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INTRODUCTION

Aortic stenosis (AS) is the most common valvular 
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Objective: We aimed to develop a prediction model for diagnosing severe aortic stenosis (AS) using computed tomography 
(CT) radiomics features of aortic valve calcium (AVC) and machine learning (ML) algorithms.
Materials and Methods: We retrospectively enrolled 408 patients who underwent cardiac CT between March 2010 and August 
2017 and had echocardiographic examinations (240 patients with severe AS on echocardiography [the severe AS group] and 
168 patients without severe AS [the non-severe AS group]). Data were divided into a training set (312 patients) and a validation 
set (96 patients). Using non-contrast-enhanced cardiac CT scans, AVC was segmented, and 128 radiomics features for AVC were 
extracted. After feature selection was performed with three ML algorithms (least absolute shrinkage and selection operator 
[LASSO], random forests [RFs], and eXtreme Gradient Boosting [XGBoost]), model classifiers for diagnosing severe AS on 
echocardiography were developed in combination with three different model classifier methods (logistic regression, RF, and 
XGBoost). The performance (c-index) of each radiomics prediction model was compared with predictions based on AVC 
volume and score.
Results: The radiomics scores derived from LASSO were significantly different between the severe AS and non-severe AS 
groups in the validation set (median, 1.563 vs. 0.197, respectively, p < 0.001). A radiomics prediction model based on feature 
selection by LASSO + model classifier by XGBoost showed the highest c-index of 0.921 (95% confidence interval [CI], 0.869–
0.973) in the validation set. Compared to prediction models based on AVC volume and score (c-indexes of 0.894 [95% CI, 0.815–
0.948] and 0.899 [95% CI, 0.820–0.951], respectively), eight and three of the nine radiomics prediction models showed 
higher discrimination abilities for severe AS. However, the differences were not statistically significant (p > 0.05 for all).
Conclusion: Models based on the radiomics features of AVC and ML algorithms may perform well for diagnosing severe AS, 
but the added value compared to AVC volume and score should be investigated further.
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heart disease in developed countries. In severe AS, the 
timing of surgery is vital for preventing subsequent 
cardiovascular events. Although AS severity is assessed by 
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echocardiography as a standard reference, these assessments 
can often be inconclusive (1, 2). Most cases that are 
inconclusive on echocardiography are low-gradient AS, and 
measuring the aortic valve calcium (AVC) score on cardiac 
computed tomography (CT) is helpful. The AVC burden on CT 
is positively associated with AS severity, and AVC score on 
CT predicts outcomes better than clinical assessments and 
Doppler echocardiography results (3-5). In this context, the 
2017 European Society of Cardiology/European Association 
for Cardio-Thoracic Surgery guidelines recommend CT AVC 
scoring in cases of low-flow, low-gradient AS with preserved 
ejection (6).

Although AVC plays a key role in AS progression, it is not 
the only factor that affects the degree of AS; some patients 
with low AVC are diagnosed with hemodynamically severe 
AS (7). AS severity is influenced by other factors, including 
AVC attenuation, shape, symmetry, or distribution. As shown 
in a previous study, not only the degree of AVC but also 
the localization of AVC within the valve is associated with 
AS severity (8). The term “radiomics” refers to the high-
throughput extraction of high-dimensional quantitative 
information from a medical image. Although radiomics 
has been studied primarily in oncology, the application 
of radiomics to cardiovascular imaging has been growing 
(9-13). Because radiomics features provide quantitative 
information about a region-of-interest (ROI), such as 
volume, shape, texture, and high-order features, analysis 
of these features may yield data that are predictive of AS 
severity. Additionally, because radiomics data are high-
dimensional, appropriate methods for feature selection 
and model classifiers are required, and the application 
of machine learning is expected to be helpful (14, 15). 
Therefore, our study aimed to develop a prediction model 
for diagnosing severe AS using the radiomics features of 
AVC on CT and machine learning algorithms.

MATERIALS AND METHODS

Study Population
Our Institutional Review Board approved this study, 

and the requirement for informed consent was waived 
(IRB number: 4-2019-0006). We retrospectively identified 
606 patients with valvular heart disease who underwent 
cardiac CT between March 2010 and August 2017 and had 
echocardiographic examinations within 90 days of the CT 
scan. Patients were excluded based on the following criteria: 
1) patients with no AVC on cardiac CT because radiomics 

features could not be extracted from the segmented AVC  
(n = 178), 2) patients who did not undergo coronary 
calcium scans during cardiac CT evaluation (n = 7), 3) 
patients who had a quadricuspid or unicuspid aortic valve 
(AV) (n = 3), or 4) patients with errors in radiomics feature 
extraction (n = 4). For the 6 patients who had two cardiac 
CT scans during the study period that were performed within 
90 days of the echocardiography, only the most recent CT 
was included. A total of 408 patients were enrolled in this 
study (208 men; mean age, 66.0 ± 10.9 years) (Fig. 1). 
Data were divided into a training set (312 patients who 
underwent CT between March 2010 and December 2016) and 
a validation set (96 patients who underwent CT between 
January 2017 and August 2017) with reference to a specific 
time point. The use of the term “validation” was similar to 
that used in the medicine- and health-related literature, 
indicating a process used to verify model performance (16).

CT Image Acquisition and Reconstruction
All cardiac CT scans were performed using a second-

generation, dual-source scanner (SOMATOM Definition 
Flash, Siemens Healthineers) or a 256-detector-row CT 
scanner (Revolution CT, GE Healthcare). Non-contrast-
enhanced calcium scans were performed using a prospective 
electrocardiogram-gated sequential scan mode with a tube 
voltage of 120 kV and a tube current-time product of 50 
mAs. The images were reconstructed with a slice thickness 
of 2.5–3 mm and an increment of 2.5–3 mm with a medium-
sharp kernel and filtered back projection (Supplementary 
Materials 1).

606 subjects who underwent cardiac CT scan
from March 2010 to August 2017 and echocardiographic

examination within 90 days interval from CT

Study population (n = 408)

Severe AS
(n = 240)

Non-severe AS
(n = 168)

Training set
(n = 312)

Validation set
(n = 96)

Exclusion (n = 198)
  - No AVC on CT (n = 178)
  - No calcium scan on cardiac CT (n = 7)
  - Quadricuspid or unicuspid aortic valve (n = 3)
  - Error in radiomics feature extraction (n = 4)
  - Duplicate examination (n = 6)

Fig. 1. Flowchart of the study population. AS = aortic stenosis, 
AVC = aortic valve calcium, CT = computed tomography
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Segmentation of AVC and Radiomics Feature Extraction
From axial images of calcium scoring CT, two radiologists 

(a fourth-year senior radiology resident, and a board-
certified radiologist with 7 years of experience in 
cardiothoracic imaging), who were blinded to the 
echocardiographic results and the other observer’s 
segmentation results, independently segmented AVC using 
a commercial software (AVIEW Research, Coreline Soft Inc.) 
(Supplementary Fig. 1). One observer repeated the AVC 
segmentation for 100 randomly selected cases with a time 
interval of at least 2 months from the first segmentation to 
assess intraobserver variability. AVC was defined as a region 
≥ 1 mm3 with a density of ≥ 130 Hounsfield units at the AV 
leaflets and annulus. Observers segmented AVC by carefully 
including ROIs in the AV leaflet and annulus and excluding 
calcium in the adjacent sinus of Valsalva, left ventricular 
outflow tract, or mitral annulus, and image noise or beam-
hardening artifact was excluded (17). From the segmented 
ROI, the AVC volume was measured, and an AVC score was 
calculated using the Agatston method (18).

From the segmented ROI of AVC, 128 radiomics features 
were extracted using the AVIEW software. The radiomics 
features were categorized as follows: 1) size and shape 
features, 2) first-order features based on the histogram, 
3) gray level co-occurrence matrix features, 4) gray level 
run length matrix features, 5) gray level size zone matrix 
features, 6) gray level dependence matrix features, 7) 
neighborhood gray-tone difference matrix features, 8) 
moment features, 9) gradient features, and 10) fractal 
features. A list of the specific features contained in each 
category is described in Supplementary Table 1.

Assessment of the Severity of AS by Echocardiography
All patients underwent a comprehensive transthoracic or 

transesophageal echocardiography examination (interval 
from cardiac CT, median 1 day; interquartile range [IQR], 
0–9.5 days). The grading of AS severity was evaluated based 
on peak velocity, mean gradient, and calculation of the AV 
area using the continuity equation, as recommended by the 
current guideline: mild AS, mean gradient < 20 mm Hg or 
peak aortic jet velocity of 2.0–2.9 m/s; moderate AS, mean 
gradient of 20–39 mm Hg or peak aortic jet velocity of 
3.0–3.9 m/s; severe AS, mean gradient ≥ 40 mm Hg or peak 
aortic jet velocity ≥ 4.0 m/s and AV area ≤ 1 cm2 (indexed 
AV area by body surface area, < 0.6 cm2/m2); very severe 
AS, mean gradient ≥ 60 mm Hg or peak aortic jet velocity 
≥ 5.0 m/s (19).

Radiomics Feature Selection
Using the data from the training set, radiomics feature 

selection was performed with three different machine 
learning methods: least assembly shrinkage and selection 
operator (LASSO), random forests (RFs), and eXtreme 
Gradient Boosting (XGBoost). LASSO was performed with 
fivefold cross-validation to overcome the overfitting 
problem (14), and features showing nonzero coefficients 
using LASSO-logistic regression were selected. A radiomics 
score was calculated for each case via a linear combination 
of selected features that were weighted by their respective 
coefficient calculated by the LASSO-logistic regression 
model. In RF, feature selection was performed with variable 
importance (VIMP) (20). In XGBoost, feature selection 
was performed according to the gain, which is the relative 
contribution of the corresponding feature to the model 
calculated by considering the contribution of each feature 
to each tree in the model (21). RF and XGBoost are 
bootstrap and boosting-based methods, respectively; both 
methods are used to diminish the overfitting problem. 
Feature selection was performed using Python (version 
3.6.7), Scikit-learn (version 0.20.1), and XGBoost (version 
0.82). The feature selection method, “SelectFromModel,” 
was used with RF and XGBoost.

Classifier Model for Diagnosing Severe AS
For data analysis, we divided patients into two groups 

according to the AS severity on echocardiography: the 
severe AS group (severe or very severe AS) and the non-
severe AS group (no, mild, or moderate AS). Using the 
volume of AVC and the AVC score, prediction models for 
diagnosing severe AS were constructed based on logistic 
regression. Using the radiomics features selected by each 
of the machine learning methods, classifier models for 
diagnosing severe AS on echocardiography were developed 
with three different classifier methods: traditional logistic 
regression based on radiomics features and two machine 
learning methods (RF and XGBoost). Therefore, a total of 
nine prediction models were developed by combining the 
three radiomics feature selection methods and the three 
classifier methods. All classifier models were developed with 
fivefold cross-validation.

Validation of the Prediction Models
The prediction models built with the training set 

were applied to the validation set. The performance of 
each model was evaluated based on the c-index, which 
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represents the discrimination ability of each model using 
the validation set.

Statistical Analyses
All statistical analyses except feature selection and 

classifier modeling were performed using a statistical 
software package (SPSS version 26.0, IBM Corp.). 
Categorical variables are expressed as the number with 
percentage and compared using the chi-squared test. 
Continuous variables are expressed as the mean with 
standard deviation or as the median with IQR according to 
the normality of the data and compared using the Student’s 
t test or the Mann-Whitney U test. Intra- and inter-observer 
agreement of the segmented AVC volume was assessed 
using the intraclass correlation coefficient. The performance 
of each model in diagnosing severe AS based on radiomics 
features was compared with models based on the AVC 
volume and AVC score using Delong’s method (22). For 
subgroup analysis, we divided the patients of the validation 
set into two groups according to the AVC volume (low and 
high) and AVC score (low and high). The same prediction 

models used for the entire validation set were used for the 
subgroup analysis. The best cutoff value for AVC volume for 
predicting severe AS was calculated based on the Youden 
index from the training set data (23). For the AVC score, 
the known threshold for severe AS was used as ≥ 2000 for 
men and ≥ 1200 for women (4, 6). A probability value of 
less than 0.05 was considered statistically significant.

RESULTS

Patients
Table 1 lists the demographic statistics of the 312 

patients in the training set and 96 patients in the validation 
set. Clinical characteristics of patients in the severe AS and 
non-severe AS groups showed no significant differences in 
training and validation sets, except for age in the training 
set. No significant difference in patient characteristics was 
observed between training and validation sets. AVC volume 
and score were significantly different between the severe 
AS and non-severe AS groups in training and validation sets 
(Supplementary Table 2).

Table 1. Patient Characteristics
Training Set (n = 312)

P*

Validation Set (n = 96)

P*
P between 

Training and 
Validation Set

Total
Severe AS 

Group 
(n = 180)

Non-Severe 
AS Group 
(n = 132)

Total
Severe AS 

Group 
(n = 60)

Non-Severe 
AS Group 
(n = 36)

Mean age 
  (years)

65.9 ± 11.3 67.3 ± 10.7 63.91 ± 12.0 0.040 66.4 ± 9.7 66.1 ± 9.4 66.9 ± 10.2 0.574 0.050

Male sex 164 (52.5) 93 (51.7) 71 (53.8) 0.732 52 (54.1) 35 (58.3) 17 (47.2) 0.398 0.816
Body mass 
  index (kg/m2)

23.8 ± 3.2 24.1 ± 3.2 23.4 ± 3.3 0.055 23.5 ± 2.9 23.6 ± 3.2 23.4 ± 2.6 0.751 0.436

Body surface 
  area (m2)

1.66 ± 0.18 1.66 ± 0.18  1.67 ± 0.19 0.830 1.65 ± 0.18 1.66 ± 0.19 1.63 ± 0.16 0.407 0.511

Hypertension 199 (63.8) 121 (67.2) 78 (59.1) 0.141 59 (61.5) 34 (56.7) 25 (69.4) 0.215 0.680
Diabetes 
  mellitus

62 (19.9) 39 (21.7) 23 (17.4) 0.354 24 (25.0) 19 (31.7) 5 (13.9) 0.053 0.282

Dyslipidemia 45 (14.4) 24 (13.3) 21 (15.9) 0.523 20 (20.8) 14 (23.3) 6 (16.7) 0.439 0.134
AS severity < 0.001 < 0.001 0.603

Normal 64 (20.5) 0 (0.0) 64 (48.5) 14 (14.6) 0 (0.0) 14 (38.9)
Mild 17 (5.4) 0 (0.0) 17 (12.9) 7 (7.3) 0 (0.0) 7 (19.4)
Moderate 51 (16.3) 0 (0.0) 51 (38.6) 15 (15.6) 0 (0.0) 15 (41.7)
Severe 160 (51.3) 160 (88.9) 0 (0.0) 51 (53.1) 51 (85.0) 0 (0.0)
Very severe 20 (6.4) 20 (11.1) 0 (0.0) 9 (9.4) 9 (15.0) 0 (0.0)

Valve type 0.002 0.013 0.807
Bicuspid 109 (34.9) 76 (42.2) 33 (25.0) 32 (33.3) 26 (43.3) 6 (16.7)
Tricuspid 203 (65.1) 104 (57.8) 99 (75.0) 64 (66.7) 34 (56.7) 30 (83.3)

Unless stated otherwise, values are presented as n (%). *Indicates p value for comparison between severe AS group and non-severe AS 
group. AS = aortic stenosis 
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Radiomics Feature Extraction
Inter-observer and intra-observer agreement for AVC 

volume segmentation was excellent showing intraclass 
correlation coefficients of 0.992 (95% confidence interval 
[CI], 0.978–0.996) and 0.989 (95% CI, 0.977–0.994), 
respectively. A majority of the 128 extracted radiomics 
features showed statistically significant differences between 
the severe AS and non-severe AS groups in the training set 
(p < 0.05), except six features (Supplementary Table 2).

Radiomics Feature Selection
Using LASSO, 19 features were selected in the training 

set, and the radiomics score was calculated based on these 
19 features (Supplementary Materials 2). Using RF, 82 
radiomics features were selected with a VIMP threshold 
higher than 0.00411 (Supplementary Table 3), and using 
XGBoost, 79 features were selected with a gain score 
threshold higher than 0.00261 (Supplementary Table 4).

The radiomics score derived from LASSO was significantly 
different between the non-severe AS and severe AS groups 
in the validation set (median 0.197, IQR 0.0572–0.543 vs. 
median 1.563, IQR 0.681–2.879, respectively, p < 0.001).

Comparison of Model Performance for Diagnosing Severe 
AS in the Validation Set

Prediction models based on AVC volume alone and AVC 
score alone had c-indexes of 0.894 (95% CI, 0.815–0.948) 
and 0.899 (95% CI, 0.820–0.951), respectively. The 
c-indexes of various combinations of prediction models for 
diagnosing severe AS with the validation set are presented 
in Figure 2. The radiomics prediction model based on the 
combination of feature selection by LASSO and model 
classifier by XGBoost had the highest c-index of 0.921 (95% 
CI, 0.869–0.973) in the validation set, whereas the lowest 
c-index of 0.891 (95% CI, 0.822–0.959) was obtained with 
the combination of feature selection by XGBoost and model 
classifier by RF.

Compared with the prediction model based on AVC 
volume (c-index = 0.894), eight of the nine radiomics 
prediction models showed higher predictability. However, 
no statistically significant difference was observed in any 
comparison (Supplementary Table 5). Compared with the 
prediction model based on AVC score (c-index = 0.899), three 
of the nine prediction models showed higher predictability, 
although the differences were not statistically significant.
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Fig. 2. Heatmap showing the discrimination ability of prediction models for severe AS according to various combinations of 
feature selection and model classifier methods. For example, the model based on the feature selection method “random forests” and model 
classifier method “XGBoost” shows an AUC of 0.894 (95% CI, 0.832–0.956), and another model based on the feature selection method “XGBoost” 
and model classifier method “random forests” shows an AUC of 0.891 (95% CI, 0.822–0.959). AUC = area under the curve, CI = confidence 
interval, LASSO = least assembly shrinkage and selection operator, XGBoost = eXtreme Gradient Boosting
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Subgroup Analysis
The optimal cutoff value of AVC volume for severe AS 

from the training set was 1035 mm3. For the subgroup with 
AVC volumes < 1035 mm3 in the validation set (n = 32), the 
prediction model based on AVC volume alone had a c-index 
of 0.787 (95% CI, 0.657–0.916). The radiomics prediction 
model for diagnosing severe AS with the highest c-index of 
0.833 was based on the combination of feature selection 
by LASSO and model classifier by logistic regression (95% 
CI, 0.623–1.000) (Fig. 3). In the subgroup with AVC volume 
≥ 1035 mm3 in the validation set (n = 64), the prediction 
model based on AVC volume alone had a c-index of 0.798 
(95% CI, 0.570–1.000). The radiomics prediction model with 
the highest c-index of 0.870 was based on the combination 
of feature selection by LASSO and model classifier by 
XGBoost (95% CI, 0.779–0.961). However, no statistically 
significant difference was observed in any comparison with 
the model based on AVC volume (Supplementary Table 6).

When a predefined threshold was used, prediction 
using AVC score had a c-index of 0.778 (95% CI, 0.681–
0.856), sensitivity of 58.3%, and specificity of 97.2% for 
diagnosing severe AS in the validation set. For the subgroup 
with AVC scores lower than the threshold in the validation 
set (n = 36), the prediction model based on AVC score 
alone had a c-index of 0.804 (95% CI, 0.694–0.915). The 
radiomics prediction model for diagnosing severe AS with 
the highest c-index of 0.837 was based on the combination 
of feature selection by LASSO and model classifier by 
XGBoost (95% CI, 0.733–0.940) (Fig. 3). For the subgroup 
with AVC scores greater than or equal to the threshold in 
the validation set (n = 60), the prediction model based 
on AVC score alone had a c-index of 0.647 (95% CI could 
not be calculated because only one case was assigned 
as having non-severe AS in this subgroup). The highest 
c-index of 0.914 was obtained with the combination of 
feature selection by LASSO and model classifier by XGBoost. 

Fig. 3. Performance of models in subgroup according to AVC volume and AVC score.
A. Subgroup with low AVC volume (< 1035 mm3, n = 32). B. Subgroup with high AVC volume (≥ 1035 mm3, n = 64). C. Subgroup with low AVC 
score (< 2000 for men and < 1200 for women, n = 36). D. Subgroup with high AVC score (≥ 2000 for men and ≥ 1200 for women, n = 60). 95% CI 
could not be provided due to small number of patients with non-severe AS (n = 1) in this subgroup.
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However, no statistically significant difference was observed 
in any comparison with the model based on AVC score 
(Supplementary Table 6).

DISCUSSION

Our study demonstrates that prediction models based 
on a combination of AVC radiomics features derived from 
non-contrast-enhanced cardiac CT and machine learning 
algorithms diagnose severe AS better than models based on 
AVC volume or AVC score alone, although the differences are 
not statistically significant. The prediction models based 
on AVC volume and AVC score alone show discrimination 
abilities with c-indexes of 0.894 and 0.899, respectively, 
but the models constructed by combining radiomics features 
and machine learning have c-indexes as high as 0.921. In 
subgroups with low AVC volume (< 1035 mm3) or low AVC 
score, the radiomics prediction model yields c-indexes of 
0.833 and 0.837, respectively, for diagnosing severe AS.

AVC is closely associated with AS severity, and AVC burden 
measured by CT helps diagnose severe AS when Doppler 
parameters are inconclusive, specifically in patients with 
suspected low-flow, low-gradient AS. For the quantification 
of AVC, Agatston scoring was the most frequently used 
method, exhibiting good diagnostic performance for 
determining severe AS, having c-indexes of 0.81–0.91, 
sensitivities of 80–89.7%, and specificities of 77–89% (3, 4, 
24-26). However, in our study, using AVC score to diagnose 
severe AS had a c-index of 0.778, sensitivity of 58.3%, and 
specificity of 97.2% in the validation set. These values of 
c-index and sensitivity are lower than those reported in 
previous studies.

Previous studies of AVC score on CT used different cutoff 
values for the calculated scores (3, 4, 24-26). Some studies 
suggested sex-specific cutoff values (≥ 1200 Agatston 
score for women and ≥ 2000 Agatston score for men) for 
diagnosing severe AS, and the current guideline accepted 
these cutoff values (4, 6, 26). Despite the high performance 
of AVC burden for diagnosing severe AS reported in previous 
studies, in our study population, the AVC burden exhibited 
a notably lower diagnostic performance. We assume that 
this may be due to inter-study differences in patient 
characteristics, such as race and valve morphology type 
(27, 28). Compared with previous studies conducted in 
Western countries, our study population comprised East 
Asians, who have smaller body sizes and smaller AV cusps. 
Moreover, the proportion of patients with bicuspid valves 

is higher in our population (approximately one-third) than 
that in other populations. These population differences 
may have contributed to the lower diagnostic performance 
of AVC burden in our study because different annular and 
leaflet geometries, as well as differences in the distribution 
and burden of AVC, can be expected among patients with 
bicuspid AVs.

The application of radiomics in cardiac imaging has 
been limited to specific topics, such as the identification 
of vulnerable coronary plaques or differentiation of 
cardiomyopathy (9-11). To the best of our knowledge, this 
study is the first to apply radiomics to the assessment 
of AVC. Because AS severity is not always proportional 
to the AVC burden, we expected that characteristics 
other than AVC burden, such as morphology, texture, and 
distribution, might contribute to AS severity. A previous 
study suggested that the tomographic pattern of AVC could 
be an independent determinant of AS severity because 
the CT attenuation ratio of the center to the periphery of 
the AV was higher in severe AS than in moderate AS (8). 
Accordingly, our study demonstrates promising results. 
Even in cases with less severe AVC burden, the prediction 
model based on radiomics and machine learning algorithms 
discriminated severe AS with high diagnostic performance.

Because radiomics contain high-dimensional data, proper 
strategies for feature selection and model classifiers are 
required, and machine learning algorithms can be effective 
for these purposes. The combination of feature selection 
by LASSO and model classifier by XGBoost demonstrated 
the highest performance for diagnosing severe AS in the 
validation set and most subgroups. LASSO is an excellent 
method for feature selection because it retains the useful 
features of subset selection and ridge regression. It is 
suitable for analyzing large sets of radiomics features with 
relatively small sample sizes. RF is an efficient decision 
tree-based method for variable selection and classification, 
remains robust when data contain noise and outliers, and 
can handle high-dimensional spaces rapidly. However, RF is 
more subjective to an overfitting problem and is considered 
to be better suited for handling “tall” data, which has larger 
sample sizes than “wide” data. XGBoost is an ensemble 
algorithm of decision trees (21). The ensemble works by 
combining a set of weaker machine learning algorithms to 
obtain an overall machine learning algorithm that is more 
robust. The main difference between XGboost and RF is 
the manner of sampling. RF is based on uniform sampling 
with return, whereas XGboost assigns higher weights to 
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wrongly predicted samples in the current weaker learner. 
Subsequently, these samples will be given more attention 
when training the next weaker learner. Additionally, XGboost 
adds regularization to avoid overfitting. Therefore, XGboost 
is more complicated than RF, and it often outperforms RF. 
Although standard machine learning methods for feature 
selection and model classifiers have not been established, 
we speculated that LASSO would be efficient for feature 
selection and XGboost would be an appropriate model 
classifier for radiomics analysis in our study due to the 
reasons mentioned above. In addition to predicting AS 
severity, AVC burden has clinical implications for overall 
survival and post-procedural outcomes after transcatheter 
AV implantation (5, 29-33). Comprehensive morphological 
information based on radiomics analysis with efficient 
machine learning algorithms has the potential to predict 
not only severe AS but also subsequent clinical outcomes.

Our study has several limitations. First, it was a 
retrospective study that recruited patients from a single 
institution, and external validation was not performed. 
Instead, internal validation was performed by dividing the 
dataset into a training set and a validation set. Further 
study is required to validate our results externally and 
generalize the utility of the radiomics analysis of AVC. 
Second, the reproducibility of radiomics features was not 
fully considered, specifically regarding the effects of the CT 
scanner, image acquisition, and reconstruction parameters 
on the extracted radiomics features and prediction models 
(34, 35). Application of deep learning algorithm may help 
solve the problem of reproducibility in radiomics by reducing 
variability in scan protocol, for example, conversion of 
reconstruction kernel or slice thickness (36-38). Third, 
AVC is currently recommended for the diagnosis of low-
flow, low-gradient AS (6). However, we did not analyze the 
value of AVC radiomics features for diagnosing this specific 
subtype of AS due to the small number of patients with 
this condition. Finally, information such as AVC attenuation 
and clinical variables (e.g., sex and valve morphology) were 
not considered when constructing the prediction model. 
Combining these data would improve the performance of 
the model and should be investigated in future studies.

In conclusion, prediction models based on the radiomics 
features of AVC and machine learning algorithms may 
perform well for diagnosing severe AS, but the added value 
compared to AVC volume and score should be investigated 
further.
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