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ABSTRACT 

Induced pluripotent stem cell modeling of Best disease and 

autosomal recessive bestrophinopathy 

 

 

Ji Hwan Lee 

 

Department of Medicine 

The Graduate School, Yonsei University  

 

(Directed by Professor Christopher Seungkyu Lee) 

 

 

Purpose 

To understand a pathophysiology of Best disease (BD) and autosomal 

recessive bestrophinopathy (ARB) by establishing an in vitro model 

using human induced pluripotent stem cell (iPSC).  

 

Methods 

Human induced pluripotent stem cell (iPSC) lines were generated from 

mononuclear cells in peripheral blood of one autosomal recessive 

bestrophinopathy (ARB) patient, one autosomal dominant Best disease 

(BD) patient, and two normal controls. Immunocytochemistry and 

reverse transcriptase polymerase chain reaction in iPSC lines were 

conducted to demonstrate the pluripotent markers. After differentiation of 

iPSC into functional retinal pigment epithelium (RPE), morphological 

characteristics of the RPE were evaluated using confocal microscopy and 

immunocytochemistry. The rates of fluid flow across iPSC-RPE 
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monolayer were measured to compare apical to basal fluid transports by 

the RPE. RNA sequencing was performed on iPSC-RPE to identify the 

differences in gene expression profiles, and specific gene sets were tested 

using Gene Set Enrichment Analysis. 

 

Results 

Morphological characteristics, gene expression, and epithelial integrity of 

ARB iPSC were comparable to those of BD patient or normal control. 

Fluid transport from apical to basal was significantly decreased in ARB 

iPSC-RPE compared with BD iPSC-RPE or control iPSC-RPE. Gene Set 

Enrichment Analysis confirmed that ARB iPSC-RPE exhibited 

significant enrichments of epithelial-mesenchymal transition gene set and 

TNF-α signaling via NF-κB gene set compared with control iPSC-RPE or 

BD iPSC-RPE.  

 

Conclusions 

A human iPSC model of ARB showed a functional deficiency rather than 

anatomical defects. ARB may be caused by RPE dysfunction following 

BEST1 mutation.   

 

 

 

 

 

Key words : autosomal recessive Bestrophinopathy, Best disease, 

induced pluripotent stem cells, retinal pigment epithelium 
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I. INTRODUCTION 

 

Hereditary retinal disease is one of the important causes of blindness, which 

leads to an irreversible retinal damage affecting the quality of life and daily 

activities. Bestrophinopathy is one of the most common inherited macular 

degenerations, which is caused by mutations in BEST1 gene. BEST1 is located 

in chromosome 11q13,1, 2 and encodes a 585 amino acid protein known as 

bestrophin that localizes to the basolateral membrane of the retinal pigment 

epithelium (RPE).3 When mutated, lipofuscin accumulates beneath the RPE, 

with degeneration of the RPE and the overlying photoreceptors.4 The broad 

spectrum of clinical presentations in bestrophinopathy ranges from well-defined 

clinical abnormalities restricted to the macula in Best disease (BD), adult-onset 

foveomacular vitelliform dystrophy, or autosomal recessive bestrophinopathy 

(ARB) to the widespread symptoms affecting peripheral retina in a rare 

condition of autosomal dominant vitreoretinochoroidopathy (ADVIRC).5, 6  

BD was first described by Friedrich Best in 1905,7 and is most common among 

bestrophinopathies. It occurs in about 1 in 10000 individuals and is inherited by 
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autosomal dominant fashion.6 The age at onset in BD is variable with a mean 

age onset in the fourth decade.8 The macular lesion that is most characteristic of 

the disease is single egg-yolk-like vitelliform lesion on the central fovea, which 

is usually followed by vitelliruptive stage, pseudohypopyon stage, and atrophic 

stage.6 A significantly decreased light rise on electrooculography (EOG) is a 

characteristic finding of BD.9 Although an abnormal EOG is crucial in the 

diagnosis of BD in patients with vitelliform lesions, mutation analysis is 

necessary to confirm a clinical diagnosis of BD because 20% of patients with 

BEST1 mutation could have a normal EOG.10  

ARB was first described by Burgess in 2008,11 and is the most common juvenile 

macular dystrophy among bestrophinopathies. ARB is an autosomal recessive 

disease caused by homozygous or compound heterozygous mutations in the 

BEST1 gene.6 Nearly 40 biallelic mutations in BEST1 have been reported in 

ARB patients at present.12-28 The retinopathy includes an irregularity of the RPE 

throughout the posterior fundus with punctate flecks, which is easily seen on 

autofluorescence imaging. Retinal edema and subretinal fluid are common 

findings on OCT imaging. ARB shows markedly abnormal EOG and pattern 

electroretinography (ERG).11 

Human induced pluripotent stem cells (iPSC) are relatively non-invasive and 

renewable, and iPSC-derived models can recapitulate cellular and molecular 

processes without genetic manipulation.29 The retina and the brain are 

promising candidates for iPSC modeling since it is difficult to perform biopsy in 

these tissues and there are established preexisting protocols to isolate their 

progenitors from iPSC.30-32 The RPE can be readily differentiated and re-seeded 

widely, which is a promising candidate for iPSC modeling. In this study, we 

established an in vitro model of BD and ARB using human iPSC to understand 

a pathophysiology.  
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Ⅱ. MATERIALS AND METHODS  

 

1. Differentiation of human iPSC lines 

A. Generation of iPSC lines 

Twenty milliliters peripheral blood were obtained from one ARB patient (L40P 

and A195V mutations in BEST1 gene), one autosomal dominant BD patient 

(G96A mutation in BEST1 gene), and two normal controls. Human iPSC lines 

were generated using previously established methods.30, 31 Mononuclear cells 

(MNC) were isolated from the blood samples and were expanded in MNC 

media for 7-10 days.  

MNC were transfected with episomal vectors (OCT4, SOX2, c-MYC, KLF4, 

LIN28) (Thermo Fisher Scientific, Waltham, MA, USA) and cultured on 

extracellular matrices (BD, Franklin Lakes, NJ, USA). Culture on iPSC medium 

(STEMCELL Technologies, Vancouver, Canada) were performed for 1-2 weeks 

till colonization of iPSC. iPSC colonies were isolated and expanded on iPSC 

medium (STEMCELL Technologies). Differentiation was initiated after 10-20 

passages of expansion to remove an epigenetic memory.  

 

B. Differentiation of iPSC into functional RPE cell  

Embryoid body (EB) was formed for one week on EB media (Thermo Fisher 

Scientific) and free-floating culture. EB was then switched to a chemically 

defined neural induction media (Thermo Fisher Scientific) and laminin-coated 

plate (Thermo Fisher Scientific) for 10 days for neural differentiation. For 

retinal differentiation, iPSC-derived neuroepithelial rosettes were switched to a 

chemically defined retinal differentiation medium (Thermo Fisher Scientific).  

 

2. RT-PCR  
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Total RNA was isolated from cell cultures from various stages of differentiation 

and treated with DNase I (Thermo Fisher Scientific). cDNA was synthesized 

using the SuperScript Ⅲ RT-PCR kit (Thermo Fisher Scientific). Samples were 

denatured at 95°C for 5 minutes followed by 30 cycles of PCR amplification 

(95°C for 15 seconds, 60°C for 30 seconds, 72°C for 1 minute) and a final 

extension at 72°C for 10 minutes. PCR products were run on 2% agarose gel.  

 

3. Immunocytochemistry  

Cells were washed in ice-cold phosphate-buffered saline (PBS) and fixed in 

2-4% paraformaldehyde at 4°C for 30 minutes. Fixed cells were washed twice 

in PBS and placed in blocking solution (10% normal donkey or goat serum and 

0.01-0.05% Triton-X100 in PBS) for 1 hour at room temperature. Cells were 

then incubated overnight at 4°C with mouse anti-BEST1 monoclonal antibody 

(E6-6) (Thermo Fisher Scientific) and rabbit anti-ZO-1 polyclonal antibody 

(Thermo Fisher Scientific). The following day, cells were washed three to five 

times in PBS with 0.01% Triton-X100 and incubated with Alexa Fluor 

488-conjugated goat anti-rabbit antibody (Thermo Fisher Scientific) and Alexa 

Fluor 568-conjugated donkey anti-rabbit antibody (Thermo Fisher Scientific). 

After secondary antibody incubation, cells were stained with DAPI (Thermo 

Fisher Scientific), washed three times in PBS with 0.2% Triton-X100, and 

imaged on a confocal microscope (Zeiss, Jena, Germany).  

 

4. Transepithelial resistance (TER) measurement 

TER of RPE monolayers cultured on permeable transwell filters (Merck KGaA, 

Darmstadt, Germany) was measured using an epithelial voltohmmeter (Merck 

KGaA) according to manufacturer’s instructions. Electrodes were sterilized 

with 70% ethanol and rinsed in Hank’s balanced salt solution prior to placement 



7 

 

in the transwell inserts. Net TER was calculated by subtracting the background 

measurement obtained from transwell filters and multiplying the difference by 

the area of the transwell filter (Ω*cm2).  

 

5. Measurement of fluid flux 

The quantification of active fluid transport from apical to basal side in the RPE 

was measured using a previously described method.33 A fixed amount of 

medium (Thermo Fisher Scientific), 150 µl in the apical and 400 µl in the basal 

chambers of transwell was loaded. The amount of fluid remaining in the apical 

chamber was measured 20 hours later, and the rate of fluid transport was 

calculated (µl/hr/cm2).  

 

6. RNA sequencing and data analysis  

RNA sequencing was performed on ARB iPSC-RPE, BD iPSC-RPE, and 

normal iPSC-RPE (n=2 for each) by the Macrogen (Seoul, Korea). Total RNA 

quality was assessed with Agilent bioanalyzer system (Agilent, Santa Clara, CA, 

USA). Extracted RNA samples were processed with TruSeq Stranded Total 

RNA Prep Kit (Illumina, San Diego, CA, USA) and sequenced on NovaSeq 

6000 system (Illumina). A median 1.2 x 108 single-end reads (range, 1.1 x 108 to 

1.3 x 108) with 101 base pairs were generated. Reads were trimmed base on 

sequencing quality using Trimmomatic (RWTH Aachen University, Aachen, 

Germany).34 Trimmed reads were aligned on a human reference sequence 

(hg19) using HISAT2 (Johns Hopkins University, Baltimore, USA).35 Using 

Gene Set Enrichment Analysis, an enrichment of a specific gene set was tested, 

and core enrichment genes were determined.36   
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7. Statistical analysis 

All statistical analyses were performed using SPSS version 23.0 (IBM, Chicago, 

IL, USA). The Shapiro-Wilk test was used to assess distribution patterns of data. 

TER measurement and the rate of fluid flow obtained from ARB iPSC-RPE 

were compared with those of control and BD iPSC-RPE using the 

Mann-Whitney test. A p-value of <0.05 was considered statistically significant.  

 

 

Ⅲ. RESULTS  

 

1. Clinical findings 

Demographic and characteristics of patient with Best vitelliform macular 

dystrophy and patient with ARB were summarized in Table 1. Patient 1 was a 

41-year-old woman with decreased visual acuity in the right eye. Her 

best-corrected visual acuity was 20/40 in the right eye and 20/20 in the left eye. 

The patient was hyperopic with spherical equivalent +1.75 diopter (OD) and 

+1.00 diopter (OS). The fundus showed RPE atrophy and pigment disruption in 

the right eye and a dome-shaped accumulation of yellowish material in the 

central macula of the left eye (Figure 1A and 1B). Hyperreflective vitelliform 

materials with subretinal fluid were found in the subretinal space on OCT 

images (Figure 1C and 1D). EOG showed decreased response with Arden ratio 

1.1 in both eyes.  

Patient 2 was a 57-year-old woman who reported significant visual loss in both 

eyes at the age of 20 years. She presented with a further decrease of the visual 

acuity in her left eye for two months. Her visual acuity was 20/400 in the right 

eye and 20/800 in the left eye. The patient was hyperopic with spherical 

equivalent +3.00 diopter (OD) and +3.25 diopter (OS). The fundus showed 



9 

 

bilateral RPE irregularities in the posterior pole with scattered yellowish flecks 

(Figure 2A and 2B), which were more prominent on autofluorescence images. A 

neurosensory retinal detachment with subretinal fluid was observed in the left 

eye on an OCT image, which appeared similar to that of the fellow eye (Figure 

2C). Electrophysiology showed normal response for the full-field ERG, but a 

light rise on EOG was absent (Arden ratio 1.0) in both eyes. 
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Table 1. Demographics and Characteristics of Patients and Normal Controls. 

Patient Sex Age Diagnosis ERG EOG Inherit

ance 

BEST1 

mutation 

Amino acid 

change 

NL 1 F 46 NL control NL NL NA NA NA 

NL 2 M 44 NL control NL NL NA NA NA 

Patient 1 F 41 BD NL Flat AD c.287A>G Gln96Arg 

Patient 2 F 57 ARB NL Flat AR c.119T>C 

c.584C>T 

Leu40Pro 

Ala195Val 

AD: autosomal dominant, AR: autosomal recessive, ARB: autosomal recessive 

bestrophinopathy, BD: Best disease, EOG: electrooculography, ERG: electroretinography, 

NA: not applicable, NL: normal 
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Figure 1. Clinical findings of patient 1. A 41-year-old woman presented with 

decreased visual acuity in the right eye. (A, B) Color fundus photography 

showed RPE atrophy and pigment disruption in the right eye and a 

dome-shaped accumulation of yellowish material in the central macula of the 

left eye. (C, D) Hyperreflective materials with subretinal fluid were found in the 

subretinal space on optical coherence tomographic images.  
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Figure 2. Clinical findings of patient 2. A-57-year-old woman presented with 

decreased visual acuity in her left eye for two months. She had reported 

significant visual loss in both eyes at the age of 20 years. (A, B) Color fundus 

photography showed bilateral RPE irregularities in the posterior pole with 

scattered yellowish flecks. (C) A neurosensory retinal detachment with 

subretinal fluid was observed in the left eye on an optical coherence 

tomography image, which appeared similar to that of the fellow eye.  
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2. Generation of iPSC lines 

Mononuclear cells were isolated from peripheral blood and iPSC lines were 

generated using previously established methods.30, 31 Immunocytochemistry and 

RT-PCR in iPSC lines were performed to confirm the pluripotent markers. 

Immunocytochemistry analysis using confocal microscopy demonstrated that all 

iPSC lines expressed the pluripotent markers including OCT4, SOX2, 

TRA-1-60, and SSEA4 (Figure 3). RT-PCR revealed pluripotency markers 

including c-MYC, OCT4, SOX2, NANOG, and KLF4 (Figure 4), and teratoma 

studies confirmed that 7-day embryoid bodies derived from iPSC showed 

markers for all three lineages (Figure 5).   

 

3. Differentiation of iPSC into RPE cell  

Light microscopy and RT-PCR were performed to confirm the differentiation of 

iPSC into RPE cell. RPE differentiation was performed in retinal differentiation 

media until approximately Day 40-90, at which characteristic polygonality and 

pigmentation of the RPE could be confirmed on light microscopy (Figure 6A). 

RT-PCR revealed the expressions of a characteristic RPE gene BEST1 and a 

tight junction gene OCCLUDIN (Figure 6B). 

 

4. Cytological and functional analysis of ARB iPSC-RPE 

Morphological characteristics of the RPE were evaluated using confocal 

microscopy and immunocytochemistry. The rate of fluid flow across iPSC-RPE 

monolayer on transwell insert was measured to compare apical to basal fluid 

transports by the RPE. Immunocytochemistry revealed uniform tight junction 

protein ZO-1 in both ARB and control iPSC-RPE (Figure 7). There was no 

significant difference in TER measurements between ARB patient, autosomal 

dominant BD patient, and normal control. TER measurements obtained from 
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ARB iPSC-RPE (290.0010.24 ) were similar to those of BD iPSC-RPE 

(312.6723.84 , p=0.936) and control iPSC-RPE (305.8313.33 , p=0.335) 

(Figure 8A). The rate of fluid flow was the lowest in ARB iPSC-RPE 

(0.120.01) and was significantly lower than those of control iPSC-RPE 

(0.350.02, p<0.001) and BD iPSC-RPE (0.290.02, p<0.001) (Figure 8B).  

 

5. Gene expression profiles of ARB iPSC-RPE  

RNA-sequencing was performed to identify the differences in gene expression 

profiles between ARB iPSC-RPE, BD iPSC-RPE, and control iPSC-RPE. Gene 

Set Enrichment Analysis showed that ARB iPSC-RPE exhibited significant 

enrichment of epithelial-mesenchymal transition (EMT) gene set compared with 

control iPSC-RPE (Figure 9A). Genes encoding TNF-α signaling via NF-κB 

were also significantly enriched in ARB iPSC-RPE compared with control 

iPSC-RPE (Figure 9B). ARB iPSC-RPE showed similar results compared with 

BD iPSC-RPE (Figure 9C and 9D).  
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Figure 3. Immunocytochemistry in iPSC lines. Immunocytochemistry analysis 

demonstrated the expression of pluripotency markers (OCT4, SOX2, TRA1-60, 

and SSEA4) in all iPSC lines of normal controls and patients.  

 

 

 

Figure 4. RT-PCR in iPSC lines. RT-PCR revealed mRNA expression of 

pluripotency markers (c-MYC, OCT4, SOX2, NANOG, and KLF4) in 

undifferentiated iPSC lines from normal controls and patients. Human 

embryonic stem cells (H9) were used as a positive control. 
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Figure 5. Teratoma analyses of iPSC lines. Teratoma studies from normal 

controls and patients demonstrated derivatives from the endodermal, ectodermal, 

and mesodermal germ lineages.  
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Figure 6. Differentiation of induced pluripotent stem cells into functional 

retinal pigment epithelium (RPE) cells. (A) Characteristic polygonality and 

pigmentation of the RPE could be confirmed using light microscopy. (B) 

RT-PCR revealed the expressions of a characteristic RPE gene BEST1 and a 

tight junction gene OCCLUDIN. GAPDH was as a loading control.  

 

 

Figure 7. Immunocytochemistry in iPSC-RPE. Immunocytochemistry for 

BEST1 and ZO-1 showed uniform morphology and tight junction in Best 

disease, ARB and control iPSC-RPE.     
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Figure 8. Transepithelial resistance (TER) measurements and the quantification 

of fluid movement in BD iPSC-RPE, ARB iPSC-RPE, and control iPSC-RPE. 

(A) TER were comparable between patients and control iPSC-RPE. (B) The rate 

of fluid flow was the lowest in ARB iPSC-RPE and was significantly lower than 

those of control iPSC-RPE and BD iPSC-RPE. *p<0.001 compared with control 

or BD iPSC-RPE.  
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Figure 9. Gene Set Enrichment Analysis (GSEA). GSEA plots showed that 

epithelial-mesenchymal transition gene set and TNF-α signaling via NF-κB 

gene set were significantly enriched in ARB iPSC-RPE compared with control 

iPSC-RPE (A, B) or BD iPSC-RPE (C, D). FDR: false discovery rate, NES: 

normalized enrichment score, NOM: nominal 
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Ⅳ. DISCUSSION  

In this study, a human iPSC model of ARB was evaluated to understand its 

pathophysiology, which revealed a functional deficiency rather than anatomical 

defects. Morphological characteristics, gene expression, and epithelial integrity 

of ARB iPSC were comparable to those of normal control. Fluid transport from 

apical to basal was more reduced in ARB iPSC-RPE than in autosomal 

dominant BD iPSC-RPE.  

RPE-based disorders appear to be ideal for human iPSC modeling given the 

ease and extent to which this cell type can be generated, manipulated and tested. 

The maturation state of iPSC-RPE can be also monitored in live cultures using 

morphological features and measurement of transepithelial resistance.37 Singh et 

al developed a iPSC-RPE model of Best vitelliform macular dystrophy utilizing 

these characteristics of human RPE. They demonstrated that RPE from mutant 

iPSC displayed disrupted fluid flux and increased accrual of autofluorescent 

material after long-term photoreceptor outer segment feeding.29 Thus, human 

iPSC-derived RPE is a potentially useful tool for disease modeling and 

therapeutics in human retinal degenerative diseases.  

Defect in transcellular fluid in iPSC-RPE was more prominent in ARB patient 

than in autosomal dominant BD patient, which could explain common macular 

edema and subretinal fluid in ARB patient. The macular pathology in BD 

patients usually seems to be stable until the late stage of the disease course, and 

most patients retain moderate visual acuity until late in life.38, 39 Thus, the result 

may also support that BD is caused by the cumulative effects of one or more 

subtle alterations in RPE physiology. Other cytological examinations including 

morphological characteristics, gene expression, and epithelial integrity revealed 

similar results between ARB iPSC-RPE and normal control. Considering more 

prominent defect in transcellular fluid in ARB iPSC-RPE than in autosomal 
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dominant BD iPSC-RPE, these findings may suggest that ARB is caused by 

BEST1 dysfunction. 

EMT is a biologic process resulting in the conversion of epithelial cells to 

myofibroblasts.40, 41 It is characterized by the loss of epithelial characteristics 

which includes apical-basolateral polarity and cell-cell adhesions.42 Increased 

expression of transforming growth factor-β, α-smooth muscle actin, 

extracellular matrix proteins collagen type 1, matrix metalloproteinases induces 

this process.40, 42-44 EMT of the RPE is known to be related to the pathogenesis 

of subretinal fibrosis in various retinal diseases including age-related macular 

degeneration.45-47 NF-κB activation by TNF-α is well-known to play a crucial 

role in EMT.48-51 Recently, an association between EMT genes and genes 

involved in NF-κB activation has been reported.50,52,53 Gene expression profiles 

of ARB iPSC-RPE exhibited significant enrichment of epithelial-mesenchymal 

transition gene set compared with control iPSC-RPE or BD iPSC-RPE. Genes 

encoding TNF-α signaling via NF-κB were also enriched in ARB iPSC-RPE 

compared with control iPSC-RPE or BD iPSC-RPE. Thus, these results indicate 

that inhibiting EMT and NF-κB activation in the RPE could be a potential 

therapeutic target for ARB.  

The lack of peripheral retinal findings in BD and ARB is possibly related to the 

capacity for RPE cells to withstand the presence of dysfunctional BEST1. This 

difference in phenotype between central and peripheral retina in BD and ARB 

could be explained by regional differences in the RPE or superimposed 

environmental stress upon the macular RPE.29 Further studies are necessary to 

evaluate whether iPSC-RPE cells are more similar to macula or peripheral 

retina. 
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V. CONCLUSION 

This study established an in vitro model of ARB which showed a functional 

deficiency rather than anatomical defects. Fluid transport from apical to basal 

was significantly reduced in ARB iPSC-RPE compared to that of autosomal 

dominant BD iPSC-RPE. ARB may be caused by RPE dysfunction following 

BEST1 mutation. 
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Table 2. Transepithelial Resistance Measurement and the Rate of Fluid Flow in 

BD iPSC-RPE and ARB iPSC-RPE.  

 Control 
BD 

iPSC-RPE 
p-value 

ARB 

iPSC-RPE 
p-value 

TER 

(Ω*cm2) 
305.8313.33 312.6723.84 0.936 290.0010.24 0.335 

Fluid flow 

(µl/hr/cm2) 
0.350.02 0.290.02 0.038 0.120.01 0.000 

ARB iPSC-RPE: autosomal recessive induced pluripotent stem cell retinal 

pigment epithelium, BD iPSC-RPE: autosomal dominant induced pluripotent 

stem cell retinal pigment epithelium, TER: transepithelial resistance  
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ABSTRACT(IN KOREAN) 

 

역분화줄기세포를 이용한 베스트병과 열성유전베스트병 

질명모델의 구축 

 

<지도교수 이승규> 

 

연세대학교 대학원 의학과 

 

이지환 

 

 

목적: 인간 역분화줄기세포를 이용하여 베스트병과 열성유전베스트병의 

체외모델을 구축하고자 함.  

 

방법: 열성유전베스트병 환자 1명과 우성유전베스트병 환자 1명, 정상 대조군 

2명으로부터 채취한 말초혈액샘플에서 인간 역분화줄기세포주를 생성하였다. 

만능성 표지자를 역분화줄기세포주에서 확인하기 위해 면역세포화학염색과 

역전사 중합효소 연쇄반응을 시행하였다. 역분화줄기세포를 망막색소상피로 

분화한 후, 공초점 현미경과 면역세포화학염색을 사용하여 망막색소상피의 

형태학적 특성을 분석하였다.  역분화줄기세포에 대하여 RNA 염기순서분석을 

시행하고, 구체적 유전자 집합에 대하여 유전자 집합 농축 분석을 실시하였다.  

 

결과: 열성유전베스트병 역분화줄기세포의 형태학적 특성과 유전자 발현, 상피 

피완전성은 베스트병 환자 혹은 정상 대조군 역분화줄기세포와 비교하여 유사한 

소견을 보였다. 정단부에서 기저부로의 유체 수송은 베스트병 환자 혹은 정상 
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대조군 역분화줄기세포에 비해 열성유전베스트병 역분화줄기세포에서 더 

감소된 소견이 관찰되었다. 유전자 집합 농축 분석 결과, 정상 대조군 혹은 

베스트병 환자 역분화줄기세포에 비하여 열성유전베스트병 역분화줄기세포에서 

상피간엽이행 유전자 집합 및 NF-κB 경유 TNF-α 신호 유전자 집합의 유의한 

농축이 관찰되었다.  

 

결론: 본 연구를 통하여 열성유전베스트병 인간 역분화줄기세포 모델에서 

형태학적 이상보다 기능적인 결핍을 확인하였다. 열성유전베스트병은 BEST1 

유전자의 변이에 따른 망막색소상피의 기능이상에 의해 발생할 가능성이 있을 

것이다. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

핵심되는 말 : 열성유전베스트병, 베스트병, 역분화줄기세포, 망막색소상피 
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