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ABSTRACT Approximately 50 million people have epilepsy worldwide. Prognosis may vary among patients
depending on their seizure semiology, age of onset, seizure onset location, and features of electroencephalo-
gram (EEG). Several researchers have focused on EEG patterns and demonstrated that EEG patterns of
individuals with epilepsy can be used to predict prognosis and treatment responses. However, accurate EEG
analysis requires an experienced epileptologist with several years of training, who are often unavailable
in small or medium sized hospitals. In this paper, a novel machine learning (ML) model that accurately
distinguishes Benign Epilepsy with Centrotemporal Spikes (BECTS) from Temporal Lobe Epilepsy (TLE)
is proposed. BECTS and TLE show different seizure types and age of onset, but differential diagnosis can
be challenging due to the similar location and patterns of the EEG spikes. The proposed hybrid machine
learning (HML) model processes the diagnosis in the order of (1) creating feature matrices using statistical
indexes after signal decomposition, (2) processing feature selection using Support Vector Machine (SVM)
technology, and (3) classifying the results through ensemble learning based on decision trees. Simulation was
performed using real patient data of 112 BECTS and 112 TLE EEG signals, where training was performed
using 80% of the data and 20% of the data was used in the performance analysis comparison with the actual
labeled data based on the diagnosis of medical doctors. The performance of the hybrid classification model
is compared with other representative ML algorithms, which include logistic regression, KNN, SVM, and
ensemble learning based decision tree. The model proposed in this paper shows an accuracy performance
exceeding 99%, which is higher than the performance obtainable from the other ML classification models.
The purpose of this study is to introduce a novel EEG diagnostic system that shows maximum efficiency to
support clinical real-time diagnosis that can accurately distinguish epilepsy types. Future research will focus
on expanding this ML model to categorize other types of epilepsies beyond BECTS and TLE and implement
the HML diagnostic blockchain database into the hospital system.

INDEX TERMS Electroencephalogram (EEG), brain signal, epilepsy, hybrid machine learning, empirical
mode decomposition (EMD).

I. INTRODUCTION

Epilepsy is the fourth most common neurological disease in
the world. Epilepsy is the fourth most common neurolog-
ical disease in the world. Incidence rates for epilepsy are
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typically between 30 and 80 per 100,000 population per year
in developed countries, but rates are higher in countries with
limited resources [1]. Mortality and morbidity vary among
different types of epilepsies. Recognition of epilepsy types is
very important, as it is the basis to predicting the prognosis
and determine the treatment method to be applied to the
epilepsy patient. This is why identifying the causes, type,

VOLUME 8, 2020


https://orcid.org/0000-0002-1652-6635
https://orcid.org/0000-0001-5859-3724

W. Yang et al.: Hybrid Machine Learning Scheme for Classification of BECTS and TLE Patients Using EEG Brain Signals

IEEE Access

and mechanism of epilepsy has been a hot topic of medical
research for a very long time [2].

The traditional method of EEG analysis is based on a
skilled clinician visually examining the EEG signals. To eval-
uate seizures, reviewing long-term video EEGs of several
days may be required, which is a very time-consuming and
expert centered activity. Over several years, many attempts
have been made towards automating EEG analysis, but only
a few research efforts have been able to propose an effec-
tive method to accurately classify epilepsy with limited suc-
cess [3]-[5]. The main reason of this difficulty is because
EEG signals are patient based non-stationary, nonlinear, and
highly complex signals [6]-[8]. It is even more difficult to
conduct accurate classification and diagnosis in real-time,
which is why there is no available medical system that has
been able to do this so far.

In this paper, a novel hybrid machine learning (HML)
EEG analysis technology was developed, where the results
show a significantly improved performance in efficiency
compared to existing state-of-the-art schemes, which makes
it more useful to apply in clinical real-time EEG diagnosis of
epilepsy types, in particular, distinguishing Temporal Lobe
Epilepsy (TLE) from Benign Epilepsy with Centrotempo-
ral Spikes (BECTS), which is also called Benign Rolandic
Epilepsy (BRE), or Self-limited Epilepsy with Centrotem-
poral Spikes. BECTS is a common childhood epilepsy syn-
drome that affect children from age 3 to 13. Seizures respond
well to antiepileptic drugs and a relatively accurate progno-
sis can be made. Seizures usually remit by the age of 16.
High amplitude spikes or sharp-and-slow wave complexes
are noted in the central and temporal EEG leads. In TLE,
spike-and-wave or sharp slow waves can also be recorded
in the temporal EEG leads. However, in contrast to BECTS,
TLE represents the most common form of drug-resistant focal
epilepsy. TLE and BECTS can have similar EEG patterns,
which include analogous temporal spike discharges, but have
a completely different prognosis. In patients with BECTS,
patients grow out of seizures while patients with TLE often
develop drug resistant epilepsy and receive surgery. Thus, itis
important to differentiate these two conditions, but diagnosis
can be challenging especially when spikes are seen only in
one hemisphere of the brain. Based on this important need,
the purpose of this research was set to create a machine
learning (ML) system that can accurately classify the types
of epilepsy patients in clinically applicable form in real-time.

Several researchers applied machine learning classification
on EEG, but mostly focused on EEGs during seizure and
other tasks [9]-[11]. However, in the clinical practice, only
a few EEG capture seizures, and background EEG is used
most of the time. Data on ML classification of EEG without
seizures are limited. Importance of classifying both back-
ground and seizure related EEG changes have been empha-
sized in [12]. In [12], researchers have proposed a method of
categorizing interictal EEG features in children using consid-
eration of the organization of the background activity and a
morphology/topography of epileptiform discharges.
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This paper proposes a classification system that clearly
distinguishes BECTS and TLE in real-time with an accuracy
exceeding 99% using a novel hybrid ML technique. The
developed HML system operates in the following method.
After generating sub-bands using Empirical Mode Decom-
position (EMD) signal decomposition technology, a feature
matrix is created using statistical indexes. Based on the
decomposed statistics and indexes generated, patients were
classified in to BECTS and TLE by the HML system. The
proposed HML system prepares the diagnosis based on the
following three steps.

1) Create feature matrices using the statistical index after

EMD signal decomposition of the EEG signals.
2) Conduct feature selection using Support Vector
Machine (SVM) ML technology.

3) Classify the results into BECTS and TLE using

decision tree based ensemble ML technology.

In the developed system, classified patient data is trans-
mitted to establish the database. Since EEG data is personal
medical data, patient information is encrypted and saved
in a blockchain database, which needs to be a certified
privacy preservation data security system. Encrypted
blockchain technology was used to solve the problem of
medical data leaking of BECTS and TLE patient information,
and shard-based parallelism was used to increase the data
throughput [13]-[15].

As the amount of data applicable to the classification learn-
ing models increases, the accuracy of the HML classification
of Epilepsy patient groups can be further improved. The
process of storing the data (including patient information
and seizure type labeled information on the blockchain) after
performing the classification for each patient (using the Euro-
pean Data Format (EDF) files) created by the EEG recording
HML system is shown in Fig. 1.

The following sections of this paper are organized as fol-
lows. Section two introduces existing studies related to EEG
analysis. Section three describes the data collection method
and signal decomposition techniques applied. The fourth
section introduces the process of feature extraction using
statistical indicators. In the fifth section, a description of the
HML structure using SVM and decision tree ensemble ML
techniques is provided. In section six, various types of patient
EEG signal data is classified in to BECTS and TLE types
using the proposed HML model, and a performance compar-
ison with other representative ML schemes, and descriptions
of the performance difference, are provided, followed by the
conclusion of this paper.

Il. RELATED WORKS

As epilepsy is a complex group of diseases, accurate classifi-
cation is challenging [16]. Seizure types are very important to
distinguish, but higher level diagnosis of epilepsy syndrome
can be made only when other features including age of seizure
onset, family history, and EEG findings are available. EEG
diagnosis is based on electrical signals used to monitor the
brain activity in order to sense action potentials in nearby
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FIGURE 1. EEG measurement and diagnosis blockchain database construction process.

neurons. The importance of EEG has been emphasized by
a recent publication by the International League Against
Epilepsy (ILAE) Neurophysiology Task Force [17].

There are several papers that focus on epileptic seizure
classification using EEG data. In [18] and [19], com-
plete ensemble EMD with adaptive noise (CEEMDAN) was
applied to the EEG data, where in [18] EEG classification
was performed by modeling CEEMDAN functions using
normal inverse Gaussian (NIG) parameters and the Adaboost
algorithm, and [19] uses extracted spectral features from the
CEEMDAN mode functions and the classified EEG data
using linear programming boosting. In [20], a classifica-
tion model was created using spectral analysis methods and
various ML algorithms, where a multiscale principal com-
ponent analysis (MSPCA) de-noising method was used to
improve the performance. In [21], a SVM model that uses
a genetic algorithm and particle swarm optimization is used
to conduct EEG classification analysis. In [22], EEG data
was classified using EMD and a multilayer perceptron neural
network (MLPNN) classifier. In [23], EMD, discrete wavelet
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transform (DWT), and wavelet packet decomposition (WPD)
were applied to EEG data, which are effective signal decom-
position techniques. In addition, new classification models
were proposed using various ML algorithms, such as, SVM,
KNN, and multilayer perceptron (MLP).

In previous studies, algorithms were developed to identify
and classify the characteristics of ictal and interictal sections
of the EEG signals. In this paper, an algorithm was devel-
oped to classify two epilepsy disease types with different
characteristics. To specify the difference between BECTS and
TLE, two channels of EEG data were selected to perform
multi-channel analysis. Previous studies have compared the
performance using the existing ML techniques individually
rather than using a combination of ML algorithms. In this
paper, SVM was used to create a new feature matrix that
has a major influence on the classification task among the
features extracted from the two EEG channels. Then, EEG
data classification was conducted using random forest, which
is an ensemble learning algorithm that applies decision tree
technology.
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Ill. EEG DATA SEGMENTATION

A. DATA SELECTION

A screening process for patient real-time diagnosis was
conducted at the Severance Children’s Hospital (located in
Yonsei University, Seoul, South Korea). Patients undergoing
EEG tests through inpatient and outpatient treatment in the
Department of Pediatric Neurology were reviewed, where
this study was approved by the institutional review board
(IRB no. 4-2020-0197). Through this process, 112 routine
EEG signal data sets were collected for each interictal state of
BECTS and TLE patients. Among the electrode positions of
multi-channel EEG on the basis of the standard international
10-20 system, T3-C3 and T4-C4 channels were used in com-
paring the symmetry properties between BECTS and TLE
patients, as shown in Fig. 1. The sampling rate was 100 Hz
and the length of each data is unified to 30 seconds.

B. SIGNAL DECOMPOSITION METHOD

The input EEG data is a combination of different signals
in different frequency domains. Before feature extraction
is conducted on the signal, a decomposition process that
divides signals into several sub-band signals was conducted.
The EMD method was used among several methods, and
the algorithm presented in Fig. 2 was used to generate the
Intrinsic Mode Functions (IMFs) from the EMD results [24].

Input EEG signal x(¢)
with 'T3-C3' 'T4-C4' channel
| a=1 |

!

Get upper and lower envelope|
of x(1)

v

Calculate the average

x(1) :EI eﬂ\’elofe m(r)

| h(t) = x(t) - m(t) |

>

| IME, = h(t), r(t)=x(t)—h(t)

!

| n=ntl |

Decomposed signal
x(1) =Y IMF, (1) + r(1)
i=1

FIGURE 2. The EMD algorithm.
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The EMD method was developed based on the assumption
that any non-stationary and non-linear time series consists of
different simple intrinsic modes of oscillation [25].

First, the local maxima and minima of each epoch of the
EEG input signal x(¢) were obtained. Then the median value
(which is the center value when data samples are sorted in
order of size) was obtained from the median function m(¢).
Next, h(t) was obtained by subtracting m(z) from the input
signal. Thereafter, a process of discriminating whether the
function A(#) can be classified as an IMF is performed. The
process of distinguishing the IMF is based on determining if
the following two conditions are satisfied [25].

1) An IMF has only one extremum between two subse-
quent zero crossings (i.e., the number of local minima
and maxima differs at most by one).

2) An IMF has a mean value of zero.

Note that the second condition implies that when A(¢) does
not satisfy this condition, () is defined as an input signal and
is processed in the first step again. If both conditions are satis-
fied, one IMF is generated, and the above process is repeated
on the residual signal until it becomes a monotonic function.
The proposed HML scheme uses multiple IMFs to analyze
the tendency of EEG in patients, where IMF1 represents the
gamma band neuronal oscillation (>30 Hz), IMF2 represents
beta band oscillation (13—30 Hz), IMF3 reflects the alpha
band oscillation (8—13 Hz), IMF4 reflects the theta band
oscillation (3.5—8 Hz), and IMFs 5 and 6 represent the delta
band oscillation (0.5—3.5 Hz) [26]. Through the EMD pro-
cess, IMFs were generated from the raw EEG data, where
Fig. 3 shows IMF1-IMF5 of the BECTS and TLE patients
EEG data, which are the first five IMFs of the T4-C4 channel
data segments.

IV. FEATURE SELECTION

EEG sub-band signals were generated by the EEG data
decomposition process using the EMD method. The follow-
ing four indicators were used for statistical analysis of the
decomposed signals. Figs. 4 and 5 show the boxplot of four
feature indices of the T3-C3 and T4-C4 channels among the
decomposed signals of BECTS and TLE patients.

A. COEFFICIENT OF VARIATION

The coefficient of variation used was derived as a quantitative
index of the relative variability of the EEG data signal [27].
The coefficient of variation represents the ratio of the stan-
dard deviation to the mean of the decomposed IMFs, which
can be expressed as

Iy = — ey

where o and p represent the standard deviation and mean of
the IMF, respectively.

B. FLUCTUATION INDEX
The fluctuation index is used as an indicator to measure the
intensity of the EEG signal [28]. The fluctuation index is the
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FIGURE 3. T4-C4 channel data of (a) BECTS and (b) TLE patients and their first five IMFs.

sum of the difference between the epochs of the IMF divided
by the total signal length, which can be obtained from the
following

1 N
Ii=5 Z [ IMF(j + 1) — IMF (j)| )
j=1

where N denotes the total number of epochs in the IMF.
As shown in Figs. 4 and 5, the fluctuation of BECTS
patients who show unstable EEG signal characteristics at the
central-temporal side is slightly higher than that of the TLE
patients in most IMF functions.

C. SKEWNESS

Skewness is the third statistical moment, which indicates the
symmetry of EEG signals [29]. If the median is greater than
the mean, the value of skewness is positive. In the opposite
case, it becomes negative, which can be expressed as follows.

UK (IMFG) — 1\
Iskew = NZ (T) (3)

j=1

D. KURTOSIS

Kurtosis is the fourth statistical moment, which indicates the
sharpness of the EEG signal. If the curve of the signal is
sharper, the peak value has a higher value, which can be
expressed as follows [30].

1 L (IMFG) — )\t
T = ﬁ;j (T) )

As can be seen from Fig. 5, the average distribution of
the kurtosis value is also higher in BECTS patients since the
temporal lobe has a relatively unstable signal compared to
TLE patients in most IMF functions.
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V. EEG CLASSIFICATION
A. SUPPORT VECTOR MACHINE
SVM is a ML model effective in pattern recognition and
data analysis. In SVM, the main goal is to find the decision
boundary with the maximum margin, which is defined as
the distance between the hyperplane (decision boundary) that
classifies the class and the closest training samples [31].

Let the training set with the total set S with N training
samples be denoted as

{Ci, ydti=1,...N

which is separated by a hyperplane with margin p. Then for
each training example {(x;, y;)}

. X €S, yie{-11} &)

o
WTXi+b < —E

if yi=-1
if vi=1 ©)

where w is the normal vector of the hyperplane. Then the
margin can be expressed as ﬁ, and the problem of SVM
that seeks to obtain the maximum value of the margin while
following the hyperplane condition can be expressed in the
following optimization problem.

0
WTXi+b > 3

arg min |w
g(w’b)ll Il

s.t.yi(wai +b)>1 forVI<i<N @)

Equation (7) is expressed as an unconstrained problem using
the Lagrange multipliers «; > 0. Next, the optimal support
vector can be found with the dual problem according to
the Karush—Kuhn-Tucker (KKT) condition and w can be
expressed as ) _; o;yix;.

Using the designed linear SVM, a feature selection process
is performed to prevent overfitting. At this time, one of the
wrapper methods, support vector machine-recursive feature
elimination (SVM-RFE), is used [32]. In [33], SVM-RFE was
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used on EEG signals to detect the scalp spectral dynamics of
interest. SVM-REFE is effective in distinguishing the impor-
tance of features, which are determined using the correspond-
ing value w; in the weight vector. If the value W% approaches 0,
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this has the meaning that the corresponding i feature does
not affect the performance at all. Therefore, the features are
sorted in the order that affects classification according to the
value of w;. After removing the feature that does not affect
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the output, the step is repeated until the maximum accuracy
is reached with the remaining feature. Consequently, a new
feature matrix S* is created that guarantees maximum accu-
racy. The detailed algorithm for SVM-RFE is shown in Fig. 6.

B. DECISION TREE

Decision tree is an analysis technique that classifies the entire
data into several subgroups by representing decision rules in
a tree structure, and the variable area is determined by using
the p-value of the Chi-square statistics, the Genie index, and
the entropy index box [34].

In this paper, entropy is used as a classification criterion,
which is a measure of impurity. Higher values of entropy
indicate a higher level of impurity. Entropy can be represented
by the following formula

Entropy(S™) = —Pgectslog,Peects — PrielogoPrie  (8)

where S* is the newly defined collection of training examples,
and Ppgcrs and Prrg denote the proportion of data belonging
to the BECTS and TLE patient groups, respectively. After
the separation process in the decision tree, the parameter
called information gain is used to determine how much of
an improvement has been gained after the separation process

218930

than before separation, which is presented in the following
formula
Gain(S*, A) = Entropy(S™)

571

5]

2

vevalues(I)

Entropy(Sy)  (9)

where values(I) is the set of all possible values of attribute 7,
and S refers to the subset of S* when attribute A will
have the value v. Since the features are continuous variables,
the entropy is calculated based on the boundary value at
which the class changes.

Decision trees can produce meaningful results even with
relatively small amounts of data, and it can be used in com-
bination with other classification methods. However, if the
partitioning process continues, an overfitting problem may
occur [35]. The proposed HML scheme was developed to pre-
vent this problem from occurring, which results in improving
the reliability and accuracy.

C. HYBRID MACHINE LEARNING

The proposed HML scheme was developed using EMD,
SVM, and decision tree technology, where SVM was trained
using the feature matrix generated with four feature indexes.
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Based on the training and by removing one feature from the
feature matrix, the HML system records the performance of
each training set to establish a ranking order in reference to
the features. After all training has finished, the process will
remove the features with the lowest rankings. By identifying
the order of the features affecting the classification accuracy,
anew set consisting only of features that guarantee the highest
accuracy can be created. Some features are randomly selected
from the newly proposed feature set. Among the selected fea-
tures, the elements that properly differentiate the patient’s dis-
ease group constitute the first step in the random forest. If the
number of sub-trees is small, the training and test time can be
shortened, but the generalization ability will degrade making
it more likely to result in a misclassification. On the other
hand, if the number of sub-trees increases, the training and
test time will increase, but a more accurate performance will
be obtained, which is a phenomena commonly experienced
in random forest related schemes. In the proposed HML
scheme, based on Fig. 7, the number of decision trees was set
to 100 considering that it enables the highest level of accuracy
at a suitable computation time. In addition, the number of
variables selected when the node is split in the sub-tree was
set to the square root size of the feature matrix S*. In this way,
sub-nodes are continuously created and one decision tree is
completed. By repeating this process 100 times, a judgement
is made on which disease is more likely to be BECTS or TLE
among the 100 decision trees, and finally the disease classifi-
cation task is performed. The HML scheme is based on com-
bining EMD based multi-IMF sub-band signal processing
of the EEG data to perform feature selection through SVM
and then apply ensemble learning (EL) to perform patient
group classification using multiple decision trees. If the ML
algorithm is processed without the feature selection process,
some features will not have a reasonable basis suitable to be
analyzed in the classification model, and therefore will not
be suitable as training data. This could lead to overfitting
problems with poor classification accuracy when applying the
model to the actual test set. By using the proposed feature
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FIGURE 7. Comparison of accuracy and computation time according to

the number of decision tree.
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selection and tuning process techniques, it was possible to
solve the overfitting problem that occurs and increase the
classification accuracy. The flow chart for HML is presented
in Fig. 6.

VI. SIMULATION RESULTS

In the experiments, 112 BECTS patients’ data and 112 TLE
patients’ data were used from the Severance Children’s Hos-
pital database [36]. In our study, classifiers were implemented
in Python based on the Scikit-learn library, which includes a
wide range of state-of-the-art ML algorithms. Five parame-
ters were used to evaluate the classifier performance, which
were, accuracy, sensitivity, specificity, F1-score, and Kappa
value. In addition, Table 1 presents the confusion matrix,
which is based on True Positive (TP), False Positive (FP),
False Negative (FN), and True Negative (TN) criterions.
TP and TN denote the events of correctly detecting BECTS
and TLE patient groups, respectively. Similarly, FP and FN
refer to the events of incorrectly classifying and misdetecting
BECTS and TLE patient groups, respectively. The classifier
performance parameters are determined from the TP, TN, FP,
and FN values in the following way.

TABLE 1. Confusion matrix.

Real BECTS Real TLE
Predict BECTS TP FP
Predict TLE N ™
TP + TN
Accuracy (%) = + x 100 (10)
TP + PN + FP+ FN
Sensitivity (%) = ——— x 100 11
ensitivity (%) TP+ EN X (11)
Specificity (%) = ——— = x 100 12
pecificity (%) IN +Fp > (12)

In addition to the above three indicators, two indicators,
Fl1-score and Kappa value, were additionally used for per-
formance analysis. The F1-score represents the harmonized
average of the positive predictive value (PPV) and true pos-
itive rate (TPR), where PPV can be expressed as % and
TPR as TP?;%' The Kappa value is obtained by removing the
accuracy of random classification (rand), which is commonly
used in evaluating the EEG classification performance [37].
The two indicators are presented in (13) and (14).

PPV x TPR
Fl—score =2 X ———— (13)
PPV + TPR
Accuracy — rand
Kappa = ————F— (14)
1 —rand

In addition, features of BECTS and TLE patient groups
were extracted using the EMD algorithm and statistical indi-
cators. In the experiments, to find the difference between
the two epilepsy groups, all statistical features were tested
using a T test. The ¢ and p values are given in Table 2.
In some features, the value of p showed a level of 0.05 or less,
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TABLE 2. Results of T test for features of the T3-C3 and T4-C4 channels.

Feature t and p values
C.Vv. t=239%4; p=0.0199
FI t=1289; p=0.2022
T3-C3
Skewness | 7=2.443; p=0.0176
Kurtosis | #=1.4452; p=0.1538
C.V. t=121; p=0.2312
FIL t=3.7984; p=0.0004
T4-C4
Skewness | ¢=2.97; p=0.0043
Kurtosis t=5.7366; p=0

which confirmed that there was a significant difference
between the two groups.

In the first performance analysis, the HML algorithm is
compared with the Principal Component Analysis (PCA)
simulation results, which is a representative dimensionality
reduction algorithm. In the simulation, the T3-C3 and T4-C4
channel data were decomposed into five IMFs via EMD.
Four feature indexes were generated for each IMF. Therefore,
a feature matrix of size 10 x 4 per data was created for the
ML process. Then, in the feature reduction process, PCA and
SVM-REFE algorithms are used respectively. In the last stage,
classification of BECTS and TLE patients was performed
through ensemble ML technology using 100 decision trees,
where the performance of each scheme was compared. The
k-fold cross-validation was applied to verify the performance
of this simulation. In the k-fold cross-validation process,
the entire data set was divided into k portions, of which
k-1 subsets were training sets and the remaining one subset
was used as a test set. In this way, a total of k times of learning
was conducted to finally derive the average of the results of
each learning process. In this process, the value of k was set
to 5.

Fig. 8 shows a comparison of the PCA and SVM-RFE
performance based on the classification accuracy and com-
putation time. As a result of the 5-fold cross-validation,
the classification accuracy with SVM feature reduction was
100%, 100%, 100%, 96%, and 100%, which was similar to
the classification result using PCA, which showed a 98.2%,
100%, 96%, 100%, and 98.2% classification accuracy.
However, the time consumed when using SVM-RFE was
6.496, 5.152,4.48,6.72, 5.152 seconds, and the PCA scheme
required a processing time of 27.104, 34.496, 13.44, 31.808,
33.6 seconds. Overall, the SVM-RFE scheme’s average pro-
cessing time (5.6 seconds) is much shorter compared to the
PCA scheme’s average processing time (28.0896 seconds).
Considering the slightly higher accuracy and the significantly
faster processing time of SVM-RFE over the PCA scheme,
the HML algorithm adopted SVM-RFE for the ensem-
ble learning’s feature reduction mechanism'’s pre-processing
operation.

218932

Accuracy
Computiation time

Simulation Index

FIGURE 8. Comparison of PCA and SVM-RFE performance with
classification accuracy and computation time.

In the second simulation, before using various ML
algorithms, pre-processing using the EMD algorithm and
statistical indexes was performed in the same way. Then,
the existing ML algorithms (which are logistic regression,
K-nearest neighbor (KNN), decision tree, SVM, and ensem-
ble learning (EL)) were compared with the HML algorithm
proposed in this paper. In each ML algorithm, the main
hyperparameters used in the simulation were set as follows:
iteration was set to 80, solver was set to ‘liblinear’ in logis-
tic regression, number of neighbors was set to 3 in KNN,
criterion was set to ‘entropy’ in decision tree, kernel was set
to ‘linear’ in SVM, and number of trees was set to 100 in
EL. When each ML algorithm was applied, the parameters
that resulted in the best performance were used in the classi-
fication process to result in the highest accuracy and lowest
calculation time, where these results were compared with the
HML algorithm'’s performance.

Table 3 shows the average results obtained through the
most representative ML technologies compared to the pro-
posed HML scheme. Logistic regression, KNN, decision tree,
SVM, and EL resulted in an accuracy of 78.13%, 82.59%,
85.71%, and 87.5%, and 93.75%, respectively, and the HML
algorithm resulted in a 99.11% accuracy, which exceeds
the other ML algorithms. The F1-score and Kappa values
of HML were 0.99 and 0.98, respectively, and the exist-
ing ML algorithms logistic regression, KNN, decision tree,
SVM, and EL resulted in F1-scores of 0.78, 0.82, 0.85, 0.87,
and 0.93 and Kappa values of 0.57, 0.65, 0.72, 0.75, and
0.92, respectively. When the feature reduction process using
SVM-RFE was combined with each ML algorithm, the clas-
sification accuracy of logistic regression and the KNN algo-
rithm decreased to 63.33% and 81.67%, respectively. In the
case of the decision tree, the classification accuracy increased
to 91.33%, however, the HML scheme’s performance was
confirmed to be superior compared to the other ML schemes.
In addition, when HML was applied, all BECTS patients were
properly classified without any errors, and TLE patients were
properly classified with a 98% accuracy.
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TABLE 3. Performance results for classification BECTS and TLE patients through ML algorithms.

Method Accuracy (%) Sensitivity (%) Specificity (%) Fl-score Kappa
Logistic Regression 78.13 76.31 79.63 0.78 0.57
Logistic Regression

i ST REE 63.33 67.8 61.58 0.6432 0.2667
KNN 82.59 82.13 84.94 0.82 0.65
KNN
with SYM RFE 81.67 80.08 84.03 0.80 0.63
Decision Tree 85.71 859 85.66 0.85 0.72
Decision Tree
it SYMLRFE 91.33 91.46 91.67 0.90 0.88
SVM 87.5 84.84 86.67 0.87 0.75
Ensemble Learning 95.12 94 95 0.93 0.92
HML 99.11 98.46 100 0.99 0.98
VII. CONCLUSION REFERENCES

Epilepsy can be classified into various types, where this
analysis requires experienced epileptologists and neurolo-
gists who have received several years of medical training.
In this paper, a novel classification technique for BECTS and
TLE patients among epilepsy types using the proposed HML
scheme is presented. In HML, the T3-C3 and T4-C4 channel
data from the 10-20 EEG system was used, and sub-band
signals were derived using the EMD method. By calculating
the four statistical indices (i.e., coefficient of variation, fluc-
tuation index, skewness, and kurtosis) of the EMD sub-band
signals, the feature matrix was created to be used as input
data to the ML classification system. In order to solve the
overfitting problem that may occur during the HML process,
SVM-RFE was used to remove some of the features that have
little effect on the HML classification accuracy, thereby creat-
ing a new feature matrix. Using the newly created input data,
the classification process of BECTS and TLE patient groups
were conducted using 100 decision trees in an ensemble ML
selection process.

The HML algorithm presented in this paper shows a
high classification accuracy using limited patient data, and
requires significantly less processing time compared to the
existing analysis methods. As soon as the patient data is
collected, the classification process can be performed in
real-time, which can reduce the consumed time of the over-
all epilepsy diagnosis process. In addition, the proposed
epilepsy classification HML algorithm can be combined
with blockchain database technology to further enhance
patient data protection and EEG signal sets storage expansion
capabilities.

In future research, additional patient biometric informa-
tion will be used along with the EEG signals to enhance
the epilepsy classification accuracy. For this purpose,
new multi-dimensional ML and deep learning customized
techniques will be investigated.
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