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ABSTRACT

Quantitative systems pharmacology (QSP) can be regarded as a hybrid of pharmacometrics 
and systems biology. Here, we introduce the basic concepts related to dynamical systems 
theory that are fundamental to the analysis of systems biology models. Determination of 
the fixed points and their local stabilities constitute the most important step. Illustration 
of a phase portrait further helps investigate multistability and bifurcation behavior. As a 
motivating example, we examine a cell circuit model that deals with tissue inflammation 
and fibrosis. We show how increasing the severity and duration of inflammatory stimuli 
divert the system trajectories towards pathological fibrosis. Simulations that involve 
different parameter values offer important insights into the potential bifurcations and 
the development of efficient therapeutic strategies. We expect that this tutorial serves as 
a good starting point for pharmacometricians striving to widen their scope to QSP and 
physiologically-oriented modeling.

Keywords: Dynamical Systems Theory; Quantitative Systems Pharmacology; Multistability; 
Bifurcation; Systems Biology

INTRODUCTION

Pharmacometrics is a relatively young field that applies computational modeling and 
simulation to clinical pharmacology. In the narrowest sense, it denotes population 
pharmacokinetic-pharmacodynamic (PopPKPD) modeling using one of the standard 
nonlinear mixed-effects modeling software, such as NONMEM. In a wider sense, 
pharmacometrics is the science of “mathematical models of biology, pharmacology, disease, 
and physiology used to describe and quantify interactions between xenobiotics and patients, 
including beneficial effects and side effects resultant from such interfaces [1].”

There are two main approaches to pharmacometrics modeling. A “top-down” approach [2] 
primarily aims to construct a model that provides reasonable approximations to the observed 
data. Biological details are often omitted for the sake of simplicity. A “bottom-up” approach, 
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on the other hand, aims to construct a model that faithfully reflects the underlying biology. 
Less effort is taken to curve-fit the model or acquire precise parameter estimates, although 
limited tuning of parameter values is done as needed.

Each of the two approaches has its advantages and disadvantages. The former is often easier 
to implement and analyze. Its major drawback is its poor extrapolative capability. The latter 
effectively solves this problem but is generally more complex and difficult to construct. The 
physiologically based pharmacokinetic (PBPK) approach rapidly established itself as an improved 
methodology to implement inter-species scaling [3]. Quantitative systems pharmacology (QSP) [4] 
applies a similar philosophy to modeling pharmacodynamics and disease progression.

QSP can be regarded as a hybrid of pharmacometrics and systems biology. Systems biology 
applies mathematical models to biological networks in order to understand and predict the 
complex interactions among their components. While pharmacometrics models can also be 
considered as comprising of small networks linking different compartments, systems biology 
models tend to deal with networks that are both larger and more densely connected. Hence, 
systems biology models generally require a more sophisticated method of analysis than is 
often needed for analyzing typical PKPD models.

In this tutorial, we will introduce the basic concepts related to a mathematical field called 
dynamical systems theory that plays a prominent role in the analysis of systems biology models. 
In fact, the concepts of dynamical systems theory also implicitly form the groundwork of 
pharmacometrics. The tutorial aims to demonstrate how they apply to both pharmacometrics 
and QSP by taking a ‘learning-by-doing’ approach. Important concepts are introduced 
through examples, and towards the end, we examine a cell circuit model proposed by Adler et 
al. [5] that deals with tissue inflammation and fibrosis.

BASIC CONCEPTS

Formulation of a dynamical systems model
Central to both pharmacometrics and systems biology modeling is the formulation of a 
system of ordinary differential equations (ODEs). The general structure of the system of 
ODEs involving n dynamic variables, x1, x2, …, xn, is as follows:

…

A specific function, fk (x1, x2, …, xn, t) (k = 1, 2, …, n), relates the time derivative of the kth 
variable to the values of all other variables. When there is an explicit dependence of 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   
on time (= t), the ODE is called non-autonomous; otherwise, it is called autonomous. All non-
autonomous systems can be converted to an autonomous system by introducing a dummy 
variable u to represent time, where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   = 1 and u(0) = 0.
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𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥1
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑓𝑓𝑓𝑓1(𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛, 𝑑𝑑𝑑𝑑) 

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑓𝑓𝑓𝑓2(𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛, 𝑑𝑑𝑑𝑑) 

𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛(𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2, … , 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛, 𝑑𝑑𝑑𝑑) 



If all fk (x1, x2, …, xn) (k = 1, 2, …, n) are linear combinations of xk (k = 1, 2, …, n), the system is 
called a linear system of ODEs with constant coefficients:

…

When β10 = β20 = … = βn0 = 0, the system is said to be homogeneous; otherwise, it is non-
homogeneous.

In matrix notation, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝛣𝛣𝛣𝛣𝑑𝑑𝑑𝑑 

where X = [1, x1, x2, …, xn]T and 𝐵𝐵𝐵𝐵 =  [
𝛽𝛽𝛽𝛽10
⋮
𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛0

 
𝛽𝛽𝛽𝛽11 ⋯ 𝛽𝛽𝛽𝛽1𝑛𝑛𝑛𝑛
⋮ ⋱ ⋮
𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛1 ⋯ 𝛽𝛽𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

] .

A continuous dynamical system is a system that can be described using the above formalisms. 
A set of values x1, x2, …, xn constituting X = [x1,x2,…,xn]T is called the system state. A state-space 
encompasses all possible values of X. The time evolution of the system state in state-space 
defines a particular trajectory, which is a unique curve that depends on both the initial state 
and the parameters, βij (i, j = 1, 2, …, n), constituting the function fk (x1, x2, …, xn). The matrix Β 
that maps the current state to its rate of change is called the coefficient matrix.

Fixed point(s)
While an ideal method to investigate the behavior of the system is to derive an analytic 
solution of the ODEs, most systems of ODEs cannot be solved analytically. An alternative 
method is to focus on the long-term behavior of the system. Rather than trying to acquire x(t) 
for all possible values of t, one could instead ask where x(t) ultimately ends up as t → ∞. To this 
end, we usually try to find the value of x associated with 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  =  0 . Such a value is called the fixed 
point (or the steady-state) of the system.

Stability of the fixed point(s)
In the realm of pharmacokinetic models, there is usually a single fixed point that is stable. 
Given a particular set of model parameters, the system approaches a unique steady state 
regardless of the initial values. For example, given a particular choice of the infusion rate, Rin, 
and drug clearance, CL, the drug concentration will always approach 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  .

Not all fixed points are stable, however. To understand this, let us examine a simple 
differential equation with a single parameter r:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑 
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𝑑𝑑𝑥𝑥1
𝑑𝑑𝑑𝑑  =  𝛽𝛽10  +  𝛽𝛽11𝑥𝑥1  +  𝛽𝛽12𝑥𝑥2  +  … +  𝛽𝛽1𝑛𝑛𝑥𝑥𝑛𝑛 

𝑑𝑑𝑥𝑥2
𝑑𝑑𝑑𝑑  =  𝛽𝛽20  +  𝛽𝛽21𝑥𝑥1  +  𝛽𝛽22𝑥𝑥2  +  … +  𝛽𝛽2𝑛𝑛𝑥𝑥𝑛𝑛 

 

𝑑𝑑𝑥𝑥𝑛𝑛
𝑑𝑑𝑑𝑑  =  𝛽𝛽𝑛𝑛0  +  𝛽𝛽𝑛𝑛1𝑥𝑥1  +  𝛽𝛽𝑛𝑛2𝑥𝑥2  + … +  𝛽𝛽𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛 

 



We will consider two cases based on the magnitude of r relative to zero.

Case 1. r < 0.

The rate, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  (= r·X), is less than 0 when X > 0, and greater than 0 when X < 0. Hence, X 
increases when X is negative and decreases when X is positive. In both cases, X will converge to X = 0, 
making it a stable fixed point.

Case 2. r > 0.

The rate, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  (= r·X), is greater than 0 when X > 0, and less than 0 when X < 0. This means 
that X decreases when X is negative and increases when X is positive. Therefore, X moves away from 
zero regardless of whether X is positive or negative. The only condition under which X 
remains at rest is when X is initially zero. This shows that X = 0 is an unstable fixed point.

From the above analysis, we can propose the following method of stability assessment:

Xfixed is a stable fixed point if:

i) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  = 0 when X = Xfixed.

ii) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  > 0 when X < Xfixed.

iii) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  < 0 when X > Xfixed.

Xfixed is an unstable fixed point if:

i) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  = 0 when X = Xfixed.

ii) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  > 0 when X > Xfixed.

iii) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  < 0 when X < Xfixed.

Alternatively, given that 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  = 0 when X = Xfixed, Xfixed is stable if 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�  <  0  < 0 and unstable if 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
�  <  0  > 0. Hence, the sign of the second derivative 𝜕𝜕𝜕𝜕2𝑋𝑋𝑋𝑋

𝜕𝜕𝜕𝜕𝑋𝑋𝑋𝑋𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
  can be used to determine the stability 

of the system. This is a straightforward method of stability assessment when X is a one-
dimensional variable.

Phase portrait
When dealing with multiple variables, a graphical approach of plotting one variable against 
another often turns out to be useful. For a two-variable case, the resultant plot is called a phase 
portrait drawn on a phase plane. The phase portrait represents the trajectories of two variables, 
x and y, whose state at time t is represented by the coordinate (x(t), y(t)) on the Cartesian plane.
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  > 0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  < 0

Xfixed

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  > 0𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (=  𝑟𝑟𝑟𝑟 ∙ 𝑑𝑑𝑑𝑑)  < 0

Xfixed



To investigate the long-term trajectories of the system given different initial conditions, a 
frequently used approach involves sketching a direction field. This is done by calculating 
(
dx
dt

,
dy
dt

)  for a set of xy coordinates and then placing an arrow on each of the coordinate points 
in the direction of the vector, dx

dt
𝑖𝑖𝑖𝑖 +  

dy
dt
𝑗𝑗𝑗𝑗 , where i and j are standard basis vectors of (1, 0) and 

(0, 1), respectively.

While direction fields are useful in assessing the fixed point(s) of the system, one can use 
a more direct method based on the system nullclines. For example, given a system of two 
variables, x and y, the x-nullcline(s) is (are) the set of points satisfying (dx

dt
,
dy
dt

)  = 0 while the 
y-nullcline(s) is (are) that satisfying (

dx
dt

,
dy
dt

)  = 0. The point of intersection of the two nullclines 
constitutes the fixed point.

Multiple fixed points
Multiple fixed points occur when there are more than one nullclines for each variable or 
when the nullclines are highly nonlinear such that they meet at more than one point. Hence, 
multiple fixed points occur only when the underlying system of ODEs is nonlinear. However, 
the converse is not true: nonlinear systems can either have single or multiple fixed points. 
The contrapositive statement also holds: a linear system of ODEs with constant coefficients 
always has a single fixed point. This is easy to understand since two straight lines cannot 
intersect at more than one point.

A systematic method for the assessment of stability exists for linear systems. For non-linear 
systems, linearization around the fixed point enables applying this method for stability 
analysis. Before we go into that, an illustrative example is presented to demonstrate how 
multiple fixed points can arise.

113https://tcpharm.org https://doi.org/10.12793/tcp.2020.28.e12

Dynamical systems analysis in QSP

Example 1. Cell growth dynamics

The simplest model dealing with cellular growth is an exponential growth model:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑔𝑔𝑔𝑔 ∙ 𝑑𝑑𝑑𝑑 

(X: Number of cells, g: per capita growth rate)

While this equation roughly captures the cellular growth in its early stages, it 
becomes unrealistic in the long-term since X diverges to infinity. Two popular models 
that impose an upper limit to cellular growth are the logistic growth model and 
Gompertzian growth model:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑔𝑔𝑔𝑔 ∙ 𝑑𝑑𝑑𝑑 ∙  (1 −
𝑑𝑑𝑑𝑑
𝐾𝐾𝐾𝐾

)  [Logistic growth model]

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑔𝑔𝑔𝑔 ∙ 𝑑𝑑𝑑𝑑 ∙ log(
𝐾𝐾𝐾𝐾
𝑑𝑑𝑑𝑑

)  [Gompertzian growth model]

In both these models, as t → ∞, X → K. The additional parameter, K, is often called the 
carrying capacity.



Equipped with the above background, suppose that there are two types of cells – tumor 
cells, X, and normal cells, Y. We could model the competition between X and Y for 
common resources using the logistic growth equation, as follows:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑑𝑑𝑑𝑑 ∙  (1 −  𝑑𝑑𝑑𝑑 −  𝑢𝑢𝑢𝑢 ∙ 𝑌𝑌𝑌𝑌) 

𝑑𝑑𝑑𝑑𝑌𝑌𝑌𝑌
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑌𝑌𝑌𝑌 ∙  (1 −  𝑌𝑌𝑌𝑌 −  𝑣𝑣𝑣𝑣 ∙ 𝑋𝑋𝑋𝑋) 

The X-nullclines are X = 0 and X = 1 − u·Y while the Y-nullclines are Y = 0 and Y = 1 − v·X. 
Let u = 0.1 and v = 1. The phase portrait is shown in Fig. 1.
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Linear stability analysis
To assess the stability of fixed points associated with multiple ODEs, we need to evaluate the 
eigenvalues of the coefficient matrix. For readers unfamiliar with these concepts, refer to 
Appendix 1 for a brief introduction.

Let us look at the following matrix differential equation, 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

 =  𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑  →

where X is a k-dimensional vector representing the states of k variables and A is a (k×k) 

coefficient matrix, �
𝑎𝑎𝑎𝑎11 ⋯ 𝑎𝑎𝑎𝑎1𝑘𝑘𝑘𝑘
⋮ ⋱ ⋮
𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘1 ⋯ 𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

�  (i = 1, 2, …, k and j = 1, 2, …, k),

To solve the equation, we first need to calculate the eigenvectors and the eigenvalues of the 
matrix A. We then define a (k×k) matrix P by stacking the k-dimensional eigenvectors, vi (i = 1, 2, 
…, k), horizontally and a diagonal matrix D whose elements are the eigenvalues, λi (i = 1, 2, …, k).
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Figure 1. Phase portrait of the tumor-normal cell competition model. The fixed points are (X, Y) = (0, 0), (0, 1), 
and (1, 0). The fixed point at (0, 0) represents the state of no cells, which is unstable. So long as there are no 
tumor cells, the trajectory starting from (0, 0) converges to (0, 1), consisting of only normal cells. With the 
emergence of a single tumor cell, however, the state shifts towards (1, 0), which is the only stable fixed point 
characterized by 100% tumor cells.



P = [v1 … vk],

𝐷𝐷𝐷𝐷 =  �
𝜆𝜆𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘

� 

The series of equations, Av1 = λ1v1, Av2 = λ2v2, …, and Avk = λkvk, is then compressed into a 
single matrix equation, as follows:

AP = A[v1 … vk] = [λ1v1 … λkvk]

The right-hand side can be expressed as a product of P and D:

[𝜆𝜆𝜆𝜆1𝑣𝑣𝑣𝑣1 … 𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘𝑣𝑣𝑣𝑣𝑘𝑘𝑘𝑘]  =  [𝑣𝑣𝑣𝑣1 … 𝑣𝑣𝑣𝑣𝑘𝑘𝑘𝑘] �
𝜆𝜆𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘

�  =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

Since P is invertible, the following holds:

A = PDP−1

The above decomposition of a matrix A is called diagonalization.

Now, define a new variable Y = P−1X and let yi (i = 1, 2, …, k) denote the ith element of Y.

Differentiating both sides with respect to t,

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑃𝑃𝑃𝑃−1
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑃𝑃𝑃𝑃−1 𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑 =  𝑃𝑃𝑃𝑃−1(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−1)𝑑𝑑𝑑𝑑 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃−1𝑑𝑑𝑑𝑑 =  𝑃𝑃𝑃𝑃𝑑𝑑𝑑𝑑 

Hence,

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  [

𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦1
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑…
𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

]  =  𝐷𝐷𝐷𝐷𝑑𝑑𝑑𝑑 =  �
𝜆𝜆𝜆𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝜆𝜆𝜆𝑘𝑘𝑘𝑘

�  [
𝑦𝑦𝑦𝑦1
…
𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘

] 

Therefore,

y1 = C1eλ1t, …, yk = Ckeλkt

where Ci (i = 1, 2, …, k) are the initial values of yi.

Finally,

𝑋𝑋𝑋𝑋 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  [𝑣𝑣𝑣𝑣1 … 𝑣𝑣𝑣𝑣𝑘𝑘𝑘𝑘] [
𝑦𝑦𝑦𝑦1
…
𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘

] 

= C1eλ1tv1 + … + Ckeλktvk

This shows that all solutions of X can be expressed as a linear combination of eλtv where λ 
denotes the eigenvalues and v the eigenvectors.
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Returning to our original discussion of stability assessment, if any of the exponential terms, 
Cieλitvi (i = 1, 2, …, k), is associated with a positive λi, the solution will diverge as t → ∞. On the 
other hand, if all of the eigenvalues are negative, the system converges to a stable fixed point.

For non-linear systems, we must first acquire all possible fixed points and then linearize the 
system around each of them. The resultant linear system of ODEs can then be used to assess 
the stability of each fixed point. This technique is called linear stability analysis.

Caution is needed at this point. An astute reader might have noticed that eigenvalues can also 
be complex numbers. Complex eigenvalues lead to an interesting phenomenon of oscillations. 
The following example looks at a prototypical nonlinear system with complex eigenvalues.
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Example 2. Lotka-Volterra equation

The following model describes the interaction between predators, X, and preys, Y. 
The birth rate of predators depends on the number of preys at any given time. On the 
other hand, the death rate of preys depends on the number of predators.

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  α ∙ 𝑑𝑑𝑑𝑑 ∙ 𝑌𝑌𝑌𝑌 −  β ∙ 𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  γ ∙ 𝑑𝑑𝑑𝑑 −  δ ∙ 𝑋𝑋𝑋𝑋 ∙ 𝑑𝑑𝑑𝑑 

(α: Growth rate of predators, β: Death rate of predators,  
  γ: Growth rate of preys, δ: Death rate of preys)

Let α = β = γ = δ = 1.

Draw a phase portrait of the above system, identify the fixed points, and assess its 
local stability.

Answer)

Linearization of the system at (1, 1) results in the following system of ODEs.

Defining ΔX = X − 1, ΔY = Y − 1,

𝑑𝑑𝑑𝑑∆𝑋𝑋𝑋𝑋
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  
𝑑𝑑𝑑𝑑𝑋𝑋𝑋𝑋
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 ≈  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑋𝑋𝑋𝑋

(𝑋𝑋𝑋𝑋 ∙ 𝑌𝑌𝑌𝑌 −  𝑋𝑋𝑋𝑋) |𝑋𝑋𝑋𝑋=1,𝑌𝑌𝑌𝑌=1∆𝑋𝑋𝑋𝑋 +  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑌𝑌𝑌𝑌

(𝑋𝑋𝑋𝑋 ∙ 𝑌𝑌𝑌𝑌 −  𝑋𝑋𝑋𝑋)|𝑋𝑋𝑋𝑋=1,𝑌𝑌𝑌𝑌=1∆𝑌𝑌𝑌𝑌 =  0 +  ∆𝑌𝑌𝑌𝑌 

𝑑𝑑𝑑𝑑∆𝑌𝑌𝑌𝑌
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  
𝑑𝑑𝑑𝑑𝑌𝑌𝑌𝑌
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 ≈  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

(𝑌𝑌𝑌𝑌 −  𝜕𝜕𝜕𝜕 ∙ 𝑌𝑌𝑌𝑌) |𝑋𝑋𝑋𝑋=1,𝑌𝑌𝑌𝑌=1∆𝜕𝜕𝜕𝜕 +  
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑌𝑌𝑌𝑌

(𝑌𝑌𝑌𝑌 −  𝜕𝜕𝜕𝜕 ∙ 𝑌𝑌𝑌𝑌)|𝑋𝑋𝑋𝑋=1,𝑌𝑌𝑌𝑌=1∆𝑌𝑌𝑌𝑌 =  ∆𝜕𝜕𝜕𝜕 +  0 

Hence,
𝑑𝑑𝑑𝑑∆𝑋𝑋𝑋𝑋
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 ≈  ∆𝑌𝑌𝑌𝑌 

𝑑𝑑𝑑𝑑∆𝑌𝑌𝑌𝑌
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 ≈  ∆𝑋𝑋𝑋𝑋 



The coefficient matrix of the above system is �0 1
1 0� , whose eigenvalues are ± i.

Fig. 2 shows the phase portrait of the given system.
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Cell circuit for tissue repair and fibrosis
We finally embark on dealing with a real systems biology model with therapeutic implications.

Tissue injury leads to inflammation that gives rises to two different processes – healing 
and fibrosis. A model was proposed to understand how a single process leads to two such 
different outcomes [5]. It is known that inflammatory processes recruit blood monocytes 
into the injured tissue and transforms them to tissue macrophages. Macrophages secrete 
platelet derived growth factor (PDGF) that activates fibroblasts and promote their 
differentiation into myofibroblasts. Myofibroblasts, in turn, secrete colony stimulating factor 
(CSF) that promotes the growth of macrophages. In addition, myofibroblasts secrete PDGF 
in an autocrine loop to activate their own growth. Macrophages and myofibroblasts thus 
reciprocally interact through paracrine signaling. However, the proteins secreted by each 
perform opposite functions: myofibroblasts secrete extracellular matrix (ECM) that promote 
fibrotic changes while macrophages secrete proteases that resolve it.

We will hereafter denote the tissue macrophages and myofibroblasts using the symbols M 
and mF, respectively. The model consists of the following system of ODEs.

𝑑𝑑𝑑𝑑[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] ∙ (𝜆𝜆𝜆𝜆1 ∙ [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚] ∙ (1 – 
[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
𝐾𝐾𝐾𝐾

) – 𝜇𝜇𝜇𝜇1)  (1) 

𝑑𝑑𝑑𝑑[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝛽𝛽𝛽𝛽2 ∙ [𝑀𝑀𝑀𝑀]  +  𝛽𝛽𝛽𝛽3 ∙ [𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃] – 𝛼𝛼𝛼𝛼2 ∙ [𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃] ∙ [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] – 𝛾𝛾𝛾𝛾 ∙ [𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]  (2)

𝑑𝑑𝑑𝑑[𝑀𝑀𝑀𝑀]
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  [𝑀𝑀𝑀𝑀] ∙ (𝜆𝜆𝜆𝜆2 ∙ [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] – 𝜇𝜇𝜇𝜇2)  (3)
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Figure 2. Phase portrait of the predator-prey equation. The 2 nullclines meet at (0, 0) and (1, 1), respectively. 
The direction field suggests that the trajectories do not converge to (1, 1) but rather circle around it with a 
constant radius.



𝑑𝑑𝑑𝑑[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝛽𝛽𝛽𝛽1 ∙ [𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶] –𝛼𝛼𝛼𝛼1 ∙ [𝑀𝑀𝑀𝑀] ∙ [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶] –  𝛾𝛾𝛾𝛾 ∙ [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]  (4)

where λ1, µ1, λ2, µ2 are the proliferation and removal rates of mF and M, respectively. A logistic 
growth model was used to impose an upper limit to mF, where K represents the carrying 
capacity. No growth restriction was imposed on M.

CSF is produced by mF at rate β1, and endocytosed by macrophages at rate α1. PDGF is secreted 
by both M and mF at rates β2 and β3, respectively and endocytosed by mF at rate α2. Both 
growth factors are degraded at rate γ.

We employ the principle of separation of timescales and apply a quasi-steady state 
approximation to Eq. (2) since the production and removal of PDGF take minutes to hours 
while cell division and death take about a day or so. (Refer to Appendix 2 for further 
explanations of the concepts.) We treat mF as a constant and derive an algebraic expression 
for PDGF. To this end, we solve 𝑑𝑑𝑑𝑑[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 =  0  = 0:

[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃]  =  
𝛽𝛽𝛽𝛽2 ∙ [𝑀𝑀𝑀𝑀]  + 𝛽𝛽𝛽𝛽3 ∙ [𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃]

𝛼𝛼𝛼𝛼2 ∙ [𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃] + 𝛾𝛾𝛾𝛾
  (5)

Plugging Eq. (5) into Eq. (1),

𝑑𝑑𝑑𝑑[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]  ∙ (𝜆𝜆𝜆𝜆1 ∙
𝛽𝛽𝛽𝛽2 ∙ [𝑀𝑀𝑀𝑀]  +  𝛽𝛽𝛽𝛽3 ∙ [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]

𝛼𝛼𝛼𝛼2 ∙ [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] + 𝛾𝛾𝛾𝛾
∙ (1 – 

[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚]
𝐾𝐾𝐾𝐾

) – 𝜇𝜇𝜇𝜇1)  (6)

Similarly, we solve 𝑑𝑑𝑑𝑑[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  0  = 0 to acquire the following equation:

[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]  =  
𝛽𝛽𝛽𝛽1 ∙ [𝑚𝑚𝑚𝑚𝐶𝐶𝐶𝐶]

𝛼𝛼𝛼𝛼1 ∙ [𝑀𝑀𝑀𝑀]  +  𝛾𝛾𝛾𝛾
  (7)

Plugging Eq. (7) into Eq. (3) yields:

𝑑𝑑𝑑𝑑[𝑀𝑀𝑀𝑀]
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  [𝑀𝑀𝑀𝑀] ∙ (𝜆𝜆𝜆𝜆2 ∙
𝛽𝛽𝛽𝛽1 ∙ [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] 
𝛼𝛼𝛼𝛼1 ∙ [𝑀𝑀𝑀𝑀] + 𝛾𝛾𝛾𝛾

 – 𝜇𝜇𝜇𝜇2)  (8)

We now incorporate the effect of inflammation by modifying Eq. (8) as follows:

𝑑𝑑𝑑𝑑[𝑀𝑀𝑀𝑀]
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝐼𝐼𝐼𝐼 ∙ (𝑑𝑑𝑑𝑑 < 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)  +  [𝑀𝑀𝑀𝑀] ∙ (𝜆𝜆𝜆𝜆2 ∙
𝛽𝛽𝛽𝛽1 ∙ [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] 
𝛼𝛼𝛼𝛼1 ∙ [𝑀𝑀𝑀𝑀] + 𝛾𝛾𝛾𝛾

 – 𝜇𝜇𝜇𝜇2)  (9)

I and Dur denote the severity and duration of inflammation, respectively. The expression within 
the parentheses represents a logical function that returns 1 when true and 0 otherwise.

We will sketch the phase portraits consisting of direction fields, nullclines, and three specific 
trajectories of the system assuming four different clinical scenarios (see Figure 6). We arbitrarily 
set the model parameters as follows:

i) λ1 = λ2 = µ1 = µ2 = K = β1 = β2 = β3 = 1
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ii) α1 = 1, α2 = 0
iii) γ = 0.25

For parameters that reflect physiological reality, refer to the original article [5].

The initial states of the three trajectories are (mF, M) = (0.1, 0.3), (0.1, 0.6), and (0.2, 0.3). 
mF and M nullclines are depicted using dark and light blue curves, respectively. The direction 
fields and nullclines are drawn for t = 0.

Fig. 3A illustrates the bistability of the system. When mF = 0.1 and M = 0.3, the system 
converges to mF = 0 and M = 0, corresponding to the state of complete wound healing. The 
moment we push either mF or M slightly higher (M = 0.3 to 0.6 or mF = 0.1 to 0.2), the system 
converges to a new fixed point corresponding to the fibrotic state.
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Figure 3. Phase portraits illustrating direction fields, nullclines, and three different trajectories under four 
different scenarios of (A) no inflammation, (B) I = 0.1, Dur = 1, (C) I = 0.1, Dur = 5, and (D) I = 0.5, Dur = 1.



Fig. 3B-D inspects how the severity and duration of inflammation affect the system. With 
minimal inflammation of I = 0.1 and Dur = 1, the fates of the three trajectories remain 
undeterred. However, when we either increase the duration (Dur = 1 to 5) or the severity (I = 0.1 
to 0.5) of inflammation, the trajectory that previously led to complete wound healing (the red 
curve in Figure 3) alters its course and converges to the fibrotic state.

Exploration of therapeutic strategies
We have analyzed the system behavior under differing severity and duration of the extrinsic 
inflammatory stimulus. This obviously suggests that reducing the severity and duration 
of such inflammatory stimulus would help promote wound healing. Apart from this 
uninteresting strategy, what are the other potential therapeutic options? The authors propose 
that altering β3, α2, λ1, and µ1 would constitute efficient therapeutic strategies.

Fig. 4 demonstrates the effect of inhibiting the autocrine secretion rate of PDGF by mF (β3). 
Fig. 5 shows how increasing PDGF's rate of endocytosis by mF (α2) has a similar effect as 
inhibiting β3. Once β3 < 0.5 or α2 > 0.5, a bifurcation occurs whereby the fibrotic fixed point 
disappears altogether. Fig. 6 demonstrates that either reducing the growth rate (λ1) or 
increasing the death rate of mF (µ1) lead to a vertical upward shift of the mF-nullcline. Altering 
the parameters related to M, on the other hand, would change the M-nullcline, which would 
not be as efficient as modulating the mF-nullcline.

In summary, drugs should target mF instead of M, and aim at either reducing its net 
proliferation or PDGF concentration around it through either lower autocrine secretion rate or 
enhanced endocytosis.
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Figure 4. The effect of reducing the autocrine secretion rate of platelet derived growth factor by mF (β3). The curvature of mF-nullcline decreases, expanding the 
basin of attraction towards the healing state.
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Figure 5. The effect of increasing platelet derived growth factor's rate of endocytosis by mF (α2), which is similar to that of decreasing β3.
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Figure 6. Decreasing the growth rate (λ1) or increasing the death rate of mF (μ1) lead to similar effects on the phase portrait. 
 (continued to the next page)



CONCLUSION

In this tutorial, we learned the basic concepts of dynamical systems theory frequently applied 
to QSP model analysis. Determination of the fixed points and their local stabilities often 
constitute the most important step in analyzing the system. Illustration of a phase portrait 
helps investigate the overall system behavior. Simulations that involve different parameter 
values offer important insights into the potential bifurcations and the development of 
efficient therapeutic strategies.

The author hopes that this tutorial serves as a good starting point for pharmacometricians 
striving to widen their scope to QSP and physiologically-oriented modeling.
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Figure 6. (Continued) Decreasing the growth rate (λ1) or increasing the death rate of mF (μ1) lead to similar effects on the phase portrait.
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Appendix 1
Eigenvalues and eigenvectors

Given a (n×n) matrix A, a non-zero n-dimensional vector v that satisfies

Av = λv … (a)

is called the eigenvector of A, and the scalar variable λ is called the eigenvalue.

For the equation

(A − λI)·v = 0 … (b)
(I: (n×n) identity matrix, 0: n-dimensional zero vector)

to have a non-trivial solution (i.e. v ≠ 0), (A − λI) must be singular. Otherwise, we could multiply its inverse to both sides of the equation 
(a) to yield v = 0, which contradicts our assumption.

We define p(λ) = A − λI as the characteristic polynomial.

Solving det(p(λ)) = 0 yields λ, the eigenvalues, and solving Av = λv yields v, the eigenvectors.

Appendix 2
Separation of timescales

Oftentimes in modeling, the rates of two processes differ so drastically such that from the point of view of one of the processes, the 
other seems as if occurring almost instantaneously. The two most widely used techniques for model reduction are:

(i) Rapid equilibrium (RE) approximation
(ii) Quasi-steady state (QSS) approximation

We will examine a prototypical system of equations describing the dynamics of ligand-receptor binding.

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  −𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑 ∙ 𝑅𝑅𝑅𝑅 +  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶 −  𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  −  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑 −  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 ∙ 𝑑𝑑𝑑𝑑 +  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝐶𝐶 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿 ∙ 𝑅𝑅𝑅𝑅 −  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑 −  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 

L, R, and C denote concentrations of ligands, receptors, and ligand-receptor complexes, respectively.

The first technique of RE approximation can be thought of as lumping compartments. We assume that ligand-receptor binding 
reaches equilibrium instantly (i.e. kon R·L = koffC). Denoting the total ligand and receptor concentration as Ltot(= L + C) and Rtot (= R + C),

𝐶𝐶𝐶𝐶 =  𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  −  𝑅𝑅𝑅𝑅 =  𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  −  
𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜 ∙ 𝐿𝐿𝐿𝐿

𝐶𝐶𝐶𝐶 =  
𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐿𝐿𝐿𝐿
𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜

 +  𝐿𝐿𝐿𝐿
 =  

𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐿𝐿𝐿𝐿
𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷  +  𝐿𝐿𝐿𝐿

 (𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷  =  
𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜

) 
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We then formulate ODEs of Ltot and Rtot as follows:

𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  
𝑑𝑑𝑑𝑑𝐿𝐿𝐿𝐿
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 +  
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  −𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑 −  𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿 =  −𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐿𝐿𝐿𝐿
𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷  +  𝐿𝐿𝐿𝐿

 −  𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐿𝐿𝐿𝐿 

 𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  
𝑑𝑑𝑑𝑑𝑅𝑅𝑅𝑅
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 +  
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  −  𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅 −  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡𝑑𝑑𝑑𝑑 =  𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  −  𝑘𝑘𝑘𝑘𝑡𝑡𝑡𝑡𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑅𝑅𝑅𝑅 −  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑡𝑡𝑡𝑡
𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐿𝐿𝐿𝐿
𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷  +  𝐿𝐿𝐿𝐿

 

 Since L = Ltot − C = Ltot − 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐿𝐿𝐿𝐿
𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷  +  𝐿𝐿𝐿𝐿

 , we can solve the following quadratic equation to express L as a function of Ltot and Rtot.

L2 + (KD + Rtot − Ltot)·L − Ltot·KD = 0

→  𝐿𝐿𝐿𝐿 =  0.5 [(𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 – 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷  – 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  +  �(𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 –  𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷  – 𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2 + 4𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐾𝐾𝐾𝐾𝐷𝐷𝐷𝐷] 

We have thus reduced the system of three ODEs to a system of two ODEs.

Using a QSS approximation, we assume that changes associated with C are significantly faster than those of L and R. Hence, we treat 
L and R as constants. Given this assumption, C would soon approach a quasi-steady state.

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿 ∙ 𝑅𝑅𝑅𝑅 −  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑 −  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑 ≈  0 

 
Hence, C = 𝐶𝐶𝐶𝐶 =  

𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿 ∙ 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  +  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖

 

Defining KSS = 𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  =  
𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  +  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖
 , C = 𝐶𝐶𝐶𝐶 =  

𝐿𝐿𝐿𝐿 ∙ 𝑅𝑅𝑅𝑅
𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 =  
𝐿𝐿𝐿𝐿 ∙ (𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  −  𝐶𝐶𝐶𝐶)

𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
  and solving for C yields the following result:

𝐶𝐶𝐶𝐶 =  
𝑅𝑅𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝐿𝐿𝐿𝐿
𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  +  𝐿𝐿𝐿𝐿

 

 
We now substitute 𝐶𝐶𝐶𝐶 =  

𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐿𝐿𝐿𝐿 ∙ 𝑅𝑅𝑅𝑅
𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  +  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖

  into the original equation.

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  −𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑 ∙ 𝑅𝑅𝑅𝑅 +  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑 ∙ 𝑅𝑅𝑅𝑅

𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 +  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖
 −  𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 = –

𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∙ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖
𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  +  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖

 𝑑𝑑𝑑𝑑 ∙ 𝑅𝑅𝑅𝑅 −  𝑘𝑘𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 =  𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  −  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑 −  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 ∙ 𝑑𝑑𝑑𝑑 +  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 ∙ 𝑑𝑑𝑑𝑑

𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 +  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜
 =  𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  −  𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑 – 

𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠 ∙ 𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜
𝑘𝑘𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  +  𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜

 𝐿𝐿𝐿𝐿 ∙ 𝑑𝑑𝑑𝑑 

 While both RE and QSS approximations reduce the number of ODEs, the former creates new lumped variables to replace the original 
variables while the latter formulates an algebraic function linking the slowly changing variables (e.g. L and R) to the rapidly changing 
variable (e.g. C). When applying either of the two approximations, one must make sure that the assumptions are reasonable.
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