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ABSTRACT 

 

Population pharmacokinetics and dose optimization of 

cefpirome during extracorporeal membrane oxygenation 

 

Kang, Soyoung 

Dept. of Pharmaceutical Medicine and Regulatory Science 

The Graduate School 

Yonsei University 

 

Background 

Extracorporeal membrane oxygenation (ECMO) is a mechanical circulatory 

support for patients with profound cardiogenic shock. As ECMO involves the use of 

a percutaneously inserted invasive device that uses large-diameter catheters and 

critically ill patients are generally vulnerable to infection, broad-spectrum antibiotics 

such as cefpirome (4th generation cephalosporin) are required for prophylaxis and 

the treatment of infection during ECMO. ECMO-associated pharmacokinetic (PK) 

changes in beta-lactams vary, and it is known to require therapeutic drug monitoring 

is needed to guide antibiotic dosing during ECMO. However, no previous study has 

investigated the PK changes of cefpirome in patients receiving ECMO. 
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Purpose 

To develop a populationPK model for cefpirome and recommend the optimal 

dosage regimen based on patient characteristics and minimum inhibitory 

concentration (MIC) distribution in patients receiving ECMO. 

 

Methods  

This prospective study included cardiogenic shock patients treated with cefpirome 

during ECMO. Blood samples were collected at pre-dose (0 min) and 0.5–1 h, 2–3 

h, 4–6 h, 8–10 h, and 12 h after cefpirome administration during ECMO (ECMO-

ON) and after ECMO discontinuation (ECMO-OFF). The plasma concentrations of 

cefpirome were analyzed using a validated liquid chromatography–mass 

spectrometry. The population PK model development was conducted using the first-

order conditional estimation method with interaction algorithm in Nonlinear Mixed 

Effects Modelling (NONMEM), and stepwise covariate modeling based on 

likelihood ratio test. In addition, the validity of the estimated relative standard error 

of PK parameters, and visual inspection of the goodness-of-fit plot, ETA correlation 

plot, individual plots, and Quantile-Quantile (QQ) plots were used in population PK 

model development. To validate the precision and robustness of the PK model, 

automated sampling importance resampling method (sampling = 5,000, resampling 

= 1,000, and 5 iterations) and a visual predictive check (n = 5,000) were performed. 

Monte Carlo simulation was used to assess the probability of target attainment (PTA) 
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and cumulative fraction of response (CFR) based on the MIC distribution according 

to European Committee on Antimicrobial Susceptibility Testing. 

 

Results 

The fifteen eligible patients had a median age of 63 years (Interquartile range 

51.5–70.5 years), and median SCr of 1.58 mg/dL during ECMO and 1.83 mg/dL 

after ECMO. Five patients received continuous renal replacement therapy (CRRT) 

treatment during ECMO simultaneously. The ECMO-ON plasma samples were 

collected from 14 patients during ECMO, whereas ECMO-OFF samples were 

collected from 8 patients. In total, 152 plasma samples were collected. The observed 

plasma concentration-time profiles of cefpirome were best described by a two-

compartment model (ADVAN 3). Covariate analysis indicated that serum creatinine 

concentration level (SCr) was negatively correlated with clearance (CL), and the 

presence of ECMO increased CL and the central volume of distribution (V1). In 

addition, time after ECMO termination on ECMO-OFF group were found to 

influence CL changes. The final PK model was as follows: on ECMO-ON group, CL 

(L/h) = 8.75 × 0.456(SCr (mg/dL)/1.6), V1 (L) = 10.2, peripheral volume of distribution 

(V2) (L) = 17.1, intercompartment clearance (Q) (L/h) = 10.4; on ECMO-OFF group, 

CL (L/h) = 3.87 × 0.456(SCr (mg/dL)/1.6) × (1 + 0.0123 × Time after ECMO termination 

(h)), V1(L) = 3.43, V2 (L) = 17.1, Q (L/h) = 10.4. The simulations showed that 

patients with low SCr during ECMO-ON had lower PTA than patients with high SCr 
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during ECMO-OFF; so, a higher dosage of cefpirome was required to meet the target 

CFR (90%). However, the PTA in 100 h after ECMO-OFF was lower than those in 

48 h after ECMO-OFF; it has been shown that cefpirome dose requirements increase 

over time after ECMO termination. The calculated PTA and CFR via extended 

infusion administration was higher than those via intravenous bolus injection (IV-

bolus) in patients with same SCr and ECMO status. Cefpirome of 2 g every 8 h for 

intravenous bolus injection or 2 g every 12 h for extended infusion over 4 h was 

recommended with normal kidney function receiving ECMO. 

 

Conclusions 

This is the first study on a population pharmacokinetic model and 

pharmacodynamic analysis for cefpirome in patients receiving ECMO, and 

appropriate cefpirome dosage regimens were recommended. The results of this study 

suggest that SCr and the status of ECMO is important to make a decision of optimal 

dose for cefpirome. Dose optimization of cefpirome may improve treatment success 

and survival in patients receiving ECMO. 

 

 

 

KEYWORDS: cefpirome, cephalosporin, extracorporeal membrane oxygenation, 

population pharmacokinetics, pharmacodynamics, dose optimization 
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1. INTRODUCTION 

1.1. Introduction of ECMO 

Extracorporeal membrane oxygenation (ECMO), also called extracorporeal life 

support, is a mechanical bypass to provide gas exchange and hemodynamic support 

for patients with profound cardiogenic shock (Ouweneel et al., 2016; Shekar et al., 

2014). After Gibbon developed the heart-lung machine in 1953, Bartlett set up the 

modern ECMO system to treat the first neonatal ECMO survivor (Bartlett et al., 

1974). Since 2009, when a multicenter randomized controlled trial, CESAR (the 

conventional ventilatory support versus ECMO for severe adult respiratory failure), 

and an observational study, ANZ-ECMO (Australia and New Zealand ECMO), were 

published, the number of ECMO runs and survival rates in adults increased with an 

exponential (Davies et al., 2009; Peek et al., 2009; Thiagarajan et al., 2017).  

There are two modes of ECMO commonly used in adults, veno-venous (VV) 

ECMO and veno-arterial (VA) ECMO (Figure 1) (Shekar, Fraser, et al., 2012). VV 

ECMO is used in patients with isolated refractory respiratory failure to support only 

gas exchange. Drainage cannula are placed the inferior vena cava via femoral jugular 

veins. The oxygenated blood from the ECMO circuit merged into remnant blood not 

passing through the circuit, and then blood is pumped by the left heart and run into 

systemic circulation. In other words, heart function as well as pulmonary vascular 

resistance need to be adequate to ensure systemic oxygen delivery (Fraser et al., 
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2012). Common indications for VV ECMO are severe bacterial or viral pneumonia, 

acute respiratory distress syndrome, aspiration syndromes, primary graft failure after 

lung transplantation. Additionally, VV ECMO can be applied when airway 

obstruction, smoke inhalation, pulmonary hemorrhage or massive hemoptysis, and 

so on (Fraser et al., 2012). 

VA ECMO is transitional support system to the treatment of cardiogenic shock 

refractory to conventional medical management, and to gain time for transplantation 

of heart or implantation of left ventricular assist devices (Hamdi & Palmer, 2017; 

Loforte et al., 2014). The deoxygenated blood is drained from the right atrium or 

major vein especially femoral; oxygenation and carbon dioxide removal proceed via 

the oxygenator of the ECMO system, and then oxygenated blood is returned to the 

peripheral cannulations via femoral, or carotid arteries (Hamdi & Palmer, 2017; 

Makdisi & Wang, 2015). Common indications for VA ECMO are cardiogenic shock, 

inability to wean from cardiopulmonary bypass after cardiac surgery, primary graft 

failure after heart or heart-lung transplantation, sepsis with profound cardiac 

depression, and myocarditis, and so on (Fraser et al., 2012). 

Complications according to ECMO system are associated with significant 

increase in morbidity and mortality; it could be related to the underlying pathology 

of patients or ECMO condition itself such as surgical insertion, circuit tubing and 

anticoagulation (Makdisi & Wang, 2015). As ECMO involves the use of a 

percutaneously inserted invasive device that uses large-diameter catheters and 
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critically ill patients are generally vulnerable to infection, the most frequently 

observed complication is infection (Thiagarajan et al., 2017). So, broad-spectrum 

antibiotics are required for prophylaxis and the treatment of infection during ECMO 

(Austin et al., 2017; Vogel et al., 2011).  
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Figure 1. The scheme of two modes of ECMO  

(a) Veno-arterial (VA) ECMO, (b) Veno-venous (VV) ECMO; Deoxygenated blood from venous system represents blue, 
and oxygenated blood represents red. (Shekar, Fraser, et al., 2012) 
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1.2. The changes of drug pharmacokinetics during ECMO 

Several studies have suggested changes in drug pharmacokinetics (PKs) during 

ECMO, and the summary was shown in Table 1 (Cheng et al., 2018, 2019; Hahn et 

al., 2019; Wi et al., 2017; Wishart et al., 2006, 2018; Yang et al., 2017) (Micromedex 

Solution. Truven Health Analytics, Inc. Ann Arbor, MI. Available at: 

http://www.micromedexsolutions.com. Accessed February 14, 2020). Typically, 

owing to drug sequestration in ECMO circuits, volume of distribution (Vd) is 

increased (Ha & Sieg, 2017; Shekar, Roberts, Mcdonald, et al., 2012). Drug 

properties such as molecular size, lipophilicity, plasma protein binding ratio, and 

degree of ionization have an effect on drug sequestration in ECMO circuits (Shekar 

et al., 2015; Shekar, Fraser, et al., 2012). Furthermore, Vd is also increased because 

of hemodilution and the inherent physiological changes associated with ECMO and 

critical illness (Hahn et al., 2017). In addition, the ECMO circuit triggers an 

inflammatory response to cause capillary leak and edema, which contribute the 

increase of Vd (Butler et al., 1996; Seghaye et al., 1996). 

Whereas clearance (CL) is generally decreased owing to renal and hepatic 

hypoperfusion and hypoxia (Ha & Sieg, 2017; Shekar, Fraser, et al., 2012). 

Nonpulsatile blood flow associated with VA ECMO results in activation of renin-

angiotensin system, reduction of urine production, and decreased glomerular 

filtration rate in consequence (Many et al., 1967; Mousavi et al., 2011). In addition, 

inflammation caused by ECMO apt to reduce the expression of drug-metabolizing 

http://www.micromedexsolutions.com/
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enzymes such as cytochrome P450 (Rivory et al., 2002; Sherwin et al., 2016). In 

other words, the PK changes of a drug in the ECMO device are dependent on the 

physiochemical properties of the drug, the states of disease; therefore, exact 

prediction is difficult (Cheng et al., 2018).  

Beta-lactam antibiotics are relatively hydrophilic with varying protein binding 

ratios; therefore, ECMO-associated PK changes in beta-lactams also vary (Cheng et 

al., 2018; Donadello et al., 2015; Udy et al., 2018; Veiga & Paiva, 2018). The risk of 

subtherapeutic plasma concentration of antibiotics by PK changes according to 

ECMO therapy could lead therapeutic failure, and an increased risk of infection-

related mortality is concerned (Sherwin et al., 2016; Vogel et al., 2011). Thus, a deep 

understanding of the PK changes in patients receiving ECMO is essential to provide 

optimal dosing and to perform therapeutic drug monitoring (Abdul-Aziz & Roberts, 

2020). Third- and fourth-generation cephalosporins, as broad-spectrum antibiotics, 

are usually recommended for patients receiving ECMO (Glater-Welt et al., 2016; 

Schutze & Heulitt, 1995; Vogel et al., 2011). However, fewer PK studies have 

investigated cefpirome compared with other antibiotics (Joukhadar et al., 2002; 

Lipman et al., 2001; Roos et al., 2007; Sauermann et al., 2005); moreover, no 

previous study has investigated the PK changes of cefpirome in patients receiving 

ECMO. Further, few studies have suggested the appropriate dosage of antibiotics for 

patients receiving ECMO and there is a need for effective and safe antibiotics 

suitable for use during ECMO.   
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Figure 2. Factors influencing drug PK in patients during ECMO 

(Ha & Sieg, 2017) 
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Table 1. Summary of drug physicochemical properties and PK changes during ECMO 

Drugs 
Physicochemical 
property 

Protein 
binding PK changes Dosing recommendation 

Midazolam Lipophilic  
(logP = 3.9) 

97% Significant circuit drug 
sequestration 

Higher loading dose with 
higher daily doses 

Dexmedetomidine Lipophilic  
(logP = 2.8) 

94% 

Fentanyl Lipophilic  
(logP = 4.1) 

80–86% Considering alternative agents; 
only use for short-term 

Propofol Lipophilic  
(logP = 3.8) 

97–99% Insufficient data but likely to 
require higher doses over time 

Remifentanil Moderate 
lipophilic 
(logP = 1.4) 

70% Higher Vd, Increased CL Higher dose needed according 
to sex and ECMO pump speed 

Sufentanil Lipophilic 
(logP = 3.24) 

91–93% Higher Vd, Decreased CL The body temperature and total 
plasma protein level is crucial 
during ECMO 

Morphine Hydrophilic  
(logP = 0.9) 

20–35% Minimal to moderate circuit 
drug sequestration 

Higher loading dose with 
higher daily doses 

Beta-lactams Relatively 
hydrophilic 

Variable Minimal to moderate circuit 
drug sequestration, Enlarged Vd 

Critically ill dosing strategy 
and TDM if available 

Aminoglycosides Hydrophilic Relatively 
low 

Minimal sequestration, Higher 
Vd, Decreased CL 

Insufficient data and TDM if 
available 
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Vancomycin Hydrophilic  
(logP = -3.1) 

18–55% Minimal sequestration, Higher 
Vd 

Critically ill dosing strategy 
and TDM if available 

Teicoplanin Hydrophilic 88–91% Lower Vd, Decreased Q Higher doses needed during 
ECMO and CRRT 

Fluoroquinolones Relatively 
hydrophilic 

Low to 
moderate 

Minimal sequestration  Critically ill dosing strategy 

Caspofungin Low lipophilicity  
(logP = 1) 

97% Minimal to moderate 
sequestration 

Insufficient data 

Voriconazole Low lipophilicity  
(logP = 1) 

58% Moderate sequestration Higher initial loading and daily 
doses, TDM if available 

Vd, volume of distribution; CL, clearance; Q, intercompartmental clearance; TDM, therapeutic drug monitoring; logP, 
octanol-water partition coefficient 
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1.3. Introduction and PK of cefpirome 

Cefpirome is a semi-synthetic fourth generation cephalosporin with a broad-

spectrum activity, first developed in the 1980s. Cefpirome is highly active against 

Enterobacter, methicillin-susceptible Staphylococcus aureus, Klebsiella spp. and 

Citrobacter spp. (Machka & Braveny, 1983; Wiseman & Lamb, 1997); it is less 

active against Pseudomonas aeruginosa than ceftazidime (Cefpirome. Micromedex, 

Accessed February 14, 2020). Cefpirome is used to treat hospitalized patients with 

moderate to severe infections (Visalli et al., 1998; Wiseman & Lamb, 1997). 

Cefpirome demonstrate improved penetration through the outer membrane of 

bacterial cell wall, because it binds to penicillin-binding proteins and have poor 

affinity for beta-lactamase (Wiseman & Lamb, 1997).  

 

Figure 3. Molecular structure of cefpirome 

 

The recommended dose for the treatment of hospitalized patients with severe 

infection or febrile neutropenia is 2 g every 12 hours given by intravenous bolus 
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injection (IV-bolus) over 3–5 minutes or by infusion 20–30 minutes (Wiseman & 

Lamb, 1997). Because the elimination of cefpirome is predominantly via renally, 25–

50% reduced dose is recommended in renal impairment patients (Cefpirome. 

Micromedex, Accessed February 14, 2020). 

Cefpirome has a low molecular weight (512 g/mol), and is highly hydrophilic 

compound (Banyai et al., 2000). The Vd for cefpirome at steady state was between 

15.3 and 21.3 L in healthy volunteers, and approximately 10 % of cefpirome was 

bound to plasma protein. Biological half-life of elimination phase was 2 h 

(Malerczyk et al., 1987). The drug about 80 % of an administered dose was recovered 

unchanged via the urine, and CL for cefpirome was ranged from 6.6 to 10.6 L/h in 

healthy volunteers. In consequence, half-life of elimination phase was increased in 

patients with moderate to severe renal failure. The mean elimination half-life was 

from 1.7 to 2.3 h (Wiseman & Lamb, 1997). Table 2 shows the previous studies on 

PK of cefpirome in patients with severe sepsis or who needed antibiotics. However, 

as far as we know, there was no PK study and dose optimization in patients receiving 

ECMO. 
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Table 2. Previous studies on pharmacokinetic of cefpirome 

Patient demographics Best-fitted 
compartmental 
model 

PK parameters Covariates References 

N = 10, age 41.2 ± 19 
years, severe sepsis 

Two-
compartmental 
model 

Vd = 24 L (range 14 – 43),  
CL = 7.8 L/h (range 4.5 – 13.2),  
half-life = 2.5 h (range 1.8 – 6.7) 

 No covariate searching (Lipman et 
al., 2001) 

Patients:  
N = 12, age 67.2 ± 8.1 
years, severe sepsis or 
septic shock; 
Healthy volunteers:  
N = 6, age-matched 

Two-
compartmental 
model 

Patients:  
Vd = 25.9 ± 7.1 L,  
CL = 4.5 ± 0.66 L/h,  
half-life = 3.33 ± 0.52 h,  
Cmax = 164 ± 14 mg/L; 
Healthy volunteers: 
 Vd = 14.6 ± 1.3 L,  
CL = 4.68 ± 0.48 L/h,  
half-life = 2.57 ± 0.48 h,  
Cmax = 210 ± 19 mg/L 

 No covariate searching (Joukhadar et 
al., 2002) 

Patients:  
N=11, age 66 ± 8 years, 
Severe sepsis; 
Healthy volunteers:  
N=7, age 26 ± 5 years 

Non-
compartmental 
model 

Patients:  
Vd = 21.9 ± 4.5 L, 
CL = 4.8 ± 1.56 L/h,  
half-life = 3.05 ± 0.9 h; 
Healthy volunteers:  
Vd = 15.8 ± 5.6 L,  
CL = 6.3 ± 1.86 L/h,  
half-life = 1.58 ± 0.5 h 

 No covariate searching 
 Dosing intervals of not 

more than 8 h should be 
preferred in septic 
patients 

(Sauermann 
et al., 2005) 
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N=12, age 18 to 70 years 
(median 41), ICU patients 

Three-
compartmental 
model 

V1 = 9.04 L, V2 = 4.59 L, V3 = 8.63 L, 
CL = 7.54 L/h,  
Q2 = 1.39 L/h,  
Q3 = 26.2 L/h 

 Weight on V1 and 
CrCL measured by 8-h 
urine collection on CL 

(Roos et al., 
2007) 

N=6, age 60-75 years, 
CVVH-dependent 
patients with sepsis and 
multiple organ 
dysfunction syndrome 

Two-
compartmental 
model 

Vd = 23.5 ± 4.6 L,  
CL = 1.92 ± 0.4 L/h,  
CVVH clearance = 0.42 ± 0.3 L/h,  
half-life = 8.8 ± 2.3 h 

 No covariate searching 
 The close relationship 

of serum and 
ultrafiltrate drug 
concentrations 

(Van Der 
Werf et al., 
1999) 

N=8, age 62.6 ± 7.9 years, 
anuric patients with acute 
kidney failure treated by 
CVVH 

One-
compartmental 
model 

Vd = 118 ±36 L,  
CL = 35.3 ± 9.87 L/h,  
hemofiltration clearance = 2.6 ± 0.5 L/h,  
half-life = 2.36 ± 0.59 h 

 No covariate searching 
 2 g q8h may be 

insufficient during 
CVVH against P. 
aeruginosa 

(Banyai et 
al., 2000) 

Patients: N = 9, age 31 
(19-53 years), trauma 
patients with systemic 
inflammatory response 
syndrome; 
Healthy volunteers: N = 
9, Age 30 (27-49 years) 

Non-
compartmental 
model 

Patients:  
Vd = 20.3 L (70 kg) (range 14 – 38.5),  
CL = 7.6 L/h (range 4.3 – 14.9),  
half-life = 2.2 h (range 1.5 – 2.8); 
Healthy volunteers:  
Vd = 18.2 L (70 kg) (range 14.7 – 25.9),  
CL = 6.1 L/h (range 5.1 – 8.8),  
half-life = 2.1 h (range 1.8 – 2.3) 

 No covariate searching (Jacolot et 
al., 1999) 

Vd, volume of distribution; V1, central volume of distribution; V2 and V3, peripheral volume of distribution; CL, clearance, 
Q2 and Q3, intercompartmental clearance; CVVH, continuous venovenous hemofiltration; CrCL, creatinine clearance, 
Cmax, maximum plasma concentration of cefpirome; ICU, intensive care unit 
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1.4. The PK/PD indices to optimize cefpirome dose regimen 

Simulation-based pharmacokinetic and pharmacodynamic (PK/PD) analysis 

using PK/PD indices provides optimal drug therapy through a quantitative 

description of drug effects, so this is used frequently in therapeutic areas nowadays 

(Peck & Cross, 2007). Many studies have been conducted to identify the PK/PD 

indices that best predict the effect of antibiotics, such as the ratio of the maximal free 

drug concentration to the minimum inhibitory concentration (MIC) (fCmax/MIC), 

the ratio of the area under the free drug concentration-time curve to the MIC 

(fAUC/MIC), and the percentage of time period that the free drug concentration 

above the MIC of a pathogen during dosing interval (fT>MIC) (Mouton et al., 2005). 

Beta-lactam activity has been considered as almost dependent on fT>MIC (Craig, 

1995; Nielsen et al., 2011; Onufrak et al., 2016; Udy et al., 2018). The percentile of 

fT>MIC to acquire the appropriate bactericidal effect is 60–70% for cephalosporins 

(Udy et al., 2018). Moreover, a study had reported that fT>MIC is more predictive 

for beta-lactams with short half-life (MacVane et al., 2014); the mean half-life of 

cefpirome was reported as 1.7–2.3 h (Wiseman & Lamb, 1997). Recently, predictive 

breakpoints of cephalosporin against Pseudomonas aeruginosa was reported greater 

than 53% fT>MIC (MacVane et al., 2014), so the magnitude of 65% fT>MIC for 

cefpirome was used to cover enough to several pathogens in previous studies (Craig, 

1995; Roos et al., 2007).  

The probability of target attainment (PTA) was used to calculate the probability 
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that at least a specific value of a pharmacodynamic (PD) index in silico predictions 

(Bradley et al., 2003; Nielsen et al., 2011). And the cumulative fraction of response 

(CFR) was defined as the expected population PTA for a specific drug dose and a 

specific population of pathogens (Mouton et al., 2005). 
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1.5. The aim of the study 

The specific objective of this study was to recommend the pertinent dosage for 

cefpirome in patients during ECMO. To achieve this purpose, the population PK of 

cefpirome was explored and PD profiles which is the ability of bacterial killing for 

cefpirome was assessed in patients receiving VA ECMO.  
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2. Methods 

2.1. Study design and subjects 

This prospective cohort study was conducted from January 2018 to January 2019 

in the cardiac intensive care unit of Severance Hospital, a tertiary academic hospital 

in Seoul, South Korea. The study was approved by the Severance Hospital 

Institutional Review Board (approval number: 4-2014-0919) and was registered in 

Clinicaltrials.gov (NCT02581280). Written informed consent was acquired from the 

unconscious participants’ legally acceptable representatives. This study followed the 

Strengthening the Reporting of Observational studies in Epidemiology (STROBE). 

The eligible patients were 19 years of age or older, receiving VA ECMO and 

concomitantly receiving cefpirome as per the hospital protocol for infection 

prophylaxis. The study excluded patients who were allergic to beta-lactams, 

pregnant, or taking any medication that may have altered plasma cefpirome 

concentrations. 
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2.2. ECMO system 

The ECMO system comprised a centrifugal blood pump with a controller 

(Capiox® SP-101, Terumo Inc., Tokyo, Japan), a conduit tube (Capiox® EBS with 

X coating, Terumo Inc., Tokyo, Japan), and an air-oxygen mixer (Sechrist® Ind., CA, 

USA). The ECMO circuit was connected in parallel to the heart and lungs from 

femoral venous to femoral arterial cannulation with a 17-Fr arterial and 21-Fr venous 

cannula (BioMedicus Medtronic Inc., MN, USA). The settings of ECMO were 

recorded. 
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2.3. Cefpirome dose and sample collection 

Cefpirome was administered at the start of ECMO to prevent infection. According 

to the hospital protocol, patients with normal kidney function received 2 g cefpirome 

every 12 h (q12h) as an intravenous bolus injection. Patients with an estimated 

glomerular filtration rate of less than 50 mL/min/1.73 m2, as calculated by the 

Modification of Diet in Renal Disease Study (MDRD) equation, received a 50% dose 

reduction. If needed, continuous veno-venous hemodiafiltration (Prismaflex; 

Gambro Inc., Meyzieu, France) with Prismaflex ST 100 filter was applied as 

continuous renal replacement therapy (CRRT). 

The study was initiated at least 24 h after ECMO was started. Blood samples were 

collected through the existing radial arterial line at pre-dose and at least one random 

point during each of the following time periods after cefpirome administration: 0.5–

1, 2–3, 4–6, 8–10, and 12 h (ECMO-ON) (Figure 4). The actual sampling time was 

recorded. If the patients were successfully weaned off ECMO and continued 

cefpirome, blood samples were collected after ECMO termination (ECMO-OFF). 

Blood samples were collected in EDTA-coated tubes and then immediately 

centrifuged (1,500 ×g at 4°C for 10 min). The obtained plasma was refrigerated at -

80°C until analysis. 
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Figure 4. The scheme of sample collection 
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2.4. Cefpirome plasma concentration analysis 

To analyze the cefpirome plasma concentrations, liquid chromatography–mass 

spectrometry (LC–MS, Ultimate 3000 RS-LTQ Orbitrap XL; Thermo Fisher 

Scientific, MA, USA) was used. The plasma samples (250 μL) were denatured using 

250 μL 5% thiobarbituric acid with doxofylline as an internal standard. The mixture 

was centrifuged (10 min at 10,000 ×g). LC–MS was performed on an Acquity UPLC 

BEH C18 column (1.7 μm, 2.1 mm × 100 mm; Waters, MA, USA) with a column 

temperature of 50°C and a flow rate of 0.4 mL/min. Solvent A (0.1% formic acid in 

water) and solvent B (0.1% formic acid in methanol) comprised the mobile phase. 

The mobile phase composition was: 100% A for 1 min; gradient elution to 100% B 

at 16 min; 100% B until 20 min; and, finally, a gradient elution to 100% A at 22 min. 

The assay was validated within the range 1.0–64.0 mg/L; the lower limit of 

quantification was 1.0 mg/L. The inter- and intra-assay coefficients of variation were 

below 15%. 
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2.5. Population PK analysis 

2.5.1. Base model development 

Base model development was conducted using the first-order conditional 

estimation method with interaction algorithm in NONMEM® version 7.4.1 (ICON 

Development, MD, USA) and Pirana® version 2.9.7 (Certara, NJ, USA). Xpose4 

package version 4.6.1 (http://xpose.sourceforge.net/) in R version 3.5.3 

(http://www.r-project.org) was used to visualize and evaluate the models. The 

plasma cefpirome concentrations were fitted to one-, two-, or three-compartment 

models. An exponential variance model for the interindividual variability (IIV, η) of 

PK parameters was evaluated; η was assumed to have a log-normal distribution with 

a mean of zero and a variance of ω2. Proportional, additive, and combined residual 

error models in linear DV were tested for residual variability (ε), which assumed a 

log-normal distribution with a mean of zero and a variance of σ2. 

The model was selected based on a minimum objective function value (OFV), the 

validity of the estimated relative standard error (RSE) of PK parameters. An OFV 

reduction of >3.84 (χ2 distribution, degrees of freedom = 1, p <0.05) was considered 

statistically significant. For visual inspection, the goodness-of-fit plot was expressed 

as the observed concentrations versus individual predictions (IPRED) or population 

predictions (PRED) and conditional weighted residuals (CWRES) versus PRED or 

time after the first cefpirome dose. In addition, the ETA correlation plot, individual 

plots, and QQ plots were visually inspected.  
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2.5.2. Covariate model development 

To evaluate the influence of covariates on the cefpirome PK parameters, the 

following potential covariates were tested: demographic variables (sex, age, weight, 

and height), ECMO-associated variables (during ECMO or weaned off ECMO, 

ECMO flow rate (LPM, liters per minute), ECMO pump speed (RPM, revolutions 

per minute), time after ECMO start, and time after ECMO termination), use of CRRT, 

complete blood count (absolute white blood cells, red blood cells, hemoglobin, and 

platelets), renal function (serum creatinine level (SCr), blood urea nitrogen, 

creatinine clearance (CrCL) estimated via Cockcroft-Gault equation, and estimated 

glomerular filtration rate (eGFR) via the MDRD equation), liver function (alanine 

transaminase, aspartate aminotransferase, and total bilirubin), biomarkers of 

inflammation (c-reactive protein and procalcitonin), blood pressure, body 

temperature, and social variables (smoking and alcohol). All data were recorded 

during sampling and tested as time-varying covariates. 

Covariates were evaluated using linear, exponential, power, and proportional 

models; influential covariates were selected in a stepwise manner. If needed, the 

continuous covariates were centered by their median values. For forward selection, 

a p-value of <0.05 was applied (OFV reduction of >3.84); for backward elimination, 

a p-value of <0.001 was used (OFV increase of >10.83). When the correlation was 

shown between covariates in stepwise modeling, we did not select them 

simultaneously. The final covariate model selection was based on biological or 
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clinical plausibility, RSE of PK parameters, and visual improvement in the goodness-

of-fit plot (Bonate et al., 2012). 
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2.6. Model validation  

To evaluate the precision and robustness of the base model and final covariate 

model, automated sampling importance resampling (SIR) method (sampling = 5,000, 

resampling = 1,000, and 5 iterations) and a visual predictive check (VPC) (n = 5,000) 

were conducted using the Perl Speaks NONMEM toolkit version 4.9.0 (Dosne et al., 

2017; Keizer et al., 2013). The median with 95% confidence intervals (CI) for the 

SIR results was compared with the estimated PK parameters from the final model. 

Additionally, the simulated VPC results with 5th, median, and 95th percentile curves 

were visually assessed.  
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2.7. Dosing simulations 

2.7.1. Monte Carlo simulation 

To assess the PTA at 72 h after the start of cefpirome, Monte Carlo simulations 

were performed on the basis of the estimated PK parameters using NONMEM. R 

version 3.5.3 (http://www.r-project.org) was used to draw simulation datasets up. IV-

bolus and extended infusion over 1 h, 2 h, and 4 h dosage regimens of 0.5 g q12h, 1 

g q12h, 2 g q12h, and 2 g every 8 h (q8h) were simulated. To assess the effect of SCr, 

which was selected as covariates in the final PK model, and the use of ECMO on the 

predicted cefpirome concentrations, SCr of 0.5–3.3 mg/dL (in increments of 0.2 

mg/dL) were simulated for the ECMO-ON and ECMO-OFF groups. Especially, the 

ECMO-OFF group were simulated from 48 h and 100 h after ECMO termination. 

The total number of simulated scenarios were 720 (Table 3). Each simulated 

concentration-time profile was generated for 1,000 subjects per dosage regimen. 
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Table 3. Simulated scenario 

Simulated cefpirome regimen 
Amount Frequency Administration 
0.5 g q12h Intravenous bolus 

Extended infusion over 1h 
Extended infusion over 2h 
Extended infusion over 4h 

1 g 
2 g 
2 g q8h 

Simulated values for covariates 
Serum creatinine level ECMO Time after ECMO termination 
0.5–3.3 mg/dL 
(increments of 0.2 mg/dL) 

ON - 
OFF 48 h 

100 h 
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2.7.2. Calculation of PTA and CFR 

From simulated data, when a protein binding constant of 10% (Wiseman & Lamb, 

1997) was applied, the % fT > MIC was determined for each simulated subject by 

linear interpolation using R version 3.5.3. The PTA was calculated by counting 

subjects who achieved at least 65% fT>MIC for optimal bacteria killing in terms of 

efficacy (Craig, 1995; Roos et al., 2007); a PTA of ≥0.9 was considered to be 

effective (Craig, 1995; Roos et al., 2007). 

The MIC distribution for cefpirome, which was 0.008–256 mg/L in this study, was 

derived from the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST; https://mic.eucast.org/Eucast2/SearchController; accessed September 

2019) for 103 strains of Acinetobacter spp., 39 strains of Enterobacter spp., 5,728 

strains of Escherichia coli, 794 strains of Klebsiella spp., 704 strains of 

Pseudomonas aeruginosa, and 767 strains of Streptococcus pneumoniae (Table 4). 

The PTA for each regimen and the MIC distribution were used to calculate the CFR 

as below equation (Mouton et al., 2005).  

�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝐹𝐹𝑃𝑃
𝑛𝑛

𝑖𝑖 = 1

 

The subscript i upto n indicates the MIC range from lowest to highest value of a 

population pathogens. PTAi means the PTAs of each MIC category; and Fi is the 

fraction of the population of pathogens at MIC = i. A CFR of over 90% was targeted 

(DeRyke et al., 2007). 
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Table 4. MIC distribution from EUCAST 

MIC 
(mg/L) 

Pathogens (number of strains) 
Acinetobacter 
spp 

Enterobacter 
spp 

Escherichia 
coli 

Klebsiella 
spp 

Pseudomonas 
aeruginosa 

Streptococcus 
pneumoniae 

0.008 0 0 1 5 0 2 
0.016 0 0 234 66 0 155 
0.032 0 5 1503 324 0 62 
0.064 0 4 2359 251 0 216 
0.125 0 14 1023 69 0 259 
0.25 0 4 268 32 1 15 
0.5 7 5 88 22 9 24 
1 19 5 47 17 135 2 
2 16 1 46 4 262 4 
4 33 1 20 2 154 7 
8 4 0 9 1 77 9 
16 11 0 14 0 38 6 
32 1 0 16 0 16 2 
64 12 0 9 0 6 0 
128 0 0 86 1 6 4 
256 0 0 5 0 0 0 
Total 103 39 5728 794 704 767 
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3. Results 

3.1. Demographic information and characteristics of enrolled 

patients 

The demographic characteristics of the enrolled patients are shown in Table 5. The 

15 eligible patients had a median age of 63 years (Interquartile range 51.5–70.5 

years), and median SCr of 1.58 mg/dL during ECMO and 1.83 mg/dL after ECMO. 

Five patients received CRRT treatment during ECMO simultaneously. The median 

Acute Physiology and Chronic Health Evaluation II score was 32 (IQR 29–36) at the 

initiation of ECMO support.  

The characteristics of the variables associated with ECMO are summarized in 

Table 6. The median duration of ECMO support was 6.92 days (Interquartile range 

5.17–10.58 days). The indication for ECMO therapy for twelve patients was acute 

myocardial infarction. Other 3 patients were needed ECMO for treatment of 

arrhythmogenic right ventricular dysplasia, pulmonary thromboembolism, and 

myocarditis. The median and maximal sampling time from ECMO initiation on 

ECMO-ON group was 49.9 h and 111.9 h, respectively; and those from ECMO 

termination on ECMO-OFF group was 44.2 h and 90.4 h, respectively. 

The ECMO-ON plasma samples were collected from 14 patients during ECMO, 

whereas ECMO-OFF samples were collected from 8 patients. In total, 152 plasma 

samples were collected, and none of samples below the limit of quantitation.  
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Table 5. Demographic information and baseline characteristics of all enrolled patients 

Patient 
no. Sex 

Age 
(yr) 

Weight (kg)* SCr level* 
(mean, mg/dL) Use of CRRT* APACHE 

II  
score 

Length of 
hospital 
stay (days) ECMO 

-ON 
ECMO 
-OFF 

ECMO 
-ON 

ECMO 
-OFF 

ECMO 
-ON 

ECMO 
-OFF 

1 Male 34 92.9 84.9 2.46 2.31 yes yes 32 102 
2 Male 69 72 69.4 2.55 2.3 no yes 30 54 
3 Female 52 49.2 48.4 3.41 1.56 no yes 37 74 
4 Male 72 69.6 - 2.06 - no - 36 44 
5 Male 63 81.7 - 3.11 - yes - 46 7 
6 Male 82 61.8 58.8 1.65 1.24 yes yes 32 92 
7 Male 75 98.3 - 0.44 - yes - 36 20 
8 Female 27 60.5 - 0.40 - no - 36 53 
9 Male 76 - 54.3 - 2.11 - yes 40 74 
10 Male 52 76.3 72.5 1.37 2.26 yes no 31 12 
11 Female 62 60.5 58.3 0.61 0.85 no no 32 24 
12 Male 67 75 65.7 1.55 1.56 no no 24 26 
13 Male 51 71 - 1.14 - no - 26 35 
14 Male 66 65.5 - 1.61 - no - 14 22 
15 Male 42 60 - 0.95 - no - 28 31 
Median - 63 70.3 62.3 1.58 1.84 - - 32 35 

IQR - 51.5 – 
70.5 

60.8 – 
76.0 

57.3 – 
70.2 

0.99 – 
2.36 

1.48 – 
2.27 - - 29 – 36 23 – 64 

* The data was collected during sampling; -, no data because of no sampling 
SCr, serum creatinine concentration; CRRT, continuous renal replacement therapy; APACHE II, acute physiology and 
chronic health evaluation II  
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Table 6. The values associated with ECMO of all enrolled patients 

Patient 
no. 

Indication of 
ECMO 

Duration of 
ECMO (days) 

ECMO-ON ECMO-OFF 
RPM*  
(mean ± SD) 

LPM*  
(mean ± SD) 

Time from ECMO 
start# (h) 

Time from ECMO 
termination# (h) 

1 ARVD 8.73 2506 5.22 ± 0.08 96.6 43.1 
2 AMI 6.35 2761 ± 60.9 3.56 ± 0.37 51.1 90.4 
3 AMI 7.16 2244 3 111.9 39.9 
4 AMI 15.07 2764 3.44 ± 0.10 42.2 - 
5 AMI 6.92 2841 4.37 ± 0.35 51.5 - 
6 AMI 3.59 2300 ± 5.3 1.86 ± 0.21 36.7 24.5 
7 AMI 17.56 2115 ± 375.5 2.24 ± 0.65 41.3 - 
8 Myocarditis 30.01 2444 3.97 ± 0.08 48.6 - 
9 AMI 1.44 - - - 45.2 
10 AMI 3.74 2004 ± 163.6 3.14 ± 0.35 38.9 45.2 
11 AMI 4.74 2363 ± 142 2.26 ± 0.17 63.9 72 
12 PTE 11.89 2505 ± 0.38 4.62 ± 0.12 133 39.6 
13 AMI 9.28 3814 ± 168 3.41 ± 0.24 43 - 
14 AMI 5.61 2543 ± 396 2.8 ± 0.49 40.3 - 
15 AMI 6.83 2099 ± 65.0 2.51 ± 0.11 92.6 - 
Median  6.92 2444 3.25 49.9 44.2 
IQR  5.17 – 10.58 2244 – 2764 2.69 – 3.99 41.5 – 85.4 39.8 – 51.9 

* The data was collected during sampling 
# Sampling start point 
-, no data because of no sampling 
RPM, revolutions per minute; LPM, liters per minute; ARVD, arrhythmogenic right ventricular dysplasia; AMI, acute 
myocardial infarction; PTE, pulmonary thromboembolism; ECMO, extracorporeal membrane oxygenation 
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3.2. Population PK model development 

3.2.1. Exploratory data analysis for PK model development 

Figure 5 shows the plasma concentration-time course after the cefpirome dose 

from 15 patients on ECMO-ON group and 8 patients on ECMO-OFF group.  

 

Figure 5. Plasma concentration-time course of cefpirome 
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3.2.2. Base model 

The observed plasma concentration-time profiles of cefpirome were best 

explained by the two-compartment model (ADVAN 3). The PK parameter estimates 

estimated by base model was represented in Table 7. The IIV included CL, central 

volume of distribution (V1), and peripheral volume of distribution (V2). The residual 

variability was bet described by a proportional residual error model. IIV on 

intercompartmental clearance (Q) was fixed as zero. Allometric scaling of weight 

did not improve significantly the model fit. The base model had an OFV of 852.04. 

No correlation was seen between ETAs. Figure 6 shows the basic goodness-of-fit 

plots of base model. Both PRED and IPRED were distributed uniformly across the 

line of equality. Additionally, the plots of CWRES versus PRED and versus time 

after the first cefpirome dose were relatively evenly distributed around zero and did 

not show any trends. ETA correlation plots did not show any trends.  
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Table 7. Cefpirome PK parameter estimates estimated by a two-compartment 

base model 

Parameter Population estimate (RSE) 

Fixed effects (θ)  

CL (L/h) 3.6 (15%) 

V1 (L) 10.3 (21%) 

V2 (L) 19.5 (22%) 

Q (L/h) 9.62 (19%) 

Random effects (% CV*)  

Interindividual variability (ω) 

CL 58.8 (34%) 

V1 26.5 (89%) 

V2 92.6 (73%) 

Proportional residual variability (σ) 25.7 (19%) 

CL, clearance; V1, central volume of distribution; V2, peripheral volume of 
distribution; Q, intercompartmental clearance; RSE, relative standard error; CV, 
coefficient of variation 
* Calculated according to SQRT (omega)*100 
 

  



36 

 

 

 

Figure 6. The basic goodness-of-fit plots of the base model 

Log of observed cefpirome concentrations versus (a) population predicted 
concentrations (PRED) and (b) individual predicted concentrations (IPRED); 
conditional weighted residuals (CWRES) versus (c) population predicted 
concentrations (PRED) and (d) time after the first cefpirome administration. 
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3.2.3. Covariate model 

All candidates for covariate was tested in stepwise covariate selection. For 

forward step, SCr among the covariates relating renal functions was selected because 

ΔOFV was the largest (-31.946), compared to those for CrCL by Cockcroft-Gault 

and eGFR by MDRD equation (-5.85 and -14.24, respectively). In addition, RSE for 

parameters was more reasonable for SCr than CrCL and eGFR. The use of ECMO 

was selected for CL and V1. None of the parameters related to ECMO such as LPM 

and RPM helped to understand factors influencing to the final PK model. We tested 

time after ECMO termination as another covariate on both CL and V1, and this 

covariate did not affect V1, only associated with CL. Finally, the SCr for CL, the use 

of ECMO for CL and V1, and time after ECMO termination on ECMO-OFF group 

for CL were found to influence PK parameter changes (OFV = 771.189, ΔOFV based 

on base model = –80.853). Table 8 represents the change of OFV values when the 

covariates included in the final model are added one by one starting from the base 

model. 

Table 8. The change of OFV values 

Model* OFV ΔOFV 
Base model 852.042  

1 Base model + SCr on CL 820.096 -31.946 
2 1st model + ECMO on CL 801.528 -18.568 
3 2nd model + ECMO on V1 791.382 -10.146 
4 3rd model + Time after ECMO termination on CL 771.189 -20.193 

*Order added as a covariate 
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The final PK model was as follows: 

on ECMO-ON group, 

CL (L/h) = 8.75 × 0.456(SCr (mg/dL)/1.6), 

V1 (L) = 10.2, 

V2 (L) = 17.1, 

Q (L/h) = 10.4; 

on ECMO-OFF group, 

CL (L/h) = 3.87 × 0.456(SCr (mg/dL)/1.6) × (1 + 0.0123 × Time after ECMO termination 

(h)), 

V1(L) = 3.43, 

V2 (L) = 17.1, 

Q (L/h) = 10.4. 

When SCr is 1.6 mg/dL, population CL on ECMO-ON is 3.99 L/h, and those on 

48 h and 100 h after ECMO termination is 2.81 L/h and 3.94 L/h, respectively. 

Individual parameters such as half-life, maximum concentration (Cmax), and time 

to Cmax were represented in Table 9. The median half-lives of ECMO-ON and 

ECMO-OFF were 5.59 and 6.05, respectively.  
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Table 9. Individual parameters based on final PK model 

Patient 
no. 

ECMO-ON ECMO-OFF 
Half-life 
(h)a 

Cmax 
(mg/L)b 

Time to 
Cmax (h) c 

Cefpirome 
dosing 

Half-life 
(h) a+ 

Cmax 
(mg/L) b 

Time to 
Cmax (h) c 

Cefpirome 
dosing 

1 4.02 166.42 0.42 2 g q12h 3.92 186.20 0.46 2 g q12h 
2 7.38 194.91 0.38 2 g q12h 6.66 125.66 0.42 2 g q12h 
3 15.02 128.20 0.63 1 g q12h 7.25 106.87 0.40 1 g q12h 
4 5.12 123.96 0.43 2 g q12h - - - - 
5 12.99 110.23 0.35 1 g q12h - - - - 
6 8.11 61.10 0.58 1 g q12h 9.45 60.91 0.50 1 g q12h 
7 7.29 52.83 0.88 2 g q12h - - - - 
8 3.24 110.79 0.40 2 g q12h - - - - 
9 - - - - 5.43 224.63 0.02 1 g q12h 
10 8.91 33.94 1.03 1 g q12h 15.06 40.13 0.95 1 g q12h 
11 3.45 74.74 0.73 2 g q12h 3.38 81.28 0.78 2 g q12h 
12 4.54 37.51 0.20 1 g q12h 3.85 82.64 0.75 1 g q12h 
13 3.43 60.48 0.93 2 g q12h - - - - 
14 6.06 119.17 0.05 1 g q12h - - - - 
15 4.94 35.88 0.47 1 g q12h - - - - 
Median 5.59 92.49 0.45 - 6.05 94.76 0.48 - 
IQR 4.15-7.93 54.7-122.8 0.4-0.7 - 3.9-7.8 76.2-140.8 0.4-0.76 - 

aCalculated according to ln(2)/{0.5 × [(k12 + k21 + k) - SQRT((k12 + k21 + k)^2 - 4 × k21 × k)]}, where k12 = Q/V1; 
k21 = Q/V2; k = CL/V1 
+Data based on time to Cmax 
bCmax is the plasma concentration which was sampled immediately after administration.  
cTime to Cmax is the actual time at Cmax sampling.  
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3.2.4. Model diagnostics 

Figure 7 shows the basic goodness-of-fit plots for the final PK model. Both PRED 

and IPRED were distributed uniformly across the line of equality. Additionally, the 

plots of CWRES versus PRED and versus time after the first cefpirome dose were 

relatively evenly distributed around zero and did not show any trends. Figure 8 

shows ETA correlation plots, and any trends was not shown. The individual plots of 

individual predictions and observations versus time after the first cefpirome dose 

were shown in Figure 9.  
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Figure 7. Goodness-of-fit plot of the final population PK model for cefpirome 

Log of observed cefpirome concentrations versus (a) population predicted 
concentrations (PRED) and (b) individual predicted concentrations (IPRED); 
conditional weighted residuals (CWRES) versus (c) population predicted 
concentrations (PRED) and (d) time after the first cefpirome administration 
Red solid line, smooth trend line 
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Figure 8. Scatterplot matrix of ETAs on final PK model 

Open circles, each ETA on the parameter; Solid line, smooth trend line 
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Figure 9. Individual plots of individual prediction, population predictions and 

observations versus time 

DV, Circles, observed concentration of cefpirome; IPRED, solid line, individual 
prediction of cefpirome; PRED, dashed line, population prediction of cefpirome 
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3.3. Model validation 

The PK parameter estimates for cefpirome from the final PK models and the SIR 

results are summarized in Table 10. All parameter estimates were distributed within 

the 95% CIs and were similar to the median value from SIR results with acceptable 

RSEs, which indicated that the precision of the model was good. All ETA shrinkage 

values were <34% in final PK model. 

The VPC plot showed that approximately 10% of the observed data were 

positioned outside the 5th to 95th percentiles of the predicted data, which suggested 

that the predictive performance of the final model was adequate (Figure 10). 
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Table 10. Parameter estimates in final PK model and SIR result 

Parameter 

Final model 

Population 

estimate (RSE) 

SIR median (2.5th‒97.5th 

percentile) 

Fixed effects (θ)   

CL (L/h) 3.87 (8%) 3.83 (4.47‒7.29) 

V1 (L) 3.43 (27%) 3.54 (1.54‒5.26) 

V2 (L) 17.1 (14%) 16.9 (13.0‒22.5) 

Q (L/h) 10.4 (15%) 10.3 (7.18‒12.5) 

θSCr/1.6 on CL 0.456 (10%) 0.455 (0.42‒0.57) 

θECMO on CL 2.26 (16%) 2.30 (1.26‒1.57) 

θTime.ECMOoff on CL 0.0123 (24%) 0.0123 (0.0069‒0.0187) 

θECMO on V1 2.98 (41%) 2.88 (1.65‒5.22) 

Random effects (% CV*)   

Interindividual variability (ω)   

CL 30.2 (56%) 31.0 (20.7‒47.6) 

V1 33.9 (90%) 34.2 (7.8‒56.0) 

V2 47.3 (41%) 49.4 (31.4‒72.4) 

Proportional residual 

variability (σ) 
20.9 (14%) 21.2 (18.6‒24.5) 

CL, clearance; V1, central volume of distribution; V2, peripheral volume of 
distribution; Q, intercompartmental clearance; Time.ECMOoff, Time since ECMO 
termination; RSE, relative standard error; CV, coefficient of variation 
* Calculated according to SQRT(omega)*100 
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Figure 10. The visual predictive check plot showed that the 5th to 95th 

percentiles of the predicted data overlapped most of the observed data 

Open circles, observed cefpirome concentrations; solid line, median; lower and 
upper dashed lines, 5th and 95th percentiles of the observed data, respectively; shaded 
areas, 95% confidence intervals for simulated predicted median, 5th, and 95th 
percentile constructed from 5,000 simulated datasets of individuals from the original 
dataset 
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3.4. Dose simulations and optimization 

3.4.1. Dose simulations 

To investigate the effect of various scenarios on PK profiles and establish optimal 

dosage regimen for cefpirome, Monte Carlo simulation was conducted using final 

PK model. Figure 11 and 12 show the mean of Monte Carlo simulated cefpirome 

concentration for the conventional recommended dosage regimen, i.e. 2 g q12h for 

each administration methods when SCr was 1.5 mg/dL. Figure 13 represents the 

mean of simulated cefpirome concentration stratified by the ECMO status as same 

as with aforementioned condition in log scale. The mean of simulated cefpirome 

concentration over time since the first cefpirome administration according to 

administration practices was shown in Figure 14. 

The simulation results show that as infusion time increased, simulated Cmax were 

decreased and minimum concentration (Cmin) were increased. The simulated Cmax 

was lowest in patients receiving ECMO, and the highest in patients 48 h after ECMO 

termination at same administration method. In patients 100 h after ECMO 

termination, simulated Cmax and Cmin tended to be lower than in patients 48 h after 

ECMO termination. The simulated Cmax was highest in IV-bolus and lowest in 

extended infusion over 4 h, and the simulated Cmin was highest at extended infusion 

over 4 h. Time to Cmax was highest immediately after the end of injection or infusion 

in all administration method.   
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Figure 11. Simulated mean cefpirome concentrations for 2 g q12h IV-bolus and 

extended infusion over 1 h when SCr is 1.5 mg/dL 

Patients were stratified for ECMO status and time after ECMO termination. 2 g q12h 
IV-bolus (Top); 2 g q12h extended infusion over 1 h (Bottom).  
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Figure 12. Simulated mean cefpirome concentrations for 2 g q12h extended 

infusion over 2 h and over 4 h when SCr is 1.5 mg/dL 

Patients were stratified for ECMO status and time after ECMO termination. 2 g q12h 
extended infusion over 2 h (Top); 2 g q12h extended infusion over 4 h (Bottom).  
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Figure 13. Log of simulated mean cefpirome concentrations for 2 g q12h when 

SCr is 1.5 mg/dL 

Patients were stratified for administration method (IV-bolus, extended infusion over 
1 h, extended infusion over 2 h, and extended infusion over 4 h). In patients receiving 
ECMO (Top); In patients 48 h after ECMO termination (Middle); In patients 100 h 
after ECMO termination (Bottom).  
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Figure 14. Simulated mean cefpirome concentrations over time since the first dose for 2 g q12h according to 

administration practice when SCr is 1.5 mg/dL 
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3.4.2. Dose optimization 

The simulated PTA vs. MIC profiles for the different IV-bolus and extended 

infusion over 1 h, 2 h, and 4 h were shown in Figure 15–19. The figures were drawn 

at serum creatinine levels of 0.5, 1.1, 1.9, 2.5, and 3.1 mg/dL in patients receiving 

ECMO (ECMO-ON), in patients after 48 h of ECMO termination (48 h after ECMO-

OFF), and in patients after 100 h of ECMO termination (100 h after ECMO-OFF). 

The calculated PTA and CFR via extended infusion administration was higher than 

those via IV-bolus in patients with same SCr and ECMO status. The PTA in ECMO-

ON tended to be slightly lower than those in 48 h after ECMO-OFF. However, the 

PTA in 100 h after ECMO-OFF tended to be slightly decreased than those in 48 h 

after ECMO-OFF, and those occasionally in ECMO-ON. This tendency was seen 

more in patients with lower SCr levels who have normal kidney function. 

Additionally, patients with a lower SCr, representative of better kidney function, 

obtained lower PTA than those with higher SCr during the same ECMO condition. 

Higher SCr levels tended to be decrease the difference of PTA achievement between 

IV-bolus and extended infusion for the same cefpirome dose; in other words, the 

lower SCr level, which representative of better kidney function, was shown to be 

increase the difference of PTA achievement between IV-bolus and extended infusion 

for the same cefpirome dose.  
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Figure 15. The simulated probability of target attainment in patients with 

serum creatinine levels of 0.5 mg/dL 

Patients were stratified for dosage regimens. The simulated PTA in patients receiving 
ECMO (Top); those in patients after 48 h of ECMO termination (Middle); those in 
patients after 100 h (Bottom). 
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Figure 16. The simulated probability of target attainment in patients with 

serum creatinine levels of 1.1 mg/dL 

Patients were stratified for dosage regimens. The simulated PTA in patients receiving 
ECMO (Top); those in patients after 48 h of ECMO termination (Middle); those in 
patients after 100 h (Bottom). 
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Figure 17. The simulated probability of target attainment in patients with 

serum creatinine levels of 1.9 mg/dL 

Patients were stratified for dosage regimens. The simulated PTA in patients receiving 
ECMO (Top); those in patients after 48 h of ECMO termination (Middle); those in 
patients after 100 h (Bottom). 
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Figure 18. The simulated probability of target attainment in patients with 

serum creatinine levels of 2.5 mg/dL 

Patients were stratified for dosage regimens. The simulated PTA in patients receiving 
ECMO (Top); those in patients after 48 h of ECMO termination (Middle); those in 
patients after 100 h (Bottom). 
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Figure 19. The simulated probability of target attainment in patients with 

serum creatinine levels of 3.1 mg/dL 

Patients were stratified for dosage regimens. The simulated PTA in patients receiving 
ECMO (Top); those in patients after 48 h of ECMO termination (Middle); those in 
patients after 100 h (Bottom).  
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CFR was higher following extended infusion delivery than in the IV-bolus, and 

the longer infusion was achieved higher CFR. However, since the CFR was achieved 

fairly higher in the extended infusion over 4 h than in those over 1 h and 2 h on the 

basis of Pseudomonas aeruginosa, the optimal dose was determined based on IV-

bolus and extended infusion over 4 h in consideration of both clinical convenience 

and benefit (Table 11–13). CFR was achieved lower in patients receiving ECMO 

than in patients 48 h after ECMO termination in the same dosing scenario. But the 

CFR in patients 100 h after ECMO termination was diminished again fairly than 

those in patients 48 h after ECMO termination. 

The recommended doses according to SCr and administration practice (IV-bolus 

versus extended infusion) were represented in Figure 20 and 21 based on 

P.aeruginosa, because P.aeruginosa is less susceptible against cefpirome among all 

target pathogens except Acinetobacter spp. The dosage regimens of 2 g q8h for IV-

bolus and 2 g q12h for extended infusion over 4 h were recommended for P. 

aeruginosa treatment in patients during ECMO with SCr values of up to 0.9 mg/dL 

in consideration of clinical convenience. The CFRs were higher than 95% for S. 

pneumoniae, Enterobacter spp., E. coli, and Klebsiella spp. for all doses of 

cefpirome, regardless of the presence of ECMO. It was difficult to achieve target 

CFR for Acinetobacter spp. at a low SCr.  

 



59 

 

Table 11. Dose regimens to meet target CFR based on Pseudomonas aeruginosa according to administration practice 

in patients receiving ECMO 
 

IV-bolus Extended infusion over 1 h Extended infusion over 2 h Extended infusion over 4 h 
SCr 
(mg/dL) 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 43.0 66.7 82.6 92.5 46.8 69.9 84.7 93.5 51.0 73.2 86.7 94.4 58.6 78.8 89.9 96.1 
0.7 50.0 72.1 85.9 93.8 53.9 75.1 87.6 94.6 57.4 77.7 89.2 95.3 64.3 82.1 91.7 96.7 
0.9 57.2 77.3 88.9 94.9 60.1 79.3 90.0 95.6 62.9 81.1 91.0 96.1 69.3 85.0 93.2 97.2 
1.1 62.8 80.9 90.9 95.9 65.4 82.5 91.7 96.4 68.0 84.1 92.7 96.8 73.4 87.2 94.3 97.5 
1.3 68.0 84.0 92.6 96.6 70.6 85.5 93.3 96.9 72.7 86.8 94.0 97.2 77.2 89.2 95.2 97.9 
1.5 72.9 86.8 94.0 97.2 75.1 88.0 94.6 97.4 76.8 89.0 95.1 97.6 80.6 91.0 96.1 98.2 
1.7 77.2 89.1 95.2 97.6 78.7 90.0 95.6 97.8 80.1 90.7 95.9 98.0 83.3 92.4 96.7 98.4 
1.9 80.5 90.9 96.0 98.0 82.0 91.7 96.4 98.1 83.2 92.3 96.7 98.3 85.4 93.4 97.2 98.6 
2.1 83.5 92.5 96.7 98.3 84.5 93.0 96.9 98.4 85.5 93.4 97.2 98.5 87.3 94.3 97.6 98.8 
2.3 86.0 93.7 97.3 98.5 86.7 94.0 97.4 98.6 87.4 94.4 97.6 98.7 89.0 95.2 97.9 98.9 
2.5 87.8 94.5 97.6 98.7 88.4 94.9 97.8 98.8 89.2 95.2 97.9 98.9 90.6 95.9 98.2 99.0 
2.7 89.7 95.5 98.0 98.9 90.2 95.7 98.1 98.9 90.8 96.0 98.3 99.0 91.8 96.5 98.5 99.2 
2.9 91.3 96.2 98.4 99.0 91.7 96.4 98.4 99.1 92.0 96.6 98.5 99.2 92.8 96.9 98.6 99.3 
3.1 92.5 96.7 98.6 99.2 92.8 96.9 98.6 99.2 93.0 97.0 98.7 99.3 93.7 97.3 98.8 99.4 
3.3 93.4 97.2 98.7 99.3 93.7 97.3 98.8 99.4 93.9 97.4 98.8 99.4 94.4 97.6 98.9 99.5 
*Ratio 
to meet 
target 
CFR 

63.3% 68.3% 68.3% 73.3% 

IV-bolus, intravenous bolus injection; SCr, serum creatinine 
Colored compartments where SCr and dose regimen intersect indicate that they meet the target CFR under that condition. 
*Calculated according to (colored compartment) / (all compartment, 60) * 100 
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Table 12. Dose regimens to meet target CFR based on Pseudomonas aeruginosa according to administration practice 

in patients 48 h after ECMO termination 
 

IV-bolus Extended infusion over 1 h Extended infusion over 2 h Extended infusion over 4 h 
SCr 
(mg/dL) 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 57.0 76.6 88.2 95.0 60.9 79.3 89.8 95.7 63.7 81.3 90.9 96.4 70.0 85.2 93.2 97.3 
0.7 63.0 80.6 90.5 95.9 66.1 82.6 91.6 96.5 68.7 84.3 92.6 97.0 74.9 87.9 94.6 97.7 
0.9 68.4 83.9 92.3 96.7 71.1 85.5 93.2 97.1 73.6 87.1 94.0 97.4 78.3 89.8 95.5 98.0 
1.1 73.3 86.8 93.8 97.3 75.8 88.2 94.5 97.5 77.8 89.4 95.2 97.8 81.6 91.5 96.3 98.3 
1.3 77.7 89.2 95.1 97.7 79.6 90.3 95.6 98.0 81.0 91.1 96.0 98.1 84.2 92.8 96.9 98.5 
1.5 81.0 91.0 96.0 98.1 82.7 91.9 96.4 98.3 83.8 92.6 96.7 98.4 86.4 93.9 97.4 98.7 
1.7 83.9 92.5 96.7 98.4 85.3 93.3 97.1 98.5 86.2 93.8 97.3 98.7 88.3 94.8 97.8 98.9 
1.9 86.4 93.8 97.3 98.6 87.5 94.4 97.6 98.8 88.3 94.8 97.7 98.8 89.9 95.6 98.1 99.0 
2.1 88.6 94.9 97.8 98.8 89.3 95.3 97.9 98.9 90.1 95.6 98.1 99.0 91.6 96.4 98.4 99.2 
2.3 90.3 95.7 98.1 99.0 91.1 96.1 98.3 99.1 91.7 96.4 98.4 99.1 92.6 96.8 98.6 99.3 
2.5 92.0 96.5 98.5 99.2 92.4 96.7 98.5 99.2 92.8 96.9 98.6 99.3 93.6 97.2 98.8 99.4 
2.7 93.1 97.0 98.7 99.3 93.4 97.2 98.7 99.4 93.7 97.3 98.8 99.4 94.4 97.6 98.9 99.6 
2.9 94.0 97.4 98.8 99.5 94.3 97.5 98.9 99.5 94.6 97.7 99.0 99.6 95.2 97.9 99.1 99.7 
3.1 94.8 97.8 99.0 99.6 95.2 97.9 99.1 99.6 95.4 98.0 99.1 99.7 95.8 98.2 99.2 99.8 
3.3 95.6 98.1 99.2 99.7 95.8 98.2 99.2 99.7 96.0 98.3 99.3 99.8 96.3 98.4 99.3 99.8 
*Ratio 
to meet 
target 
CFR 

75.0% 76.7% 80.0% 81.7% 

IV-bolus, intravenous bolus injection; SCr, serum creatinine 
Colored compartments where SCr and dose regimen intersect indicate that they meet the target CFR under that condition. 
*Calculated according to (colored compartment) / (all compartment, 60) * 100 
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Table 13. Dose regimens to meet target CFR based on Pseudomonas aeruginosa according to administration practice 

in patients 100 h after ECMO termination 
 

IV-bolus Extended infusion over 1 h Extended infusion over 2 h Extended infusion over 4 h 
SCr 
(mg/dL) 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 g 
q12h 

1 g 
q12h 

2 g 
q12h 

2 g 
q8h 

0.5 33.6 57.3 75.7 89.6 36.9 61.0 78.6 91.4 41.9 65.8 81.9 92.9 51.3 73.6 87.0 95.1 
0.7 40.6 63.8 80.2 91.6 44.6 67.5 82.8 93.0 48.6 70.8 85.0 94.1 57.9 78.0 89.4 95.9 
0.9 47.3 69.3 83.8 93.3 51.2 72.5 85.9 94.3 55.3 75.8 87.9 95.1 63.4 81.3 91.1 96.7 
1.1 54.2 74.5 87.0 94.5 58.2 77.5 88.8 95.3 61.7 80.0 90.2 96.0 68.2 84.2 92.7 97.1 
1.3 60.7 79.0 89.6 95.5 63.6 81.0 90.8 96.2 66.7 83.1 92.0 96.7 72.8 86.8 94.0 97.5 
1.5 66.2 82.6 91.6 96.4 68.8 84.2 92.5 96.9 71.5 85.8 93.4 97.2 77.0 89.1 95.1 97.9 
1.7 71.0 85.5 93.1 97.1 73.7 87.1 94.0 97.4 76.2 88.5 94.8 97.7 80.3 90.8 95.9 98.1 
1.9 76.0 88.3 94.6 97.5 78.0 89.5 95.2 97.8 79.8 90.4 95.7 98.0 83.3 92.3 96.7 98.4 
2.1 79.8 90.4 95.7 97.9 81.3 91.2 96.1 98.2 82.7 92.0 96.5 98.3 85.5 93.5 97.2 98.7 
2.3 82.7 91.9 96.4 98.3 84.0 92.6 96.7 98.4 85.4 93.3 97.1 98.6 87.5 94.4 97.6 98.8 
2.5 85.5 93.4 97.1 98.5 86.5 93.9 97.3 98.6 87.6 94.5 97.6 98.8 89.2 95.2 97.9 98.9 
2.7 87.8 94.5 97.6 98.7 88.6 94.9 97.8 98.8 89.3 95.3 97.9 98.9 91.1 96.1 98.3 99.1 
2.9 89.6 95.4 98.0 98.9 90.4 95.8 98.1 99.0 91.0 96.1 98.3 99.1 92.2 96.6 98.5 99.3 
3.1 91.3 96.2 98.3 99.1 91.9 96.5 98.5 99.2 92.4 96.7 98.5 99.2 93.2 97.1 98.7 99.4 
3.3 92.6 96.8 98.6 99.3 93.0 97.0 98.7 99.3 93.3 97.1 98.7 99.4 94.1 97.4 98.9 99.5 
*Ratio 
to meet 
target 
CFR 

55% 60.0% 63.3% 68.3% 

IV-bolus, intravenous bolus injection; SCr, serum creatinine 
Colored compartments where SCr and dose regimen intersect indicate that they meet the target CFR under that condition. 
*Calculated according to (colored compartment) / (all compartment, 60) * 100 
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Figure 20. Cumulative fraction of response after intravenous bolus injection of 

the recommended dosage of cefpirome based on serum creatinine concentration 

range 

Simulated Cumulative fraction of response (CFR) according to the recommended 
dose for intravenous bolus injection (IV-bolus) based on Pseudomonas aeruginosa 
in patients receiving ECMO (Top), in patients 48 h after ECMO termination (Middle), 
and in patients 100 h after ECMO termination (Bottom). 
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Figure 21. Cumulative fraction of response after extended infusion over 4 h of 

the recommended dosage of cefpirome based on serum creatinine concentration 

range 

Simulated Cumulative fraction of response (CFR) according to the recommended 
dose for extended infusion over 4 h based on Pseudomonas aeruginosa in patients 
receiving ECMO (Top), in patients 48 h after ECMO termination (Middle), and in 
patients 100 h after ECMO termination (Bottom). 
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4. Discussion 

4.1. Findings of the research 

We explored the population PK model for cefpirome during ECMO and performed 

a pharmacodynamic analysis using Monte Carlo simulations under dosing regimens 

for various pathogens. The most important clinically relevant finding was that CL 

and V1 were increased in the presence of ECMO, and CL increased over time since 

ECMO termination.at the same SCr. Additionally, SCr was negatively correlated 

with CL. None of the parameters related to ECMO such as LPM and RPM helped to 

understand factors influencing to the final PK model. The calculated PTA and CFR, 

when cefpirome was administered by extended infusion, were higher than those by 

IV-bolus in patients with same SCr and ECMO status. PTA was slightly decreased 

by lower SCr and during ECMO, and the higher dose needed to meet target CFR. In 

addition, PTA in 100 h after ECMO termination tended to be slightly decreased than 

those in 48 h after ECMO termination, and those occasionally in ECMO-ON, 

especially in low SCr range. The optimal dosage of cefpirome in patients with 

normal kidney function receiving ECMO was recommended to be 2 g cefpirome q8h 

(6 g/day) for IV-bolus or 2 g q12h (4 g/day) for extended infusion over 4 h; moreover, 

dose reduction based on SCr was recommended. To the best of our knowledge, this 

study is the first to suggest the appropriate dosage of cefpirome for critically ill 

patients receiving VA ECMO.   
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4.2. PK parameter changes for cefpirome in ECMO patients 

In our study, the CL was 3.99 L/h on ECMO-ON group when SCr is 1.6 mg/dL, 

which was lower than the values reported by previous studies in critically ill patients 

(7.54 L/h) (Roos et al., 2007). The reduction in cefpirome CL in our study can be 

explained by the renal impairment caused by hemodynamic instability (Vincent & 

De Backer, 2013). VA ECMO-related factors, such as systemic inflammation due to 

the exposure of blood to artificial surfaces, hemolysis, or hemoglobinuria, may also 

contribute to renal dysfunction (Askenazi et al., 2012; Murphy et al., 2015). This 

trend was also found in PK studies of cefepime in pediatric patients receiving ECMO 

(Shoji et al., 2016; Zuppa et al., 2019). 

One interesting finding was the increase in V1 in patients receiving ECMO. 

Patients with cardiogenic shock who receive ECMO are critically ill and in a 

systemic inflammatory state; profound shock causes deterioration that leads to a 

vasodilatory state (Kohsaka et al., 2005; Lim, 2016; Tsai et al., 2015). Moreover, the 

extra circulating volume from ECMO circuits, rigorous fluid resuscitation, and 

frequent transfusion induces an increased circulatory volume in patients receiving 

ECMO (Steinhorn et al., 1989). Thus, V1 might be increased in patients with ECMO. 

Although cefpirome is a hydrophilic and low protein binding substance (Wiseman 

& Lamb, 1997), an increase in V1 following cefpirome sequestration in the ECMO 

circuits could not be excluded (Shekar, Roberts, Mcdonald, et al., 2012; Wildschut 

et al., 2010). 



68 

 

Another finding was that cefpirome CL was higher in the ECMO-ON group. This 

relationship may partly be explained by circuit loss of cefpirome. Significant losses 

are known to occur for some drugs in ECMO circuits owing to oxidation and 

photodegradation (Lemaitre et al., 2015; Leven et al., 2017). The manufacturer’s 

information states that reconstituted cefpirome solutions are stable for up to 6 h under 

indoor light at room temperature; subsequently, they should be stored at 2°C–8°C 

and protected from light (Sugioka et al., 1990). In practice, the cefpirome solution in 

the blood was exposed to light and heating lamps for more than 12 h in the ECMO 

device, which may have caused drug degradation. Moreover, cefpirome was reported 

to have a low molecular weight and be structurally stable (Sugioka et al., 1990; 

Zalewski et al., 2014); therefore, physiological changes by ECMO, such as 

interactions between retrograde flow returned from VA ECMO and native flow from 

the aorta, are not expected to affect the CL of cefpirome (Murphy et al., 2015). 

The ECMO-OFF as a covariate may inherently correlate with patient status and 

improvement, so we tested time since ECMO termination as another covariate. As 

time elapsed since ECMO termination, population CL for cefpirome also increased; 

when SCr is 1.6 mg/dL, population CL on 48 h and 100 h after ECMO termination 

is 2.81 L/h and 3.94 L/h, respectively. These results are likely to be related to 

recovery of the kidney function gradually after ECMO termination; CL was 

decreased for a while just after ECMO termination, then CL was increased over time 

and reached as the level similar to when ECMO is connected at 100 h since ECMO 
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termination. Renal failure is usually occurred in adult patients receiving VA ECMO 

at frequency of 12.3% (Thiagarajan et al., 2017), because nonpulsatile blood flow 

related to VA ECMO is associated with a decreased glomerular filtration rate (Many 

et al., 1967; Mousavi et al., 2011). Moreover, a study in pediatric patients receiving 

ECMO reported that renal recovery occurred in 96% before discharge (Paden et al., 

2011).  

In our final model, as the SCr increased, cefpirome CL decreased. Cefpirome is 

predominantly (80%–90%) eliminated by the kidney (Wiseman & Lamb, 1997); thus, 

a negative correlation between cefpirome CL and SCr is reasonable. An excellent 

relationship between CrCL and systemic cefpirome CL has been reported 

(Sauermann et al., 2005). Further, CrCL, measured from an 8-h urine collection, was 

screened as a covariate for CL (Roos et al., 2007). The use of CRRT and SCr were 

screened simultaneously through univariate analysis, however, the use of CRRT was 

dropped out through stepwise covariate modeling because it did not improve the 

robustness of the PK model after SCr was first added to CL as covariate. Although 

SCr is not reflected CRRT intensity directly, CRRT could contribute fairly to the 

decreased in SCr (Troyanov et al., 2003). In addition, previous study reported that a 

considerable fraction of the cefpirome is removed through CRRT. So, it is not 

surprising the CRRT does not included in our final cefpirome PK model (Van Der 

Werf et al., 1999).  
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4.3. Dose optimization and their rationales 

To assess the ability of cefpirome to kill bacteria in patients receiving ECMO, the 

CFRs for S. pneumoniae, Enterobacter spp., E. coli, Klebsiella spp., P. aeruginosa, 

and Acinetobacter spp., which are frequently identified pathogens in culture during 

ECMO (Abrams et al., 2019), were calculated using the MIC distribution from 

EUCAST. Our findings were different from those of a previous study, in which IV-

bolus or continuous infusions of cefpirome failed to achieve bactericidal targets for 

P. aeruginosa or Acinetobacter spp. in patients with sepsis (Roos et al., 2007). The 

dosing simulations confirmed that the current treatment, 2 g q12h for IV-bolus, was 

considered sufficient to treat infections caused by S. pneumoniae, Enterobacter spp., 

E. coli, or Klebsiella spp.; moreover, a lower dosage, i.e., 0.5 g q12h for IV-bolus 

was sufficient, regardless of ECMO. For P. aeruginosa, the optimal dose was 2 g 

q8h for IV-bolus or 2 g q12h for extended infusion over 4 h in ECMO patients with 

normal SCr. For patients with relatively high SCr, dose reduction to 0.5–1 g q12h is 

recommended. To treat Acinetobacter spp., 2 g q8h or 2 g q12h is recommended in 

clinical settings; however, there are some SCr ranges for which no appropriate dose 

exists. 

The cefpirome dose required to meet the CFR target tended to be lower for 

extended infusion over 4 h than for IV-bolus; the CFR achievements of the extended 

infusion over 1–2 h were slightly higher than IV-bolus, but those were fairly lower 

than extended infusion over 4 h. Prior studies have noted the clinical benefits of 
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prolonged infusions of beta-lactams because they have time-dependent activity 

(Bauer et al., 2013). Although maximum efficacy and minimal toxicity are expected 

from a continuous cefpirome infusion, the degradation after reconstitution should 

not be overlooked. Cefpirome degradation follows pseudo-first-order kinetics and is 

stable for up to 6 h at room temperature in aqueous solution (Roos et al., 2007; 

Sugioka et al., 1990). Therefore, we suggested a 4 h infusion, and our findings 

supported the notion that patients simulated for the same dosing for extended 

infusion over 4 h were more likely to meet the bactericidal targets than those for IV-

bolus in every scenario.  
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4.4. Study limitations 

This study has some limitations. The number of patients enrolled was small. To 

evaluate covariates in population PK modelling, a minimum 50 patients has been 

suggested (Ribbing & Niclas Jonsson, 2004). However, considering the patient 

characteristics receiving ECMO, 15 patients were not few and Shekar et al. also 

evaluated that a minimum of 12 patients receiving ECMO would be enough for 

population PK analysis (Shekar, Roberts, Welch, et al., 2012). In addition, the 

evaluations proved the robustness of our final model and provided sufficient 

evidence that our study demonstrated the optimal dosage regimen of cefpirome in 

patients receiving ECMO. To reduce variability among subjects and enhance 

accurate of model prediction, our PK model was restricted in patients receiving VA 

ECMO, which is merely one mode of ECMO. So, the generalizability of these results 

to all ECMO mode is limited. Thirdly, the ECMO-OFF group was included in the 

PK model analysis, and our result might be inherently correlated with patient status 

and improvement; but all in ECMO-OFF group were still critically ill patients who 

is needed intensive care until sampling. A recent review demonstrated that PK 

changes in patients receiving ECMO reflect more critical illness than ECMO therapy 

itself (Abdul-Aziz & Roberts, 2020). In addition, time after ECMO termination, 

representing the improvement of patients’ status, was included in final PK model.   
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5. Conclusion 

This is the first study to evaluate the population PK and PD analysis and to suggest 

the appropriate dosage of cefpirome in critically ill patients receiving VA ECMO, to 

the best of our knowledge. We established a population PK model for cefpirome 

during ECMO. Moreover, the optimal dosage regimen was obtained to provide 

adequate bactericidal activity during ECMO. Future studies on a larger number of 

patients receiving ECMO will support the effective use of cefpirome.  
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APPENDICES 

Appendix A 

The part of this thesis was already published at Antimicrobial Agents and 

Chemotherapy (Kang et al. 2020). Copyright of articles was permitted from journals. 
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Appendix B 

CONTROL STREAM FOR A FINAL MODEL 

$SUBROUTINE ADVAN3 TRANS4 

$PK 

;--- FIXED EFFECT DEFINITION ---- 

TVCL = THETA(1)*THETA(5)**(SCR/1.6)*THETA(6)**ECMO 

*(1+(1-ECMO)*THETA(8)*ETIM_OFF) 

TVV1 = THETA(2)*THETA(7)**ECMO 

TVQ = THETA(3) 

TVV2 = THETA(4) 

 

;--- RANDOM EFFECT DEFINITION --- 

CL = TVCL*EXP(ETA(1))  

V1 = TVV1*EXP(ETA(2)) 

Q = TVQ*EXP(ETA(3)) 

V2 = TVV2*EXP(ETA(4)) 

 

S1=V1 

K=CL/V1 

K12=Q/V1 

K21=Q/V2 

 

$ERROR 

W=F 

Y=F+F*EPS(1) 

IPRED=F ;INDIVIDUAL PREDICTION 

IRES=DV-IPRED ;INDIVIDUAL RESIDUAL 

IWRES=IRES/W ;INDIVIDUAL WEIGHTED RESIDUAL 

 

$THETA 
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(0, 3.87) ;CL 

(0, 3.43) ;V1 

(0, 10.4) ;Q 

(0, 17.1) ;V2 

(0, 0.456) ; SCr on CL 

(0, 2.26) ; ECMO on CL 

(0, 2.98) ; ECMO on V1 

(0, 0.0123); ECMO_OFFtime on CL 

 

$OMEGA 

0.0911 ; CL 

0.115 ; V1 

0 FIX ; Q 

0.224 ; V2 

 

$SIGMA 0.0435 

 

$ESTIMATION SIG=3 MAXEVAL=9999 METHOD=1 INTER NOABORT 

$COVARIANCE PRINT=E 

 

$TABLE ID TIME DV IPRED PRED CWRES IWRES PRINT ONEHEADER 

FILE=SDTAB211 

$TABLE ID CL V1 Q V2 ETA(1) ETA(2) ETA(3) ETA(4) K K12 K21 FILE=PATAB211 

NOPRINT ONEHEADER NOAPPEND 

$TABLE ID AGE HT WT SBP DBP TEMP FIO LPM OF RPM ETIM ETIM_OFF PRESS 

TMP SCR BUN WBC RBC HGB PLT CRP PROC CRCL EGFR AST FILE=COTAB211 

NOPRINT ONEHEADER NOAPPEND 

$TABLE ID SEX ECMO CRRT SMO ACH FILE=CATAB211 NOPRINT ONEHEADER 

NOAPPEND 
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ABSTRACT (Korean) 

 

 

체외막산소화장치 적용 중  

세피롬의 집단 약동학 및 용량/용법 최적화 연구 

 

 

연세대학교 일반대학원 

제약의료ㆍ규제과학 의대-약대 협동과정 

강소영 

 

 

연구 배경 

체외막산소화장치(extracorporeal membrane oxygenation, ECMO)는 기존의 

약물 치료에 반응이 없는 심장성 쇼크 환자에서 일시적으로 순환기 

기능을 보조하여 자가 회복에 필요한 시간을 확보하기 위한 

기계장치이다. 중환자는 일반적으로 감염에 취약한 상태이며, 대구경 

카테터를 사용하여 경피적으로 삽입하는 ECMO 장치는 매우 

침습적이므로 세피롬(4세대 세팔로스포린계열 항생제)과 같은 광범위 

항생제의 투여는 ECMO 적용 중 감염의 예방 및 치료에 필수적이다. 

세팔로스포린과 같은 베타-락탐계 항생제의 ECMO 관련 약동학적 
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변화는 다양하고 예측이 어려워 치료적 약물농도감시(therapeutic drug 

monitoring, TDM)가 필요한 것으로 알려져 있다. 그러나 ECMO를 적용한 

환자에서 세피롬의 약동학적 변화를 조사하고, 적정 투여 용량 및 

용법을 제시한 연구는 아직까지 없었다. 

연구 목적 

ECMO 적용 중 세피롬의 집단 약동학 모델을 개발하고, 환자의 특성 및 

병원체의 최소억제농도(minimum inhibitory concentration, MIC) 분포를 

기반으로 최적의 용량/용법을 제시하여, ECMO 적용 중 세피롬의 치료 

효과를 극대화하고자 한다. 

연구 방법 

본 전향적 연구는 심장성 쇼크로 인하여 ECMO를 연결하고 세피롬을 

투여받은 중환자를 대상으로 하였다. 혈액 샘플은 ECMO를 적용한 

도중(ECMO 적용 그룹)과 ECMO를 중단한 이후(ECMO 중단 그룹)에 

각각 채취하였으며, 세피롬 투여 직전(0 분) 1회 및 투여 후 0.5–1시간, 2–

3시간, 4–6시간, 8–10시간 중 각각 1회와 12시간에 1회 수집하였다. 

세피롬의 혈장 농도는 검증된 액체 크로마토그래피–질량분석법을 

사용하여 분석하였다. 집단 약동학 모델은 비선형 혼합효과 

모델링(nonlinear Mixed Effects Modelling, NONMEM)을 이용하여 

상호작용을 고려한 일차 조건부 추정(first-order conditional estimation 

method with interaction, FOCE+I) 방법으로 추정하였다. 유의한 영향을 

미치는 공변량을 도출하기 위하여 우도비 검정(likelihood ratio test)에 

기반한 단계적 공변량 선택법(stepwise covariate modeling)을 적용하였다. 

또한 추정한 모델의 상대표준오차(relative standard error)의 타당성과 
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적합도 그래프(goodness-of-fit plot), ETA 상관관계 그래프, 환자별 그래프, 

정규성 검토 그래프(QQ plot)의 시각적 검사를 기반으로 최적의 집단 

약동학 모델을 개발하고자 하였다. 모델의 정확성과 견고함을 증명하기 

위하여 자동화된 sampling importance resampling (SIR) 방법(sampling = 5,000, 

resampling = 1,000, and 5 iteration)과 visual predictive checks (pc-VPCs) 

(n=5,000)를 수행하였다. 몬테카를로 시뮬레이션(Monte Carlo simulation)을 

이용하여 목표도달확률(probability of target attainment, PTA)을 계산하고, 

European Committee on Antimicrobial Susceptibility Testing (EUCAST)에 따른 

MIC 분포에 기초하여 cumulative fraction of response (CFR)을 평가하였다. 

연구 결과 

총 15명의 환자가 이 연구에 포함되었다. 환자 연령의 중위값은 

63세(사분범위 51.5–70.5세)였다. 혈중 크레아티닌(serum creatinine, SCr) 

농도는 ECMO 적용 중에 중간값 1.58 mg/dL 이었고, ECMO 중단 후에 

중간값 1.83 mg/dL였다. 5명의 환자는 ECMO와 지속적 

신대체요법(continuous renal replacement therapy, CRRT)을 동시에 받았다. 

ECMO 적용 그룹의 혈장 샘플은 ECMO를 적용하고 있는 14명의 

환자로부터 수집되었고, ECMO 중단 그룹의 혈장 샘플은 ECMO를 

성공적으로 중단한 8명의 환자로부터 수집되었다. 총 152개의 혈장 

샘플이 수집되었다.  

관찰된 세피롬의 혈장 농도–시간 프로필은 2구획 모델에 의해 가장 잘 

설명되었다. 공변량 분석 결과, 혈중 크레아티닌 농도가 증가하면 약물 

청소율(clearance)은 감소하는 음의 상관관계를 보였으며, 에크모 적용 

중에는 청소율 및 중심 분포용적(central volume of distribution, V1)이 

증가하는 양상을 보였다. 또한 ECMO 중단 직후에 세피롬의 청소율이 
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감소하였다가 시간이 지날수록 다시 증가하는 변화가 관찰되었다. 최종 

약동학 모델은 다음과 같다: ECMO 적용 그룹에서, CL (L/h) = 8.75 × 

0.456(혈중 크레아티닌 농도(mg/dL)/1.6), V1 (L) = 10.2, 말초 분포용적(peripheral volume 

of distribution, V2) (L) = 17.1, 컴파트먼트 간 청소율(intercompartment 

clearance, Q) (L/h) = 10.4; ECMO 중단 그룹에서, CL (L/h) = 3.87 × 0.456(혈중 

크레아티닌 농도(mg/dL)/1.6) × (1 + 0.0123 × ECMO 중단 후 시간(h)), V1(L) = 3.43, V2 
(L) = 17.1, Q (L/h) = 10.4.  

시뮬레이션 결과, ECMO 적용 중에 혈중 크레아티닌 농도가 낮은 환자는 

ECMO 중단 후 혈중 크레아티닌 농도가 높은 환자보다 목표도달확률이 

낮았다. 따라서 목표 CFR 기준(90%)을 충족시키기 위해 보다 고용량의 

세피롬 투여량이 요구되었다. 한편 ECMO 중단 후 100시간이 지난 

시점의 목표도달확률은 ECMO 중단 후 48시간이 지난 시점의 

목표도달확률보다 낮았고, ECMO 중단 후 시간이 지날수록 세피롬 투여 

요구량이 증가하는 것으로 나타났다. 동일한 혈중 크레아티닌 농도와 

동일한 ECMO 상태를 갖는 환자에서 같은 용량의 세피롬을 투여시간을 

연장시킨 확장정맥투여(extended infusion)방법으로 투여했을 때, 일시 

정맥투여(intravenous bolus injection, IV-bolus) 방법에 비하여 목표도달확률 

및 CFR이 높았다. 즉, 일시 정맥투여에 비해 확장정맥투여 방법으로 

투여 시, 같은 정도의 CFR을 달성하기 위한 약물 투여 요구량이 더 

낮았다. 정상적인 신기능을 가지면서 ECMO를 적용한 환자에서는 일시 

정맥투여의 경우 8시간 마다 2 g, 4시간의 확장정맥투여의 경우 12시간 

마다 2 g의 세피롬 투여가 권장된다. 

연구 결론 

이 연구는 ECMO를 적용한 환자에서 세피롬에 대한 집단 약동학 모델을 
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수립하고 약력학적 분석을 통해 적정 용량용법을 권장한 최초의 

연구이다. 이 연구의 결과는 혈중 크레아티닌 농도와 ECMO 적용 

상태(ECMO 적용 여부 및 ECMO 중단 후 시간)가 세피롬의 적정 

용량/용법을 결정하는 데 중요하다는 점을 시사하고 있다. 이 연구 

결과를 통해 ECMO 환자의 치료 성공과 생존율을 향상시킬 것으로 

기대된다. 

 

 

핵심 단어: 세피롬, 세팔로스포린, 체외막산소화장치, 집단약동학, 약력학, 

용량용법 최적화 

 


