diagnostic criteria, PCT assay
methods, and diagnostic test results (true positive, false positive, false negative, or true
negative). If studies were composed of multiple groups with different results, each group
was considered as an individual study.

2.3. Quality Assessment

The Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS-2 score) was
used to evaluate the methodological quality of the included studies [26]. It comprises four
key domains: patient selection, index test, reference standard, and flow and timing. Each
domain was judged as “low,” “high,” or “unclear” in terms of risk of bias, and the first
three domains were also assessed in terms of concerns regarding applicability.

2.4. Statistical Analysis

Summary estimates of sensitivity, specificity, positive and negative likelihood ratios
(LR+ and LR−), and diagnostic odds ratio (DOR) with their 95% confidence intervals (CI)
were assessed using the bivariate model. Heterogeneity of sensitivity and specificity was
assessed by a χ2 test (p < 0.10 indicated significant heterogeneity) and visually using a forest
plot. The area under the curve (AUC) was obtained from a hierarchical summary receiver
operating characteristic (HSROC) curve. The included studies used various cutoff values
of procalcitonin to diagnose bacterial meningitis; thus, a threshold effect was anticipated.
Therefore, we planned a priori subgroup analysis using a cutoff value of 0.5 ng/mL. The
potential publication bias was assessed using Deeks’ funnel plot, where p < 0.1 indicated
statistical significance. Data analysis was performed using the R package, version 4.0.3
(http://www.R-project.org, accessed on 11 December 2020) (R Foundation for Statistical
Computing, Vienna, Austria), and Stata software, Version 16.1 (StataCorp, College Station,
TX, USA).

3. Results

The initial search identified a total of 243 titles and abstracts (77 from PubMed, 152
from Embase, 9 from Cochrane database, and 5 from other sources, such as reviewing
references). Of these, after removing 54 duplicates, 189 articles were screened, and 149
articles were excluded based on eligibility criteria (Figure 1). From the 40 full-text reviews,
11 had insufficient data for 2 × 2 table construction, and in 14 studies, the disease of concern
was not meningitis. One study was excluded due to a duplicate study population. The
remaining 14 articles were eligible for data extraction, of which four articles reported two
different sets of data using different cutoff values; thus, they were regarded as two separate
studies. Finally, 18 studies comprising 1462 samples [10,16,27–38] were included (Figure 1).

http://www.R-project.org
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Figure 1. The flow diagram of the search and selection process.

3.1. Characterization of the Studies

The characteristics and diagnostic criteria of each study included in the meta-analysis
are shown in the Table 1 and Table S1. The included studies were published between 1997
and 2019 and showed a wide geographical distribution (one from China; three, Egypt; four,
France; two, Iran; one, Iraq; one, Nepal; one, Poland; three, Saudi Arabia; three, Spain; one,
Switzerland; and two, Turkey). The age of enrolled patients ranged from newborns to 15.9
years (Table S1). Fourteen studies (77.7%) used serum PCT, and two studies (11.1%) used
plasma PCT. The LUMItest PCT assay (Brahms Diagnostica, Berlin, Germany) was the most
frequently studied PCT assay (n = 11, 61.1%). The included studies used varying cutoff
values of PCT ranging from 0.05 ng/mL to 10 ng/mL, with a cutoff value of 0.5 ng/mL
being the most commonly used (n = 7, 38.9%).

3.2. Quality Assessment of the Included Studies

Of the 18 included studies, seven (38.9%) studies had a high risk of bias in the patient
selection domain because they did not exclude patients who had received previous antibi-
otic treatment. Twelve of 18 studies (66.7%) used optimal cutoff values, which maximized
both sensitivity and specificity, instead of the predefined threshold and thus scored “un-
clear risk” in the index test domain. In the reference standard domain, we scored “low
risk” on most studies (n = 16, 88.9%) because they used positive CSF culture with clinical
symptoms and CSF laboratory findings as the reference standard. Two other studies used
CSF laboratory findings (excluding CSF culture) with clinical symptoms as the reference
standard; therefore, we scored them as “unclear risk.” All studies scored “low risk” in
terms of bias in the flow and timing domain and “low concern” for applicability concerns
(Figure 2).
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Table 1. Characteristics of the included studies.

First Author (Year),
Reference Country BM (n) Non-BM

(n)
Sample

Type Cutoff (ng/mL) PCT Assay Time of PCT
Assessment

Gendrel (1997) [27] France 18 41 Plasma 5 LUMItest PCT (Brahms Diagnostica, Berlin, Germany) On admission
Dubos-1 (2006) [28] France 18 134 Serum 0.5 LUMItest PCT (Brahms Diagnostica, Berlin, Germany) On admission
Dubos-2 (2006) [28] France 18 134 Serum 0.2 LUMItest PCT (Brahms Diagnostica, Berlin, Germany) On admission

Dubos (2008) [16]
Switzerland, France,

Spain, Turkey,
Poland

90 100 Serum 0.5 Lumitest PCT (Brahms Diagnostica, Berlin, Germany) On admission

Onal (2008) [29] Turkey 16 14 Plasma 0.5 Lumitest PCT (Brahms Diagnostica, Berlin, Germany) On admission

Ibrahim (2011) [30] KSA 18 20 Serum 0.5 Immunoluminometric assay (Brahms Diagnostica,
Berlin, Germany) On admission

Alkholi-1 (2011) [31] Egypt 20 20 Serum 2 Lumitest PCT (Brahms Diagnostica, Berlin, Germany) On diagnosis
Alkholi-2 (2011) [31] Egypt 20 20 Serum 10 Lumitest PCT (Brahms Diagnostica, Berlin, Germany) On diagnosis

Monsef (2012) [32] Iran 8 32 Serum 0.5 Lumitest PCT (Brahms Diagnostica, Berlin, Germany) Before antibiotic
therapy

Mayah (2013) [33] Egypt 24 44 Serum 3.3 Lumitest PCT (Brahms Diagnostica, Berlin, Germany) On admission
Umran (2014) [34] Iraq 29 16 Serum 0.05 ELIZA M6 (NA, USA) On admission

Sanaei Dashti (2017) [10] Iran 12 27 Serum 0.6 Human PCT ELISA (BT Laboratory, Shanghai, China) On admission
El Shorbagy-1 (2018) [35] KSA 24 41 Serum 2 Lumitest PCT (Brahms Diagnostica, Berlin, Germany) On diagnosis
El Shorbagy-2 (2018) [35] KSA 24 41 Serum 10 Lumitest PCT (Brahms Diagnostica, Berlin, Germany) On diagnosis

Chaudhary (2018) [36] Nepal 22 26 Serum 0.5 Maglumi PCT (Snibe Diagnostics, Shenzhen, China) On admission

Garcia-1 (2018) [37] Spain 7 165 NA 0.5 NA At the time of ED
visit

Garcia-2 (2018) [37] Spain 7 165 NA 2 NA At the time of ED
visit

Zhang (2019) [38] China 29 18 Serum 5.91 VIDAS BRAHMS PCT (Biomerieux, Marcy l’Etoile,
France) On admission

BM, bacterial meningitis; ED, emergency department; KSA, Kingdom of Saudi Arabia; NA, not available; PCT, procalcitonin.



Diagnostics 2021, 11, 846 6 of 13

Diagnostics 2021, 11, x FOR PEER REVIEW  7 of 16 
 

 
Diagnostics 2021, 11, x. https://doi.org/10.3390/xxxxx  www.mdpi.com/journal/diagnostics 

3.2. Quality Assessment of the Included Studies 

Of the 18 included studies, seven (38.9%) studies had a high risk of bias 

in the patient selection domain because  they did not exclude patients who 

had received previous antibiotic treatment. Twelve of 18 studies (66.7%) used 

optimal  cutoff  values, which maximized  both  sensitivity  and  specificity, 

instead of  the predefined  threshold  and  thus  scored  “unclear  risk”  in  the 

index test domain. In the reference standard domain, we scored “low risk” 

on most studies (n = 16, 88.9%) because they used positive CSF culture with 

clinical  symptoms  and CSF  laboratory  findings  as  the  reference  standard. 

Two other studies used CSF laboratory findings (excluding CSF culture) with 

clinical symptoms as  the  reference  standard;  therefore, we scored  them as 

“unclear risk.” All studies scored “low risk” in terms of bias in the flow and 

timing domain and “low concern” for applicability concerns (Figure 2).  

 

Figure 2. Summary of the risk of bias of the included studies (Quality assessment of the diagnostic accuracy 

studies‐2, QUADAS‐2). 

3.3. Pooled Diagnostic Accuracy of Procalcitonin 

Forest plots of the sensitivity and specificity are shown in Figure 3. The 

summary  estimate  of  sensitivity  was  0.868  (95%  CI:  0.777–0.925)  and 

specificity was 0.845 (95% CI: 0.754–0.907). The summary estimates of LR+, 

LR−, and DOR were 5.600 (95% CI: 3.159–9.946), 0.156 (95% CI: 0.296–0.083), 

and  35.848  (95%  CI:  10.680–120.283),  respectively  (Table  S2).  There  was 

significant heterogeneity between studies in terms of sensitivity (χ2: 120.53; p 

< 0.001) and specificity (χ2: 291.57; p < 0.001). 

Figure 2. Summary of the risk of bias of the included studies (Quality assessment of the diagnostic accuracy studies-2,
QUADAS-2).

3.3. Pooled Diagnostic Accuracy of Procalcitonin

Forest plots of the sensitivity and specificity are shown in Figure 3. The summary
estimate of sensitivity was 0.868 (95% CI: 0.777–0.925) and specificity was 0.845 (95%
CI: 0.754–0.907). The summary estimates of LR+, LR−, and DOR were 5.600 (95% CI:
3.159–9.946), 0.156 (95% CI: 0.296–0.083), and 35.848 (95% CI: 10.680–120.283), respectively
(Table S2). There was significant heterogeneity between studies in terms of sensitivity (χ2:
120.53; p < 0.001) and specificity (χ2: 291.57; p < 0.001).
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Figure 3. Coupled forest plots for sensitivity and specificity.

The area under the HSROC curve was 0.921 (Figure 4), which demonstrated that PCT
had a high diagnostic accuracy for diagnosing pediatric bacterial meningitis. Deeks’ funnel
plot revealed that there was no significant publication bias (p = 0.13) (Figure 5).
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Figure 4. Hierarchical summary receiver operating characteristic (HSROC) curve of the diagnostic
performance of procalcitonin for diagnosing pediatric bacterial meningitis. The area under the curve
of the HSROC was 0.921.
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3.4. Subgroup Analysis according to the Cutoff Value

As the cutoff values differed among the included studies, we performed subgroup
analysis, according to a pre-specified cutoff value, 0.5 ng/mL. Half of the included studies
(n = 9) used cutoff values >0.5 ng/mL, and the other half used cutoff values ≤0.5 ng/mL.
The subgroup with cutoff values ≤0.5 ng/mL had a higher pooled sensitivity (0.899 vs.
0.831) and similar specificity (0.844 vs. 0.851) to the subgroup with the cutoff values
>0.5ng/mL. The subgroup with cutoff values ≤0.5 ng/mL also had a considerably higher
pooled DOR (48.157 vs. 28.084) and diagnostic accuracy (AUC 0.935 vs. 0.908) (Table 2).
Detailed accuracy estimates, HSROC curves, and heterogeneity test results, according to
the subgroup, are provided in the Tables S3–S6 and Figures S1 and S2.
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Table 2. Summary estimates of the diagnostic accuracy of procalcitonin for diagnosis of bacterial meningitis according to
the cutoff value.

Cutoff Number of
Studies

Sensitivity
(95% CI)

Specificity
(95% CI)

LR+
(95% CI)

LR−
(95% CI)

DOR
(95% CI) AUC

≤0.5 pg/mL 9 0.899
(0.81–0.949)

0.844
(0.702–0.96)

5.763
(2.718–23.725)

0.12
(0.271–0.053)

48.157
(10.043–446.588) 0.935

>0.5 pg/mL 9 0.831
(0.647–0.93)

0.851
(0.706–0.931)

5.577
(2.201–13.478)

0.199
(0.5–0.075)

28.084
(4.401–179.261) 0.908

AUC, area under the curve; CI, confidence interval; DOR, diagnostic odds ratio; LR+, positive likelihood ratio; LR−, negative likelihood ratio.

3.5. Comparison of Pooled Diagnostic Accuracy between Biomarkers

The pooled diagnostic accuracy for PCT compared with other conventional biomark-
ers, namely blood CRP level, CSF protein, and CSF glucose concentration, and blood WBC
counts, CSF WBC counts, and CSF neutrophils were also performed. Among them, CSF
protein concentration showed the highest sensitivity, and CSF neutrophils showed the high-
est specificity and DOR (Table 3). However, none of their pooled estimates of sensitivity,
specificity, LR+, or the DOR were higher than that of blood PCT. Further detailed accuracy
estimates and heterogeneity test results according to the specific biomarkers are provided
in Tables S7–S18.

Table 3. Summary estimates of the diagnostic accuracy for other biomarkers.

Biomarkers Number of
Studies

Sensitivity
(95% CI)

Specificity
(95% CI) LR+ (95% CI) LR− (95% CI) DOR (95% CI)

CRP 10 0.797
(0.741–0.844)

0.725
(0.665–0.777)

2.894
(2.213–3.781)

0.28
(0.39–0.201)

10.334
(5.679–18.808)

WBCs 5 0.659
(0.504–0.786)

0.713
(0.587–0.813)

2.294
(1.22–4.195)

0.479
(0.845–0.263)

4.794
(1.443–15.925)

CSF WBCs 4 0.733
(0.601–0.834)

0.669
(0.58–0.748)

2.217
(1.43–3.309)

0.399
(0.689–0.223)

5.556
(2.076–14.87)

CSF neutrophils 4 0.793
(0.377–0.96)

0.749
(0.519–0.892)

3.158
(0.784–8.895)

0.277
(1.201–0.045)

11.403
(0.652–199.271)

CSF protein 4 0.838
(0.699–0.92)

0.658
(0.55–0.753)

2.452
(1.552–3.718)

0.247
(0.548–0.107)

9.934
(2.833–34.833)

CSF glucose 3 0.563
(0.172–0.889)

0.193
(0.145–0.253)

0.698
(0.201–1.189)

2.264
(5.718–0.44)

0.308
(0.035–2.701)

AUC, area under the curve; CI, confidence interval; CRP, C-reactive protein; CSF, cerebrospinal fluid; DOR, diagnostic odds ratio; LR+,
positive likelihood ratio; LR−, negative likelihood ratio; WBC, white blood cell.

4. Discussion

Bacterial meningitis is an emergency medical condition. If untreated, the mortality rate
is almost 100%, and neurological sequelae are common among survivors; thus, it requires
rapid, accurate diagnosis with immediate initiation of empiric antibiotic treatment [1]. Our
results showed that blood PCT is a highly accurate test for diagnosing pediatric bacterial
meningitis. Specifically, the high pooled specificity and LR+ indicate that PCT is a good
biomarker for ruling in bacterial meningitis in pediatric patients.

Compared with widely used infection biomarkers, CRP had a lower sensitivity, speci-
ficity, and LR+ than PCT. Furthermore, the pooled DOR for PCT, which is the best single
indicator of diagnostic test performance [39], was almost three-times higher than that of
CRP. Blood PCT has also several advantages over CRP. First, CRP starts to rise after 12–24 h
and peaks at 48–72 h after the onset of infection, while PCT increases within 2–6 h and
peaks within 6–24 h after the onset of infection [18,40]. Thus, PCT can be used as an earlier
sensitive biomarker for the diagnosis of bacterial meningitis. PCT also has a significantly
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higher accuracy than CRP for discriminating between bacterial and viral infections or non-
infective causes of inflammation [41]. In addition, unlike CRP, the PCT level is unaffected
by the administration of nonsteroidal anti-inflammatory drugs (NSAIDs) or corticosteroids
and by various inflammatory comorbidities (e.g., autoimmune diseases) [42–45]. These
advantages are especially helpful for children who have previously been administered
NSAIDs for symptomatic treatment prior to hospital visit [21].

Regarding the optimal diagnostic cutoff value, PCT showed increased power to
diagnose bacterial meningitis in the subgroup analysis with cutoff values ≤0.5 ng/mL
compared with the general analysis. Accordingly, we recommend the use of 0.5 ng/mL as
the cutoff value of PCT for the detection of pediatric bacterial meningitis. However, further
studies are required to determine the optimal cutoff values using a variety of PCT testing
assays.

Another reason why PCT is a good auxiliary diagnostic test is that early clinical symp-
toms and signs are nonspecific and might be absent in the early phase among children [2].
Furthermore, bedside physical exam tests for neck stiffness, such as Brudzinski‘s sign and
Kernig’s sign, are unable to distinguish between bacterial and viral meningitis, with sensi-
tivity varying from 9 to 53% and specificity varying from 78 to 100% in children [46–48].
Consequently, to confirm the diagnosis of bacterial meningitis and identify the causative
organism, CSF analysis obtained by lumbar puncture is necessary. However, the pooled
estimates of sensitivity, specificity, and DOR were higher for blood PCT than those of all
the measured CSF parameters.

In addition, failed or traumatic lumbar punctures can occur in up to 50% of lumbar
punctures in pediatric patients and can cause diagnostic uncertainty, leading to unnecessary
antibiotic treatment or prolonged hospitalization [49–51]. For this reason, measuring PCT
can be helpful in situations when traumatic lumbar puncture or non-conclusive CSF
findings occur in patients with suspected meningitis [21].

Despite these advantages, clinical application of PCT in diagnosing bacterial menin-
gitis has a few limitations. PCT can be elevated in various bacterial infections, such as
acute otitis media, pneumonia, and sepsis [52,53]. Thus, levels of blood PCT needs to be
interpreted with caution in children with suspected acute bacterial meningitis along with
other bacterial infections [54]. Blood PCT also has limited capacity to distinguish between
acute febrile bacterial infections in the central nervous system (i.e., bacterial meningitis vs.
brain abscess) [53]. Furthermore, PCT levels decrease with antibiotic use and may thus
give misleading results in children who have recently been treated with antibiotics [55].
Finally, PCT is a more expensive diagnostic assay than CRP [56]. However, routine CRP
testing can contribute to unnecessary hospital costs due to its low diagnostic value [57].
PCT-guided antibiotic therapy is associated with a reduction in antibiotic use and can help
reduce overall healthcare costs [58–60]. The average turnaround time for CRP testing is
about 50 min, which can delay the initiation of early treatment [61]. PCT assays, such as
the Kryptor PCT assay [62] and LIAISON® BRAHMS PCT® II GEN [63], have a shorter
turnaround time (about 20 min), which allows prompter initiation and appropriate use of
antibiotics in children with bacterial meningitis.

A major strength of our review is that we searched multiple databases to ensure
the current available evidence, which increased the sample size and thus provided more
precise results than those of previous studies. Almost 1500 samples were included in our
meta-analysis, which is almost double that of a previous review [21]. Second, most of the
studies included had a prospective design, meaning that there was a lower risk of recall
bias. Third, no significant publication bias was detected in the included studies.

There are several limitations in this study. First, significant heterogeneity was observed
in the meta-analysis. The heterogeneity across studies may be due to the use of different
reference standards, cutoff values, types of PCT assays, and different clinical conditions.
We accepted the authors’ definitions of bacterial meningitis if they were based on the World
Health Organization’s case definition criteria [6]. We also performed subgroup analysis
according to the cutoff values, but could not perform subgroup analyses according to the
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other factors because of the limited information available. Second, we could not compare
the pooled estimates of the diagnostic accuracy of CSF: blood glucose ratio and CSF PCT
compared with blood PCT because there were too few studies that provided data with
which these comparisons could have been performed. Previously, Onal et al. [29] reported
that plasma PCT with a cutoff point of 0.5 ng/mL had similar sensitivity (0.937 vs. 0.93) and
equal specificity (1.0) to CSF: blood glucose ratio (<0.6) for diagnosing pediatric bacterial
meningitis. Zhang et al. [38] reported that CSF PCT with a cutoff point of 0.085 ng/mL
showed a higher sensitivity (0.552 vs. 0.241) and a similar specificity (0.958 vs. 0.944)
compared with serum PCT with a cutoff value of 5.91 ng/mL. However, Sanaei Dashti
et al. [10] reported that CSF PCT with a 0.412 ng/mL cutoff showed a higher sensitivity
(0.75 vs. 0.667) but a lower specificity (0.474 vs. 0.593) than serum PCT with a cutoff value
of 0.6 ng/mL.

5. Conclusions

Current evidence suggests that blood PCT is a highly accurate diagnostic marker
for pediatric bacterial meningitis and that it has higher diagnostic accuracy than blood
CRP, WBC, and CSF parameters. Since the blood concentration of PCT rises within a
few hours and peaks within 24 h, blood PCT can help differentiate between viral and
bacterial etiology early in children with suspected meningitis. In addition, PCT can be used
for monitoring response to antimicrobial therapy. Therefore, blood PCT help to reduce
unnecessary prescription and duration of antibiotic therapy. In conclusion, blood PCT
can be a useful diagnostic biomarker for bacterial meningitis in children. Future studies
are needed to observe whether blood PCT can serve as a standalone biomarker for the
diagnosis of pediatric bacterial meningitis in various clinical settings.
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