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Optical coherence 
tomography‑based machine 
learning for predicting fractional 
flow reserve in intermediate 
coronary stenosis: a feasibility 
study
Jung‑Joon Cha1,6, Tran Dinh Son2,6, Jinyong Ha2,6*, Jung‑Sun Kim 3,4,6*, Sung‑Jin Hong3, 
Chul‑Min Ahn3,4, Byeong‑Keuk Kim3,4, Young‑Guk Ko3,4, Donghoon Choi3,4, 
Myeong‑Ki Hong3,4,5 & Yangsoo Jang 3,4,5

Machine learning approaches using intravascular optical coherence tomography (OCT) to predict 
fractional flow reserve (FFR) have not been investigated. Both OCT and FFR data were obtained for 
left anterior descending artery lesions in 125 patients. Training and testing groups were partitioned in 
the ratio of 5:1. The OCT‑based machine learning‑FFR was derived for the testing group and compared 
with wire‑based FFR in terms of ischemia diagnosis (FFR ≤ 0.8). The OCT‑based machine learning‑FFR 
showed good correlation (r = 0.853, P < 0.001) with the wire‑based FFR. The sensitivity, specificity, 
positive predictive value, negative predictive value, and accuracy of the OCT‑based machine learning‑
FFR for the testing group were 100%, 92.9%, 87.5%, 100%, and 95.2%, respectively. The OCT‑
based machine learning‑FFR can be used to simultaneously acquire information on both image and 
functional modalities using one procedure, suggesting that it may provide optimized treatments for 
intermediate coronary artery stenosis.

Fractional flow reserve (FFR) is a functional assessment with high specificity and used to diagnose myocardial 
ischemia in an unreliable angiographic luminal narrowing. However, when considering percutaneous coronary 
intervention (PCI) for ischemia based on FFR, the lack of anatomical information on atherosclerotic plaques 
can be problematic in patients, especially those with acute coronary  syndrome1. Meanwhile, intravascular opti-
cal coherence tomography (OCT), which is a high-resolution imaging modality, can provide the morphological 
information about lesion characteristics more accurately than angiography and intravascular ultrasound. OCT 
and FFR are applied differently for coronary interventions, such as to guide decision-making during coronary 
revascularization (FFR) and procedure optimization (OCT). In context, the combination of OCT and FFR 
measurements may provide additional information to guide the application of an appropriate treatment strategy. 
However, using both strategies in all clinical practices increases time and cost. Therefore, using the combination 
of OCT and FFR measurements with imaging-based physiological parameters is beneficial. Previous studies 
reported that the simulations of OCT-derived computational flow dynamics (CFD) allowed additional functional 
estimates of FFR, demonstrating a good correlation with invasive FFR  measurements2–5. However, the CFD of 
FFR derived from coronary imaging may have limited applications in clinical practice because of limited OCT 
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coronary geometry-based CFD modeling such as absence of geometry of side branches and prolonged simulation 
time of 3D coronary geometry reconstruction and  CFD2. Recently, machine learning models for the prediction 
of FFR based on  angiography6 and intravascular  ultrasound7 have been reported. However, the use of a machine 
learning approach based on OCT studies has not yet been investigated. This study aims to evaluate and compare 
the diagnostic accuracy of the machine learning-FFR based on OCT with wire-based FFR.

Results
Clinical and lesion characteristics. The mean age of the subjects was 63 years. About 75% of the study 
population was male, and diabetes mellitus was diagnosed in 30% of the subjects. No statistical significance was 
observed in the comparison of clinical characteristics between the training and the testing groups (Supplemen-
tary Table S1). Similarly, no statistical significance was observed between the two groups in terms of the OCT 
characteristics (Supplementary Table S2).

Major features of the OCT‑based machine learning‑FFR. A total of 36 features were defined. They 
are summarized in Table 1. In the testing samples, the Random Forest model, using the six most important 
features (based on weight), namely, minimal LA, percentage of the stenotic area, lesion length, proximal LA, 
pre-procedural platelet count, and hypertension, obtained the highest performance (r = 0.853) (Fig. 1A).

Table 1.  List of 36 features, their weight, and standard deviation.

Feature Weight Standard deviation

1 Minimal lumen area 0.431489 0.201828

2 Area stenosis (%) 0.115880 0.038884

3 Lesion length 0.035337 0.011430

4 Pre-procedural platelet count 0.033187 0.021882

5 Proximal lumen area 0.026289 0.004752

6 Hypertension 0.016973 0.006676

7 Distal lumen area 0.009928 0.015942

8 Pre-procedural blood urea nitrogen level 0.007642 0.007495

9 Hypercholesterolemia 0.002688 0.002036

10 Calcified nodule 0.002309 0.000532

11 Pre-procedural hemoglobin level 0.001440 0.010278

12 Fibrocalcific nodule 0.000846 0.001332

13 Lipid rich plaque 0.000843 0.000886

14 Existence of thrombus 0.000077 0.001775

15 Dissection 0.000008 0.000292

16 lipid arc over 90° with thickness less than 65 μm 0.000000 0.000000

17 Existence of ruptured plaque − 0.000032 0.002259

18 Diabetes mellitus − 0.000096 0.001015

19 Age − 0.000137 0.004589

20 Existence of erosion − 0.000268 0.000213

21 Weight − 0.000353 0.007105

22 lipid arc over 90° − 0.000460 0.002299

23 Existence of macrophage − 0.000802 0.004656

24 Unstable angina − 0.000820 0.003374

25 Fibrous nodule − 0.000922 0.001797

26 Existence of necrotic core − 0.000950 0.000307

27 Gender − 0.001616 0.000551

28 Existence of cholesterol crystal − 0.002124 0.001706

29 Current smoking − 0.003752 0.002504

30 Pre-procedural creatinine level − 0.004177 0.012168

31 Existence of microvessels − 0.004760 0.001435

32 Body mass index − 0.006832 0.002180

33 Systolic blood pressure − 0.008183 0.004773

34 diastolic blood pressure − 0.008704 0.000831

35 Plaque area − 0.011278 0.017001

36 Height − 0.024011 0.013424
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Performance of the OCT‑based machine learning‑FFR. Figure  1B illustrates the predicted results 
of the Random Forest model using the six most important features compared to the clinical FFR of the testing 
set. The results showed a good correlation (r = 0.853, P < 0.001) and agreement (MAE = 0.04) between the OCT-
based machine learning-FFR and the wire-based FFR. In the analysis of the Bland–Altman plot, the statistical 

Figure 1.  Optical coherence tomography-based machine learning for predicting fractional flow reserve. (A) 
Flow chart of the proposed machine learning method. (B) Comparison between the clinical fractional flow 
reserve results and the predicted fractional flow reserve results by the Random Forest model in the testing set. 
(C) Receiver operating characteristic curve of machine learning-fractional flow reserve. FFR fractional flow 
reserve, AUC  area under the curve.
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limits of the OCT-based machine learning-FFR was 0.01 ± 0.11, based on the wire-based FFR (Supplemental 
Fig. S1). Based on an FFR ≤ 0.8, the sensitivity, specificity, positive predictive value, negative predictive value, 
and accuracy of the OCT-based machine learning-FFR method for the testing group were 100%, 92.9%, 87.5%, 
100%, and 95.2%, respectively (Fig. 1C). Also, the positive and negative likelihood ratios were 14 and 0, respec-
tively.

Discussion
In clinical practice, machine learning-based approaches have been used to complement existing prediction 
models by analyzing associations between numerous variables. In this study, we developed a machine learning-
FFR method to predict the functional ischemia of a stenotic coronary artery using patient information and OCT 
images. To our knowledge, this is the first OCT-based machine learning-FFR assessment.

In current clinical practice, FFR and OCT are widely used for coronary intervention regarding decision-
making of coronary revascularization (FFR) and procedure optimization (OCT), respectively. The simultaneous 
use of both modalities during PCI might be expected to achieve better clinical outcomes. However, there are 
limitations to conducting both tests because of time, cost, and lack of  evidences8. Although OCT-guided PCI 
demonstrated stent optimization and greater procedural success compared to IVUS and angiographic-guided 
PCI in ILUMIEN III trial, there were no differences in 30-day and one-year clinical outcomes because of relatively 
small number of  patients9,10. Additionally, more than two-thirds of operators were found to have based PCI deci-
sions on angiographic findings after considering prolonged procedure times, cost, and risk of  complications11.

To overcome discrepancies between the guidelines and the actual clinical practice, methods to measure 
FFR such as computational tomography imaging (CT-FFR) or OCT imaging (OCT-FFR) have been proposed 
by using  CFD2,12. When comparing OCT-FFR to OCT-based machine learning-FFR for the patients in this 
study, the OCT-based machine learning-FFR (r = 0.853) had better correlation compared with CFD-based OCT 
FFR (r = 0.712) on the same set of patients. In addition, even considering different patient population and ves-
sel characteristics, the OCT-based machine learning-FFR demonstrated a better or comparative result to the 
wire-based FFR results than did OCT-FFR (r = 0.83)13 or CT-FFR (r = 0.82)12. These findings suggested that the 
OCT-based machine learning-FFR results could be used to predict FFR as an alternative method to both CT-
FFR and OCT-FFR.

Recently, machine learning had been introduced in FFR measurements for cardiovascular imaging. Machine 
learning angiography and machine learning-based intravascular ultrasound (IVUS) results had good correlations 
with the wire-based FFR results and acceptable diagnostic  accuracy6,7. Coenen et al. reported that ML-based 
CT-FFR closely reproduces CFD-based CT-FFR calculations. Although CFD-based CT-FFR has a good correla-
tion with FFR, the processing times of CFD algorithms vary with their complexity, which remains a limitation. 
However, the ML-based CT-FFR calculations can be performed virtually without delay. Moreover, the diagnostic 
performance of ML-based CT-FFR can improve with better image  quality14. In this study, OCT features were 
used as a feature of machine learning. The actual contour of the lumen, as viewed on a high-resolution image, 
is one of the most important factors in CFD  simulations2. Thus, we suggested that the superiority of OCT, in 
terms of resolution, to CT, angiography, and IVUS  image15 had an advantage in the diagnostic performance of 
machine learning-FFR. In addition, the OCT based machine learning-FFR could provide an accurate analysis 
of both the lesion characteristics and functional significance of the lesion.

The question of what modality to use for intermediate coronary lesions is still unanswered due to different 
advantages and disadvantages of image techniques and functional assessments. Although there are no ran-
domized clinical data, OCT-guided interventions have been introduced as promising tools for patients with 
stable coronary artery disease as well as for those with acute coronary  syndrome16. A recent study reported 
that OCT-based PCI had a lower rate of both major adverse cardiac events and significant angina than those of 
FFR-based PCI, suggesting the importance of the assessments of the coronary vessel  anatomy17. However, the 
cost-effectiveness of FFR and its power to determine the status of ischemia are still important in daily practice. 
In context, various machine learning-based FFR were developed based on the image  modalities6,7. But, in pre-
vious machine learning FFR studies, the impact of clinical characteristics on machine learning FFR has been 
underestimated. Thus, we suggested that patient clinical characteristics that have underestimated might affect 
the evaluation of FFR. Further investigation is needed to clarify this issue. In this study, the OCT-based machine 
learning-FFR method was used to perform a functional assessment of the coronary artery based on patient 
information and OCT data, resulting in a good correlation with wire-based FFR. This finding suggested that the 
use of the OCT-based machine learning-FFR method could simultaneously acquire information on both image 
and functional modalities using one invasive procedure, and in turn, might provide optimized treatments for 
intermediate coronary artery stenosis as well as save time and cost.

This study had several limitations. It was a small cohort study at a single center only for patients with inter-
mediate lesions in the left descending artery and thus more clinical data will be required to expand this method 
to other coronary arteries to remove potential bias of the present results. Also, because of the small number of 
subjects, it seems that there is a pattern towards higher FFR than OCT-based ML-FFR when FFR value increases 
in the Bland–Altman plot. However, despite its small number, this was the first study on the OCT-based machine 
learning-FFR method. In addition, since OCT acquires a high-resolution image of the actual contour of the 
lumen, which is one of the most critical factors in CFD simulations compared to angiography or CT image, OCT-
based machine learning FFR may have in prospect better results compared to other modalities-based machine 
learning FFR. Thus, a large study should be conducted to assess method performance and accuracy. Moreover, 
this study analyzed only patients who had lesions in their left anterior descending artery. Because of the relatively 
small number, we excluded different territories that might act as a confounder. In the IVUS-based ML model 
and CFD study, which were analyzed for multiple lesion locations, the diagnostic performance was relatively 
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low compared to that in this study, in which LAD selection was  performed7,18. Although this location resulted 
in a better correlation between the anatomical and the functional parameters compared to other  locations19, 
further study is needed to expand this model to other coronary locations. Also, side branch information variables 
were not included in this study. The impact of the size and location of side branches should be investigated. In 
addition, some OCT features among 6 major features were obtained manually (percentage of the stenotic area 
and lesion length. However, intra-observer variability analysis and inter-observer variability analysis revealed 
acceptable reliability for measurement (Supplemental Table S3). In terms of measurement time, OCT-derived 
FFR computation took about 20 min due to the manual procedure of OCT lumen extraction and 3D rendering 
for CFD. However, OCT-based machine learning FFR took 2–3 min to extract key OCT features and analyze FFR. 
It is unclear whether this machine learning method, principally based on some selected area measurements, will 
be superior to the current practice of determining the degree of stenosis visually or quantitatively. However, the 
Pearson correlation between percentage of the stenotic area and the wire-based FFR was inferior compared to 
that of the OCT-based machine learning-FFR (r = 0.469 vs. r = 0.853). Besides, the Pearson correlation between 
minimal LA in OCT and the wire-based FFR was relatively inferior compared to that of OCT-based machine 
learning-FFR (r = 0.545 vs. r = 0.853). Thus, despite the limitations, we suggest that OCT-based machine learning-
FFR may provide optimized treatments for intermediate lesions in the left descending artery.

Methods
A total of 141 consecutive patients who had undergone both OCT and FFR during their evaluations of intermedi-
ate stenosis in the left anterior descending artery, between November 2013 and January 2015, were enrolled in the 
Yonsei OCT registry (ClinicalTrials.gov, NCT02099162). Sixteen patients were excluded because of poor OCT 
images (A suboptimal OCT image quality because of insufficient blood clearance (n = 13) and improper coverage 
of the entire lesion by OCT (n = 3)). A total of 125 patients were finally included in the analysis. The inclusion 
criteria were: (1) typical angina, (2) a de novo lesion of intermediate stenosis (diameter stenosis = 40–70%) in 
the left anterior descending artery from the proximal to the middle portions, and (3) a lesion length less than 
20 mm as shown by angiography. The exclusion criteria were: (1) hypersensitivity to the contrast agent, (2) use 
of inotropic agents due to hemodynamic instability, (3) severe ventricular dysfunction (left ventricular ejec-
tion rate < 30%), (4) creatinine level greater than or equal to 2.0 mg/dL, (5) life expectancy less than 12 months 
due to noncardiac comorbidity, and (6) severe heart valve disease. This study was approved by the institutional 
review board at Severance Hospital and complied with the Declaration of Helsinki. Written informed consent 
was obtained from all patients.

OCT measurements. OCT images were obtained using a frequency-domain OCT system (C7-XR OCT 
imaging system, LightLab Imaging, Inc./Abbott Vascular, Chicago, IL, USA). OCT cross-sectional images were 
acquired at a rate of 100 frames/s. The fiber probe was retracted at a velocity of 20 mm/s from the stationary 
imaging sheath. Analysts who were blinded to the patient and procedural information in the core laboratory 
(Cardiovascular Research Center) analyzed the OCT data. The minimal luminal area (LA) was defined as the 
segment with the smallest LA by OCT analysis. The proximal reference LA and the distal reference LA were 
the region within the same segment as the lesion with the largest lumen. Both reference LA were usually within 
10 mm of the stenosis without major intervening  branches20. The minimal LA used to define functional stenosis 
for the OCT criteria was 1.96 mm2,21. The percentage of the stenotic area (%) was defined as [(mean reference 
LA − minimum LA)/mean reference LA] × 100. In this study, the OCT analysis of the lesions and a detailed 
explanation of analyzed features were based on previous OCT  studies22,23.

Wire‑based FFR measurements. Using a 0.014-inch pressure guidewire (Abbott Vascular, Chicago, 
IL, USA), coronary artery pressure was measured during coronary angiography. The pressure guidewire was 
positioned distal to the target lesion after performing equalization. To induce maximal hyperemia, 140 μg/kg/
min intravenous adenosine was administered via the antecubital vein. FFR was calculated using the following 
formula: mean hyperemic distal coronary pressure/mean aortic pressure. Functionally significant stenosis was 
defined as an FFR ≤ 0.8. A pressure drift of ± 3 mm Hg was considered acceptable. If the pressure drift exceeded 
this margin, the FFR recording was repeated.

Feature selection. A total of 36 features were used to develop the OCT-based machine learning-FFR 
approach in this study. The features for developing a machine learning FFR model of coronary intermediate 
lesion were selected according to the expert opinion by worldwide guidelines and prior literature search. In the 
guidelines of the American Society of Cardiology and the European Society of Cardiology, patients’ age, sex, 
heart rate, blood pressure (BP), and past medical history were used in clinical decision making for ischemic 
heart  disease24,25. In addition, OCT features were selected from prior literature search that investigated the cor-
relation between coronary artery disease and OCT  characteristics22,23. The extracted features included OCT geo-
metric and biometric features. For data normalization, we used the standard score to scale the value of extracted 
features to reduce the effect of outlier data  points26. These features, used as inputs for the machine learning 
model to estimate FFR, are illustrated in Table 1: two epidemiological data points (gender, age), five clinical data 
points at the time of admission to the cardiac catheterization laboratory (systolic blood pressure, diastolic blood 
pressure, height, weight, and body mass index), nine past medical history items (history of unstable angina, 
hypertension, diabetes mellitus, dyslipidemia, smoking, and four laboratory test results prior to presenting with 
chest pain—platelet count, levels of hemoglobin, blood urea nitrogen, and creatinine), and 20 OCT data points 
(proximal LA, minimal LA, distal LA, lesion length, plaque area, percentage of the stenotic area, presence of ath-
eroma (fibrous, fibro-calcific, and lipid rich), lipid arc greater than 90°, lipid arc greater than 90° with a thickness 
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less than 65 µm, presence of dissection, presence of a necrotic core, presence of microvessels, presence of choles-
terol crystals, presence of rupture, presence of erosion, presence of calcified nodules, presence of macrophages, 
and presence of thrombi).

Machine learning‑FFR assessment based on OCT. The supervised machine learning framework per-
formed according to the following steps: (1) feature extraction, (2) applying the machine learning algorithm, and 
(3) assessing permutation feature importance. In this study, Random  Forest27 was used to estimate FFR.

In general, training and testing samples were required for constructing and evaluating the supervised machine 
learning model. Before assigning the data to the training and testing groups, a stratified sampling  technique28 
was utilized to divide the data into four distinctive subgroups to prevent the chance of omitting one sub-group 
and thus leading to sampling  bias29. The four sub-groups of FFR values were: (0.600, 0.685) with 10 subjects, 
(0.685, 0.770) with 24 subjects, (0.770, 0.855) with 47 subjects, and (0.855, 0.940) with 44 subjects. Data were 
assigned to the training and testing sets in the ratio of 5:1 (Fig. 1A). In the machine learning training phase, 
104 patients were trained offline using the machine learning-based algorithm and 36 extracted features (clinical 
features, lesion characteristics, and OCT features). In the case of Random forest optimization, a technique of 
cross validation (CV) was performed on the training set to optimize for hyperparameter tuning. The training set 
was split into K number of subsets, called folds, and a fitting Random forest with K = 4 was applied. A Random 
forest approach was performed using many iterations of the entire four-fold CV process, each time using different 
hyperparameter combination settings. The four optimal hyperparameters values of Random forest algorithms are 
summarized in Table 2 (n_estimators = 1000, max_depth = 50, min_samples_leaf = 2 and min_samples_split = 2) 
and default values of the other remaining parameters were utilized. Once the optimized parameter values were 
chosen, a model was constructed using the chosen parameters, and then evaluated using the testing set.

The best Random Forest model with optimal hyperparameters was then selected. The feature importance 
from RF model were calculated based on the training data given to the model. Here, permutation importance, 
introduced by  Breiman27, was used to measure the increase in the error of the prediction model after permuting 
the feature’s values. To achieve the best in testing, we choose top 6 feature of final RF model for training set. In 
the testing phase, 21 patients with 6 important features were tested online using the trained models to predict 
FFR. During the evaluation of our experiments, the Pearson correlation coefficient and the mean absolute error 
(MAE) were used to evaluate the Random forest model. The MAE between the clinical FFR and the predicted 
FFR is defined below:

where n denotes the number of cases; yi , the clinical FFR; and ŷi , the predicted FFR.

Data availability
The datasets analyzed during the current study are available from the corresponding author on reasonable 
request.
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