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Abstract

Gastric cancer is one of the most commonly occurring cancers in the

world, with an increased incidence and mortality, especially according to

modern people's diet and busy lifestyle. In particular, the Koreans targeted

in this study, gastric cancer occupies the leading cause of death in the

entire cancer group and showing the record (2018. Statistics of causes of

death). It is necessary to discover specific gastric cancer biomarkers for

Koreans to predict the diagnosis of gastric cancer through the results of a

study by the American Cancer Control Association (ACSI, 2009), in which

the incidence and cause of different types of cancer differ to the

biomarkers by comparing the difference in gene expression between the

normal RNA group and the gastric cancer group.

NGS-based RNA-seq analysis was used as a method to see the

difference in gene expression from RNA. Regarding RNA expression,

analysis is performed using RNA expression data of TCGA database and

Korean FASTQ data of NCBI SRA database to discover Korean gastric

cancer biomarkers.

In the TCGA, data on gastric cancer was analyzed as RNA-seq

expression data for 3 races (Asia, Caucasian, and Black). We were

proceeding with the analysis of normal samples and type-specific gastric

cancer samples, extracted differentially expressed genes in Asia. For SRA,

FASTQ data from the Korean Gastric Cancer Project (Accession:

PRJNA435914) were used and RNA-seq analysis wes performed. The

RNA-seq pipeline wes being analyzed in the same method as the TCGA
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RNA-seq pipeline, and normal samples and gastric cancer samples are

analyzed in groups.

Genetic biomarkers for Korean-specific gastric cancer based on TCGA

gastric cancer data by substituting it into the list of Korean differentially

expressed genes to which a random forest model was applied for the

Asian-differentiated expression genes selected by the AUC filter. Genes

showing the statistically most significant value were confirmed in the three

genes CIP2A, LDHD, and KIFC1. In addition, we were searching for g;

profiler Annotation and GeneMANIA network for excavated genes, and

derived the function of the pathway containing the Korean-specific genes.

Three TCGA-based Korean-specific genes extracted through this study

(CIP2A, LDHD, KIFC1) and three g;profiler results (KEGG: 00260, GO:

0061846, GO: 0061845) and two GeneMANIA Network while hoping that

the results will be utilized as a biomarker for the prediction of gastric

cancer diagnosis in Koreans in the future.

Through the study of these RNA-seq, it was possible to recognize the

difference between races in gastric cancer patients, in particular, gastric

cancer appears to be more common in Asians than in whites and blacks.

We expectd more and more safe and accurate biomarkers are researched

for Asian and Korean.
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I. Introduction

1.1. Gactric Cancer and RNA-seq

The stomach is the widest part of the digestive system and is located

under the ribs of the left upper abdomen and is connected to the

esophagus and duodenum. The stomach stores the ingested food, and the

stored food is shredded into easy-to-digest forms through contraction and

relaxation of gastric juice and secretion of gastric juice containing digestive

fluid, and mixed to make it easier to digest. It serves to send food

digested like porridge into the duodenum at an appropriate rate in

accordance with the digestive and absorption functions of the small

intestine. Stomach cancer is all malignant tumors that occur in the

stomach, and generally refers to gastric cancer. Gastric cancer is a case in

which adenocarcinoma located in the gastric mucosa causes malignant

changes, accounting for 95% of malignant tumors occurring in the stomach.

The gastric wall is composed of mucosal layer, submucosal layer, muscle

layer, mesenteric layer, and subsidial layer. Stomach cancer starts from the

gastric mucosa surrounding the inner side of the stomach and grows into

the muscular layer and mesentery layer. Early detection and treatment are

important because they invade the surrounding organs. (Severance Hospital

Disease Information, 2014)

In this study, I intended to analyze through RNA-seq data of gastric

cancer. Next-generation sequencing (NGS) is a more advanced gene and

genome analysis technology than Sanger Sequencing, which is the

first-generation sequencing technology used to diagnose gene mutations

such as cancer and infectious diseases. Sanger sequencing has only one

gene that can be identified at a time, but NGS can analyze all genes at

once. (Macrogen press release, 2018)

RNA-seq is an analysis method that analyzes transcriptomes to identify
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differences in expression. Based on the central dogma, which becomes a

protein through translation in transcript, it is a method of calculating by

determining that the more number of transcripts, the greater expression.

After transcriptome large-scale sequencing, a new one can be discovered

through RNA-seq, and the expression value can be quantified. NGS-based

RNA sequencing (RNA-seq) is considered to be the most powerful tool of

modern medicine, beyond the limitations of existing methods for

transcriptome analysis. RNA-seq is specialized in analyzing various types

of non-coding RNA as well as changes in gene expression that has not

been previously detected.

1.2. Needs to discover cancer markers by race

According to the mortality rate cancer death in 2018, which the Korean

National Statistical Office surveyed, cancer was the most cause of death in

Korea for 36 years, and the number of cancer deaths is the highest ever.

According to the 2018 cause of death, the death rate from malignant

neoplasms (cancer) last year (per 100,000 population) was 154.3 people. The

death rate was the highest since statistics were recorded, increasing by 0.4

(0.2%) compared to 153.9 people last year. (Korean Statistics Office, 2018.)

In particular, as of 2018 year, gastric cancer was the fifth most common

cancer worldwide, accounting for 8.2% of all cancer deaths and the third

most common cause of death (Bray et al. 2018). Also, in Korea, there have

been many changes in socio-economic, cultural and health aspects such as

rapid aging, rapid economic growth, westernization of lifestyle, and the

development of medical technology. (Go Gwang-pil, 2019). Gastric cancer

was a trend that has declined globally in recent years (Torre et al. 2016),

but according to data from the Central Cancer Registry in 2018, it was the

cancer that ranks first among cancers in Korea out of thyroid cancer in
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2016. In 2016, the number of gastric cancer patients was 30,504, and the

age-standardized gastric cancer incidence rate was 35.4 prople per 100,000

population (Korea Central Cancer Register, 2018).

According to the Journal of Cancer Control Society in USA, Koreans showed

the biggest difference from the American cancer group, especially the Caucasian

group. Korean males had an incidence of stomach cancer, liver cancer, and

gallbladder cancer up to 4.4 times higher than in whites. Based on white males,

the incidence of gastric cancer among Korean males was 9.83, which was 10

times higher. On the other hand, in other types of cancer, such as esophageal

cancer, laryngeal cancer, and pancreatic cancer, the incidence rate of Korean males

was lower than that of Caucasians, and Korean females also showed significantly

higher incidences of gastric cancer (4.52) and liver cancer (4.48) than Caucasians.

Korean women are significantly higher than Caucasians with gastric cancer 8.04,

liver cancer, 6.37, gallbladder cancer 3.52, and cervical cancer 2.48.

Through the study of the current status of cancer and cancer mortality and

survival rate among races (American Cancer Society ACS, 2009), it is necessary

to find biomarkers for each race according to each cancer type. It is derived

through gene expression analysis.
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II. Method & Materials

Figure 1. Overall Workflow 

2.1. TCGA and NCBI SRA database

This study was based on data from The Cancer Genome Atlas (TCGA)

and Sequence Read Archive (SRA). The TCGA is a data portal that

collects all cancer data from cancer-related projects around the world and

analyzes them using its own standardized analysis method to produce,

manage, and provide data. The SRA is a database managed by the

National Center for Biotechnology and Information Technology (NCBI). It

is a database that stores and manages sequence read data from various
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Resource Name Number of
Samples

SRA Experiments (SRX3763198 ~ SRX3763265) 68

- Normal 34

- Cancer 34

TCGA Experiments (Gastric Cancer) 359

- Solid Tissue Normal 23

Asian 5

Black 1

White 17

- Tumor Tissue 336

Asian 64

Black 11

White 261

Table 1. Data Source and Samples

projects.

Analysis was performed based on RNA-seq profiling (Read-Count type)

data of samples related to gastric cancer in the TCGA Portal. To see

differences by race, only three races (White, Black, Asian) were filtered

and analyzed with a total of 359 sample data. In the SRA database, 68

Korean gastric cancer data (FASTQ type) corresponding to SRX3763198 to

SRX2763265 were provided and analyzed. Both databases are extracted

from samples of patients with gastric cancer, and their age ranges from 60

to 70 years old.
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2.2. edgeR in R package

2.2.1. TMM Normalization

In the process of using RPKM used from Microarray for RNAseq, as

incompatibility is observed, various normalization methods have been

studied. The RLE and edgeR methods are studied considering the division

of the total mapped reads do not reflect the entire transcriptome size

(Wangner, G. P. et al., 2012). When transcriptome size is defined as a

factor affecting the observed total read, it can be divided into RLE and

TMM methods according to the method of correcting this size factor. First,

RLE is a method of calculating geometric mean and median value and

estimating it as a size factor to obtain normalized values (Anders et al.

2010). TMM is a method using the weighted mean after excluding genes

with large log ratio and expression level (Robinson, M. D. & Oshlack, A.

2010). There are some papers that show better performance by comparing

these two methods with RPKM (Wagner, GP, 2012), but there are some

aspects that it is better to use RPKM that considers the gene length. As

research is conducted, it is recommended to study using Read-Count

without considering the gene length.

edgeR Filter: Only genes with p-values below the specified value are

selected using the edgeR analysis results. Generally, a value of 0.05 or less

is used, genes having a p-value of 0.05 or less are selected. In this study,

analysis is performed using a value of adjust p-value (Benjamini hochberg)

of 0.01 or less.

edgeR is an R package that can be used in similar environments such as

DESeq, and is relatively fast in terms of speed like DESeq, also can be

analyzed when there are other factors besides the controlled conditions.

And since Bayesian gene-wise dispersion estimation can be calculated,

information between genes/transcripts can be obtained. However, if the
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replicate is not considered, the common and tag-wise dispersion cannot be

obtained. In this case, the following two methods are used in edgeR. The

first method is to assume that the biological coefficient of variation (BCV)

used by edgeR. It is assumed to be some empirically known constant

according to the data, which may deviate from the original analysis

direction, and the dispersion is larger than actually expected. However, it is

much more realistic in that analyzes with dispersion rather than excluding

and analyzing biological variation. The second method is to estimate

dispersion from the control transcript, for example, using housekeeping

gene. Since the housekeeping gene is having a small change in expression

level among cells, it can be assumed that it is suitable as a common

dispersion.

2.2.2. Fisher’s Exact Test for DEG

Fisher exact test is a statistical method used to perform gene-enrichment

analysis. The Fisher exact test is for the hypothesis that gene sets and

genomes have the same ratio that can be divided into two categories: In

Pathway and Not in Pathway.

When the p-value of Fisher exact test of a pathway A is calculated,

according to the decision, when the p-value is less than the significance

level under the significance level of 0.05, the ratio of the pathway that the

researcher's gene set comprises is the total genome. It can be said that it

is different from the proportion of pathways that are formed. In other

words, a specific pathway is more relevant (associated, enriched) to the

gene set of interest.

In DEG analysis and pathway analysis, more than 4,000 hypothesis tests

(more than 4,000 p-values) are performed at the same time. In other

words, the p-value that can be determined by gene or pathway is
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calculated. Here, researchers face multiple testing problems. This is

because too many false positives are calculated, and when there are genes

that do not actually differ, the probability of determining that there is a

difference increases. For example, the probability of making the right

decision under significance level 0.05 (5%) is 0.95 (95%). At this time, if

the number of genes to be determined is 10,000, the probability of making

the correct judgment for all genes is reduced as “0.95 X 0.95 X ⋯”.

Therefore, it is necessary to calculate the p-value according to the

significance level to be lowered to make the right decision. This is called a

multiple testing problem. To solve this problem, methods for correcting

p-values such as Benjamini-Hochberg, Bonferroni correction, and

permutation test have been studied, and DEG or pathway analysis

packages provide these corrected p-values.

The proposed method considering the ratio of true positive and false

positive is a correction method from the perspective of FDR. One of the

methods is proposed by Benjamini-Hochberg. It is possible to find the

corrected values in order from the smallest p-value. This is a correction

method in which the false positive is reduced relatively gently.

2.3 ROC Curve

The ROC (receiver operating characteristic) curve is one of the

traditionally used methods for evaluating the accuracy of discrimination in

the field of discriminant analysis (Kang et al., 2014; Jeon, Lee, 2014). After

calculating the sensitivity and specificity for each cut value of the

predictor, a ROC curve is created by drawing the connecting line with the

corresponding and sensitivity as the vertical axis and the '1-specificity' as

the horizontal axis (Simundic, 2009).

Area under curve (AUC) means the area under the ROC curve. The good
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model has better performance, the closer ROC curve is to the upper left of

the diagonal. Also, the diagonal means the ROC curve by chance (that is,

the diagonal means the ROC curve for a model with no predictive power).

Using these properties, AUC can be used as a measure the performance of

a model. If the ROC curve coincides with the diagonal, AUC = 0.5, so

AUC has a value between 0.5 and 1, and the closer to 1, the better the

performance of the model.

When analyzing a single data, it is generally desirable to analyze as

many models as possible (Nam et al., 2017; Ryu, Hwang, 2017). Therefore,

in order to obtain an optimal model, it is necessary to compare and

evaluate several models, and if one model is selected, it must be proved

that the selected model is superior to other models. A variety of case

studies show that AUC can be useful in evaluating the performance of

variables or models in real problems. Also, the ROC curve can be used

efficiently in the problem of determining the optimal truncation value.

The AUC and pROC package in R allow the creation of ROC curves and

the calculation of AUC, the LOGISTIC Procedure and pROC package allow

comparison and testing of multiple AUCs.

2.4 Random Forest

Random Forest is a model proposed by Breiman (2001) by applying an

ensemble technique to solve the overfitting problem in the decision tree

model. In other words, it is a method of generating a large number of

bootstrap samples and applying a decision tree model to synthesize the

results. The main difference from other ensemble models is not only

randomness is introduced in the part where the bootstrap sample is

generated, but randomness is also introduced when selecting explanatory

variables at each node when the decision tree model is fitted ( Eugene,
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2015). Accordingly, the random forest has maximum randomness, which

reduces the correlation between decision trees and reduces prediction

errors. In addition, as the number of decision trees increases, the prediction

error decreases, and even if the number of decision trees increases, this

model has the advantage of not being overfit.

In general, the model verification method divides the data into training

data and verification data. Use the method to find the static classification

rate by verifying by pressing or cross-validation. On the other hand, in

random forest, there is no need to divide data into training and verification

data. When creating this bootstrap sample, the data not selected as the

bootstrap sample are called out-of-bag data (OBB) and can be used to

perform model verification by using it instead of the verification data.

Random Forest uses only one variable when branching the existing

decision tree. The disadvantages of the model's high explanatory power

but poor predictive power and poor model stability. It is solved by

bootstrapping with maximum randomness, and it provides a highly stable

model with high predictive power, especially when there are many

explanatory variables. In addition, random forest is a single method using

existing parameters such as maximum likelihood method. More accurate

and better than machine learning algorithms such as decision trees and

neural networks is emerging as an alternative to produce results, and there

are many research data available, especially in gene expression studies.

2.5. RNA-seq Analysis Pipeline

TCGA data provides RNA expression results in the Database Portal.

Therefore, TCGA performs DEG analysis (differential expression gene

analysis) without separate RNA-seq analysis.

In the case of NCBI SRA database, raw data was provided as a FASTQ

file. Therefore, in order to calculate RNA expression, the pre-processing
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Figure 2.  RNA-seq Analysis Pipeline (reference; TCGA pipeline)

process of FASTQ file trimming, mapping to the reference genome, and

profiling analysis were performed. The analysis tools were conducted in

the STAR-HTseq pipeline in line with TCGA's analysis tools, and the

reference genome and annotation files were used GRCh38.d1.vd1 version.

As a result of DEG analysis using Expression Profiling data of the two

databases, ROC curve and Random Forest analysis were performed to

extract 15 Korean-specific genes. Attach the description of the RNA-seq

analysis tools below. The analysis proceeds to Python 2.7 and R 3.6.3

versions. Trimmomatic 0.32 ver. is a program that performs trimming

depending on various parameters on illumina paired-end or single-end.

STAR 2.6.0c, Spliced Transcripts Alignment to a Reference (STAR)

software based on RNA-seq alignment algorithm which utilizes sequential

maximum mappable seed search in uncompressed suffix arrays followed by
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seed clustering and stitching procedure.[4] HTseq version 0.10.0 is a

Python package that provides infrastructure to process data from

high-throughput sequencing assays.[7] A very typical use case for the

HTSeq library is to for a given list of genomic features (such as genes,

exons, ChIP-Seq peaks, or the like), how many sequencing reads overlap

each of the features.

III. Method; SRA database

3.1 RNA-seq Analysis Summary

Differential expression genes were analyzed by obtaining gene expression

values through transcriptome sequencing of Homo sapiens (GRCh38).

Pre-processed trimmed reads are mapped to a known reference genome

using a STAR program capable of splice junction processing.

Sequencing of paired-end transcripts for a total of 68 samples from NCBI

SRA, Korean Gastric Cancer, results were produced within the normal

range of all samples. The raw data for each sample and the trimmed read

after the pre-processing process were compared with the total data volume

and Q30 (phred score, base quality of 30% or more %), respectively. The

data (Table 6, Table 7) after this paper could be confirmed.

The Fred quality score was a numerical representation of how accurate

each base is, and the higher Q number, the higher accuracy of that base.

Q20 has a wrong base probability of 1% and Q30 has a wrong base

probability of 0.1%. The Fred quality score Q was calculated as -10log10P,

where P represents the probability of a base call error.
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Table 2. Quality of Phred Score

The pre-processed trimmed reads were mapped to a known reference

genome using a STAR program capable of splice junction processing. The

mapping ratio defined by mapped reads versus the number of trimmed

reads for each sample can be confirmed in the table after this paper.

After read mapping, used the HTseq program to extract the read count

for each gene of each sample based on the gene annotation of the species.

Using this value, DEG (Differentially Expressed Genes) analysis was

performed using edgeR for the comparative combination (Test_vs_Control),

and |fc|>=3 & exactTest adj.p<0.01 to select genes expressing differentially

between the two groups.
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Figure 3. SRA Distribution of genes for analysis

3.2. Pretreatment analysis of differential expressed genes

3.2.1. Analysis data quality check and pre-processing

With the count value for the known gene obtained as a result of read

mapping, the process of selecting the differentially expressed gene between

samples was performed. In the pre-processing process, quality check of

data and normalization between samples were performed before entering

the analysis, and similarity between samples was checked when biological

replicates exist to determine whether data was reliable.

3.2.2. Data Quality Check

For each gene, genes having a count value of 0 in at least one sample

from a total of 68 samples were excluded from analysis. Therefore,

statistical analysis was performed on 7,511 genes excluding 45,461 genes

out of 52,972 genes.
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Figure 4. SRA Distribution after pre-processing

3.2.3. Data transformation and normalization

To reduce systematic bias that could affect biological meaning in

comparison between samples, the size factor was estimated using count

data, and the data was corrected using Trimmed Mean of M-values

(TMM) normalization. (using the'edgeR' R library).

3.2.3.1. Box plot of distribution of expression values per sample

Figure 4. is the percentile, median, percentile to show the distribution of

expression values for each sample for before/after Logarithm (based 2) of

raw signal(Count)+1 and TMM normalization. Bar plot visually expressed

using the minimum value. Logarithm was performed by adding 1 to the

read count value to see the value when the log of the low unit is taken.
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Figure 5. SRA Tumor, Normal Samples 

level plot

3.2.4. Correlation analysis between samples

We used the Log2(Count+1) value to check the degree of similarity

between samples (Pearson's coefficient, Pearson's correlation coefficient) to

check whether the repeat sample is reproducible. (Range: -1≤ r ≤ 1) The

closer the correlation coefficient value was to 1, the higher the similarity

between samples. Overall, since the blue coefficient was high, it could be

confirmed that the similarity between SRA samples was high.
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Figure 6. SRA Multidimensional Scaling (MDS) 

3.2.5. MDS (Multidimensional Scaling)

MDS is a picture expressed in two-dimensional space by using two

components that best describe the degree of similarity between samples

using the Log2(Count+1) value. It can be confirmed that there are outlier

samples and similar expression patterns between biological replicates.
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Figure 7. TCGA Distribution of genes for analysis

IV. Method; TCGA Database

4.1. Pretreatment analysis of differential expressed genes

Genes with a count value of 0 in at least one sample from all 359

samples were excluded from the analysis. Therefore, statistical analysis

was performed on 12,562 genes excluding 35,359 genes out of a total of

47,921 genes.
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Figure 8. TCGA Box plot for Distribution after pre-processing

4.1.1. Data transformation and normalization

To reduce systematic bias that can affect biological meaning in

comparison between samples, the size factor was estimated using count

data, and the data was corrected using Trimmed Mean of M-values

(TMM) normalization. (using the ‘edgeR’ R library).

4.1.2. Box plot of distribution of expression values per samp le

Figure 8. is the percentile, median, percentile to show the distribution of

expression values for each sample for before/after Logarithm (based 2) of

raw signal(Count)+1 and TMM normalization. Bar plot visually expressed

using the minimum value.
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Figure 9. TCGA level plot.  (A) White, (B) Normal (C) Black (D) Asian

4.1.3. Correlation analysis between samples

We used the Log2(Count+1) value to check the similarity (Pearson's

coefficient, Pearson's correlation coefficient) between samples to check the

repeatability of repetitive samples. (Range: -1≤ r ≤ 1) The closer the

correlation coefficient value was to 1, the higher the similarity between

samples. Samples were reproducible in the White race, Asian and Normal

groups, but it was confirmed that there are differences between the

samples in the Black race.



- 21 -

4.1.4. MDS, Multidimensional Scaling

MDS is a picture expressed in two-dimensional space by using two

components that best describe the degree of similarity between samples by

using Log2(Count+1) values. It can be confirmed that there are outlier

samples and similar expression patterns between biological replicates. It

can be seen that the samples are distributed in a certain pattern in the 4

groups.

Figure 10. TCGA Multidimensional Scaling (MDS)
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Figure 11. SRA UP, DOWN regulated count 

V. Result

5.1. SRA Analysis result of differential expressed genes

The sequence of DEG (Differentially Expressed Genes) analysis. Original

Raw Data was targeted to count values for known genes obtained through

HTseq.

After filtering genes with low quality during data pre-processing and QC,

TMM normalization was performed.

For statistical analysis, |fc|>=3 & exactTest adj.p<0.01 for each

comparison combination was used.

The level of similarity for each gene was grouped by hierarchical

clustering analysis on the list of significant genes, and this was visualized

by heatmap and dendrogram.

5.1.1. Number of Genes per Up and Down based on Fold Change and

p-value

It shows the number of significant genes based on fold change and

p-value of the Tumor vs Normal comparison combination.
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Figure 12. SRA Volcano Plot 

5.1.2. Volcano plot of expression values between two groups

This is a plot showing the log-fold change of the expression value

between the Tumor vs Normal comparison combination and the p-value

derived through comparison between the two groups as a volcano plot.

(X axis: log2 Fold change, Y axis: -log10 p-value)
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Figure 13. SRA Smear Plot 

5.1.3. Differential expression gene expression according to expression

intensity, Smear Plot

Smear plots (X-axis: average log2 counts-per-million (logCPM), Y-axis:

log2 Fold Change) are used to identify genes in the test group compared

to the control with high average of the expression values of the two

groups.

Even if the change in fold is more than 2 times the same, a gene with

a difference at a higher place may have higher reliability than a place

where the average expression value is 2 times or more different.
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Figure 14. SRA Heatmap

5.1.4. Hierarchical Clustering Analysis

For the significant DEG list, samples and genes with similar expression

levels are grouped and displayed through hierarchical clustering analysis

(Euclidean Distance, Complete Linkage) using the normalized values of

each sample. When the heatmap is drawn with significant genes by

comparing the Normal group and the Tumor group, it can be seen that the

pattern is divided according to the Normal and Tumor groups.
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Figure 15. TCGA UP, DOWN regulated count

5.2 TCGA Analysis result of differential expressed genes

The following description shows the order of DEG (Differentially

Expressed Genes) analysis. Original Raw Data is targeted to count values for

known genes obtained through HTseq. After filtering genes with low quality

during data pre-processing and QC, TMM normalization is performed. For

statistical analysis, |fc|>=3 & exactTest adj.p<0.01 for each comparison

combination. Significant results are selected with |fc|>=3 & exactTest adj.p<0.01.

The level of similarity for each gene is grouped by hierarchical clustering analysis

on the list of significant genes, and visualized by heatmap and dendrogram.

5.2.1. Number of genes per Up and Down based on the Fold Change

and p-value

Shows the number of significant genes based on fold change and

p-value for each comparison combination.
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5.2.2. Hierarchical Clustering Analysis

For the significant DEG list, samples and genes with similar expression

levels are grouped and expressed through hierarchical clustering analysis

(Euclidean Distance, Complete Linkage) using the normalized values of

each sample.

Figure 16. TCGA Heatmap
`
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5.2.3. Venn-Diagram with DEGs

Genes obtained by conducting DEG analysis of each Tumor group

(Asian, Black, White) compared to the Normal group are drawn with a

Venn Diagram to distinguish between common and non-genetic genes.

It is possible to confirm that genes with different differences exist even

in the same stomach cancer group for each race. The purpose of this

study is to extract specialized genes from SRA Korean data, and Koreans

belong to Asian races. As shown in Figure 17. (Asian_Tumor vs.

All_Normal) in Venn Diagram, genes that showed significance in Asian

gastric cancer groups compared to all normal groups are analyzed.

Proceeded.

Figure 17. TCGA Venn Diagram
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Gene AUC Description
NDRG2 0.991847826 NDRG family member 2 

CFAP157 0.953804348 cilia and flagella associated protein 157
ATAD5 0.953804348 ATPase family AAA domain containing 5 
CGAS 0.940896739 cyclic GMP-AMP synthase 
CIP2A 0.938858696 cell proliferation regulating inhibitor of protein
DLEU2 0.918478261 deleted in lymphocytic leukemia 2 
BBC3 0.911684783 BCL2 binding component 3 
TYMS 0.901494565 thymidylate synthetase 

CCDC34 0.899456522 coiled-coil domain containing 34 
ANKRD10-IT1 0.893342391 ANKRD10 intronic transcript1 

TPM3P9 0.889266304 tropomyosin 3 pseudogene 9 
KIFC1 0.887907609 kinesin family member C1 
ME1 0.886548913 malic enzyme 1 

BRIP1 0.878396739 BRCA1 interacting protein C-terminal helicase 1
CKAP2L 0.866168478 cytoskeleton associated protein 2 like 
SCARA3 0.864130435 scavenger receptor class A member 3 

AL591895.1 0.861413043 novel transcript
MPP7 0.861413043 membrane palmitoylated protein 7 

BAIAP2 0.849184783 BAR/IMD domain containing adaptor protein 2
ANGPTL4 0.839673913 angiopoietin like 4 

AATF 0.835597826 apoptosis antagonizing transcription factor
OSGIN1 0.832880435 oxidative stress induced growth inhibitor 1

PID1 0.828125 phosphotyrosine interaction domain containing 1
PVR 0.827445652 PVR cell adhesion molecule 

CLIP4 0.826766304 CAP-Gly domain containing linker protein family
LDHD 0.809103261 lactate dehydrogenase D 
CTF1 0.80638587 cardiotrophin 1 

zinc finger protein 853 ZNF853 0.805027174

Table 3. Gene list of AUC result (over 0.8)

5.3 Extract Korean Specific genes for Gastric Cancer Data

5.3.1 TCGA Asian ROC curve

Through the TCGA gastric cancer DEG analysis, 52 DEG gene listed

from the Asian group are extracted, and the AUC values of the genes

were respectively obtained, and 28 genes with 0.8 or higher are extracted.

(Table 2)
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Among the genes with AUC 0.8 or higher, the ROC curve was drawn

as the Top 6 Gene. (Figure 18). The Curve was drawn with 1-Specificity

on the X-axis and sensitivity on the Y-axis, and it can be seen as a Gene

with higher predictive power as the area under the curve is closer to 1.

Figure 18. ROC Curve for top 6 genes
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5.1.2 Good fit of predicted genes through the Random Forest

After setting the variable that divided the samples into Normal and

Tumor groups for genes with AUC 0.8 or higher, and applying them to

the Random Forest model 100 times, OOB error is obtained.

Figure 19. Random Forest OOB ntree

Figure 19 is a graph showing how the error rate of random forest

changes with the number of trees using OOB data. As the number of

trees increases, the error rate decreases, and it can be seen that the error

rate stably converges after about 300 trees. Accordingly, when the random

forest model was executed, the number of tree generation is 300 and

analysis was performed.
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Figure 20. Accuracy for predictors with mtree

Figure 21. Confusion matrix and Statistics
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Gene_Symbol Gene_Description
Kor_Tumor / Kor_Normal

Fold  
Change logCPM bh_pValue

CIP2A cell proliferation regulating inhibitor of protein 3.500 3.233 1.9E-18

LDHD lactate dehydrogenase D -3.148 5.694 9.4E-08
KIFC1 kinesin family member C1 2.314 4.786 6.1E-09
TYMS thymidylate synthetase 1.893 4.758 6.9E-07

NDRG2 NDRG family member 2 -1.860 6.670 3.2E-06
ME1 malic enzyme 1 -1.683 5.630 6.3E-05

BAIAP2 BAR/IMD domain containing adaptor protein 2 -1.664 6.000 4.5E-04

PVR PVR cell adhesion molecule 1.444 6.006 1.0E-04

CCDC34 coiled-coil domain containing 34 -1.278 5.086 2.0E-01

AATF apoptosis antagonizing transcription factor -1.091 6.237 2.9E-01

Table 4. Common gene list for TCGA and SRA Korean

As a result of random forest modeling analysis using TCGA (+SRA)

data as a test set and SRA data as a train set by extracting the gene

lists extracted through the ROC curve as a target, when the mtree is 1, it

had the highest accuracy of 0.977. It was confirmed that it is possible to

divide the Normal sample and the Tumor sample at a high rate. Gene

Custom analysis and network analysis were performed with selected Gene

lists by applying modeling.

5.1.3. Selected Gene Analysis in SRA

Among the genes obtained by performing DEG from TCGA gastric

cancer data, Asian-specific genes with AUC 0.8 or higher were extracted,

and the gene list obtained by performing DEG with SRA Korean gastric

cancer data and common genes applied with random forest modeling were

extracted.
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Figure 22. Smear plot with common genes

In particular, the three genes CIP2A, LDHD, and KIFC1 showed that the

direction of regulation was identical in the two datasets (TCGA, SRA), and

that the Fold Change was more than twice, and the Adjust p value was

also significant. SRA Korean DEG results were marked for 10 genes, and

analysis of g;profiler annotation and Cytoscape-based GeneMANIA network

is performed.

5.1.4. Differential gene expression according to intensity

Smear Plot. The average expression value of the two groups was high,

and it was expressed as a Smear plot to identify 15 extracted genes that

are different in the control and test groups. A list of 10 extracted genes

was separately displayed.
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Figure 23. Volcano plot with common genes

5.1.5. Volcano plot of expression values between two groups

Figure 23. shows the p-value derived through log2 fold change of

expression value between the comparison combinations and the average

comparison between the two groups as a volcano plot. Fifteen extracted

genes were displayed. A list of 10 extracted genes was separately

displayed.
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5.1.6. Hierarchical Clustering Analysis

For 10 extracted genes, samples and genes with similar expression levels

were grouped through hierarchical clustering analysis (Euclidean Distance,

Complete Linkage) using the normalized values of each sample. The names

of 10 genes were displayed on the right side of the heatmap.

Patterns of Normalized Value according to Normal and Cancer groups can

be confirmed for 10 genes.

Figure 24. Heatmap with common genes
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Figure 25. g;Profiler annotation plot

   ID Source Term ID Term Name adj_p

1 KEGG KEGG:00620 Pyruvate metabolism 1.175×10-2

2 GO:CC GO:0061846 dendritic spine cytoplasm 4.993×10-2

3 GO:CC GO:0061845 neuron projection branch point 4.993×10-2

Table 5. g;Profiler DB annotation list

5.4 Annotation & Network for Korean Specific genes

5.4.1 g;Profiler Annotation

Among g:profiler, g:GOSt is a

Gene set enrichment analysis

tool that expresses the

function by searching the

contents of the database with

the list of entered genes. The

known function of the search

gene is mapped to a database

to search for a statistically

significant function.

The database includes the

Ensembl database, Gene

Ontology (GO), and KEGG

pathway.

In this study, the related

functions were confirmed from

a total of 3 sources for 10

extracted genes.
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5.4.2 GeneMANIA in Cytoscape

Cytoscape open source software was used as a tool to view the

Molecular interaction network of Genes or to view pathways. It is a

program that can link various ohmic data such as annotation and

expression as well as network and pathway visualization.

Among many plugins of Cytoscape, GeneMANIA network analysis

plugin, which is frequently used for Gene-Gene interaction analysis, was

used in this study. GeneMANIA is a gene interaction analysis and

visualization tool that analyzes 597,392,998 interactions of 163,599 genes in

9 organisms. Genes extracted through RNA-seq DEG analysis are used as

inputs to find nearby genes on the network and to find and analyze

several networks.

Figure 26. GeneMANIA network plot
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Q-Value Coverage GO Annotation

0.072 3/23 Regulation of transcription involved in G1/S transition of 
mitotic cell cycle

0.072 5/180 Mitosis
0.16 4/112 Cytokinesis
0.20 5/256 Nulear division
0.24 5/281 Organelle fission
0.40 2/11 Regulation of exit from mitosis
0.71 3/81 Midbody
0.74 2/18 Mitotic cytokinesis
0.74 2/17 Exit from mitosis

Table 6. GeneMANIA GO annotation list

As a GeneMania Network analysis, We can draw a network as shown

in Figure 26, and see the mechanism showing the most significant result

among the searched networks.

Cytoscape-based GeneMania analysis on the 10 selected genes, it was

confirmed that it has the network closest to the two studies.

(1) “Identification, replication, and functional fine-mapping of expression

quantitative trait loci in primary human liver tissue.. Innocenti, et al.

(2011.0). PLoS Genet.”

(2) “Integrative genomics identifies distinct molecular classes of

neuroblastoma and shows that multiple genes are targeted by regional

alterations in DNA copy number.. Wang, et al. (2006.0). Cancer Res.”

Also, through Table 5, it was possible to check the Gene Function

matching Gene Ontology (GO).
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VI. Conclusion and Discussion

Gastric cancer is one of the most prevalent cancers worldwide, and the

incidence and mortality rates are increasing, especially according to modern

people's eating habits and busy lifestyles. In particular, in the case of

Koreans targeted for this study, gastric cancer occupied the number one

cause of death among all cancer groups, and the number of cancer deaths

was the largest in 2018. It is necessary to discover Korean specific gastric

cancer biomarkers to predict the diagnosis of Korean gastric cancer

through the results of the study of the American Cancer Control

Association (ACSI, 2009) that the incidence and cause of cancer are

different for each race. We wanted to see the marker by comparing gene

expression differences.

NGS-based RNA-seq analysis is used as a method for viewing gene

expression differences at RNA level. In order to discover biomarkers of

Korean Gastric Cancer related to RNA expression, analysis is conducted

using TCGA Gastric cancer, RNA expression data and NCBI SRA Korean

FASTQ data.

In the TCGA data, 359 RNA-seq and Read-Count data of three races

(Asian, White, and Black) from the Gastric Cancer data are received and

proceeded from DEG analysis. Analysis is conducted with 23 Normal

samples and 336 Tumor Samples by race, and differential expression genes

are extracted for Asian races. The limitation of this study is that the

analysis is conducted with the Normal group, which combined the three

races due to the small number of Normal samples of Asian and Black

races.

SRA data received FASTQ data from the Korean gastric cancer project

(Accession: PRJNA435914) and RNA-seq analysis is conducted through the

server itself. The RNA-seq pipeline is analyzed in the same way as the

pipeline of TCGA RNA-seq, and DEG analysis is also conducted by
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grouping 34 samples of each of Normal and Cancer samples.

Twenty-eight Korean-specific biomarkers of gastric cancer genes based

on TCGA gastric cancer data are identified by substituting a list of 28

differential expression genes of Asian races selected as AUC filters into

the list of Korean differential expression genes to which a random forest

model is applied. Genes showing the most statistically significant values 

are three genes, CIP2A, LDHD, and KIFC1, respectively. Annotation of cell

proliferation regulation inhibitor of protein, lactate dehydrogenase D, and

Kinesin family member C1 is confirmed. The CIP2A and KIFC1 genes are

up-regulated DEGs in the Gastric Cancer patient group than the general

population. LDHD gene can be confirmed that gastric cancer patient group

had lower-regulated DEGs than the general population. These three genes

CIP2A, KIFC1, and LDHD can be used as biomarkers for Korean gastric

cancer-specific genes.

In addition, by searching g;profiler Annotation and GeneMANIA Network

for the 10 genes discovered, functions related to pathways containing

Korean-specific genes are derived. Through the g;Profiler Annotation, a

total of three processes are identified. The Pyruvate metabolism pathway

of KEGG:00260 ID, GO:0061846 dendritic spine cytoplasm, and GO:0061845

neuron projection branch points showed significant adjust p-value.

GeneMANIA Network analysis confirmed a significant result in a total of

two co-expressions. The corresponding co-expression is “Identification,

replication, and functional fine-mapping of expression quantitative trait loci

in primary human liver tissue.. Innocenti, et al. (2011.0). PLoS Genet.”

Research and “Integrative genomics identifies distinct molecular classes of

neuroblastoma and shows that multiple genes are targeted by regional

alterations in DNA copy number. Wang, et al. (2006.0). Cancer Res.” It is

confirmed that the two studies are closely related.
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Three Korean-specific genes (CIP2A, LDHD, KIPFC1) and three

g;profiler results (KEGG:00260, GO:0061846, GO:0061845), and two

GeneMANIA Network results extracted.

In particular, gastric cancer appears to be more common in Asians than

in whites and blacks. Through this study It is expected to be used as a

biomarker for predicting stomach cancer diagnosis in Koreans.
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Table 7. Data stat with RawData and Trimmed Data
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Table 8. Data stat with mapped reads
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국 문 요 약

위암은 전 세계적으로 발병률이 높은 암 중 하나로 특히 현대인들의 식습

관과 바쁜 생활습관에 따라 발생률과 사망률이 증가하고 있다. 특히 본 연구

에서 대상으로 정한 한국인의 경우, 전체 암 군 중 사망원인의 1위를 위암이

차지하고 있으며, (2018. 사망원인통계) 암 사망자 수도 위암에서 최대 기록을

보이고 있다. 인종 별 암 발병률 및 원인이 다르다는 미 암 통제협회(ACSI,

2009)의 연구 결과를 통해 한국인 위암 진단 예측을 위한 한국인 특정 위암

바이오마커 발굴의 필요하며, 이번 연구에서는 RNA에서 정상군과 위암군의

유전자 발현차이를 비교하여 바이오마커를 보고자 하였다.

RNA 에서의 유전자 발현차이를 보기위한 방법으로 NGS 기반의 RNA-seq

분석법을 활용하였다. RNA 발현 관련해서 한국인 위암 바이오마커를 발굴하

기 위해 TCGA 데이터베이스의 RNA 발현 데이터와 NCBI SRA 데이터의 한

국인 FASTQ 데이터를 활용하여 분석을 진행하였다.

TCGA 데이터에서는 위암 데이터 중 세 인종(아시안, 백인, 흑인)의

RNA-seq 발현 자료로 분석하였다. 정상 샘플과 인종별 위암샘플로 분석을

진행하였고 아시안 차별 발현 유전자를 추출하였다. SRA 데이터는 한국인

위암 프로젝트 (Accession: PRJNA435914)의 FASTQ 데이터를 받아

RNA-seq 분석을 진행하였다. RNA-seq 파이프라인은 TCGA RNA-seq의 파

이프라인과 동일하게 맞춰 분석을 진행하였고, 정상 샘플과 위암 샘플 각각

그룹으로 하여 분석하였다.

AUC 필터로 추려진 아시안 인종의 차별 발현 유전자를 대상으로 랜덤포레

스트 모델이 적용된 한국인 차별 발현 유전자 리스트에 대입하여 TCGA 위암

데이터를 기반으로 한 한국인 특화 위암 유전자 바이오마커를 발굴하였다. 통

계적으로 가장 유의한 값을 보이는 유전자는 CIP2A, LDHD, KIPFC1 세 개의

유전자로 확인할 수 있었고 . 또한 발굴된 10개의 유전자에 대해 g;profiler

Annnotation과 GeneMANIA 네트워크 검색을 하여 한국인 특화 유전자가 포

함된 pathway에 관한 기능들을 도출하였다.
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본 연구를 통해 추출된 TCGA 기반의 한국인 특화 유전자 3개 (CIP2A,

LDHD, KIPFC1)와 3개의 g;profiler 결과 (KEGG:00260, GO:0061846,

GO:0061845), 2개의 GeneMANIA Network 결과가 향후 한국인을 대상으로

하는 위암 진단 예측을 위한 바이오마커로 활용될 수 있기를 기대해보며, 이

러한 RNA-seq 연구를 통해 위암 환자에 있어 인종별로의 차이를 인지하여

보다 안전하고 정확한 바이오마커가 점점 늘어나길 기대해본다.


