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Fatty acid ethyl esters (FAEEs), non-oxidative metabolites of ethanol, are the main causative agents of severe acute
pancreatitis resulting from alcohol abuse. Pancreatic acinar cells exposed to ethanol in combination with the fatty acid
palmitoleic acid (EtOH/POA) display increased levels of palmitoleic acid ethyl ester and cell death. Oxidative stress and
acinar cell necroptosis are implicated in the pathology of severe acute pancreatitis. Docosahexaenoic acid (DHA) serves
as a powerful anti-oxidant that reduces pancreatic inflammation and improves the outcomes of patients with acute
pancreatitis. We investigated whether treatment of EtOH/POA, as an in vitro model of alcoholic pancreatitis, increases
reactive oxygen species (ROS), necroptosis-regulating proteins, and cell death by increasing nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase activity and intracellular calcium. Also, we investigated whether DHA
inhibits EtOH/POA-induced alterations in pancreatic acinar AR42J cells. As a result, EEOH/POA increased intracellular
and mitochondrial ROS levels, NADPH oxidase activity, necroptosis-regulating proteins, and cell death, which was
inhibited by NADPH oxidase inhibitor apocynin, the Ca?* chelator BAPTA, and DHA. However, DHA did not reduce
EtOH/POA-induced increases in Ca?" oscillation or levels in AR42J cells. Furthermore, EtOH/POA induced
mitochondrial dysfunction by reducing mitochondrial membrane polarization and hence, adenosine triphosphate (ATP)
production. DHA treatment attenuated EtOH/POA-induced mitochondrial dysfunction. In conclusion, DHA inhibits
EtOH/POA-induced necroptosis by suppressing NADPH oxidase activity, reducing ROS levels, preventing
mitochondrial dysfunction, and inhibiting activation of necroptosis-regulating proteins in AR42J cells.
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INTRODUCTION

Acute pancreatitis (AP) is a sudden onset, necro-
inflammatory disease of the exocrine pancreas. Although
conservative management usually results in clinical
improvement for most patients with AP, 20% of all cases
develop extensive disease involving pancreatic necrosis and
severe inflammation, which can result in multiple organ failure
and death (1, 2). Currently, there is no chemotherapeutic drug
available for the prevention or treatment of AP.

AP is characterized by aberrant zymogen activation,
inflammatory cell infiltration and pancreatic acinar cell death
(3). Whereas abnormal trypsinogen activation contributes to the
early stages of the disease, activation of the oxidant-sensitive
transcription factor nuclear factor-kappaB (NF-xB) in acinar
cells is largely responsible for the severe systemic inflammatory
response and organ damage (4).

High alcohol intake (> 40 g/day) is a major risk factor for AP
(5). Alcoholic pancreatitis is the second leading cause of AP, and
the most common cause of chronic pancreatitis (5, 6). Although
the mechanism by which chronic alcohol abuse promotes AP is
not fully understood, it is generally believed that an intracellular

Ca? overload, as well as the generation of reactive oxygen
species (ROS), are the elements responsible for the initiation of
the inflammatory process in the gland (7-12). In addition, ethanol
enhances cholecystokinin octapeptide (CCK-8)-induced Ca?*
overload and ROS generation in pancreatic acinar cells (13-15).
In the pancreas, ethanol is either oxidized to acetaldehyde or
esterified with free fatty acids to form free fatty acid ethyl esters
(FAEEs). Ethanol oxidation 1is catalyzed by alcohol
dehydrogenase or by cytochrome P450 2E1 (16). The oxidative
metabolites of alcohol, notably acetaldehyde, have been
suggested as mediators of alcohol-induced organ damage.
Because oxidative metabolites are primarily generated in the
liver and appear only in extremely low concentrations in the
circulation (17, 18), organ damage from acetaldehyde in the
pancreas, which shows minimal oxidative ethanol metabolism
(19, 20), is considered unlikely. Nonoxidative metabolism of
alcohol by esterification with fatty acids has been shown in the
pancreas and implicated in the development of pancreatic acinar
cell injury (21-23). Some evidences show that ethanol
metabolism in the pancreas mainly occurs via the nonoxidative
pathway and produces FAEEs (24-27). Doyle et al. (24)
determined the concentration of FAEESs in the blood of 7 healthy
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human subjects after ethanol intake for a period of up to 24
hours. They found that 7 of 7 samples equivocal for ethanol were
positive for FAEEs, suggesting the fatty acid ethyl esters in the
blood as markers for ethanol intake. Laposata et al. (25, 26)
demonstrated that alcohol-intoxicated humans have high levels
of FAEEs, in blood, pancreas, and liver, causing pancreatic
injury as well as liver damage. Werner et al. (27) found that
FAEEs at concentrations found in human plasma produce a
pancreatitis-like injury in rats, providing direct evidence that
FAEEs can produce organ-specific toxicity. Thus, FAEEs may
contribute to acute alcohol-induced damage to the pancreas.

The pathogenic mechanism studies for FAEE showed that
FAEEs are mainly synthesized and accumulated in pancreatic
acinar cells (28) and induce the release of Ca?" from the
endoplasmic reticulum (ER), and from zymogen granules by
activating inositol triphosphate receptors (29, 30). Ca?* release
results in cytoplasmic Ca?* overload and consequently, the
activation of digestive enzymes such as trypsinogen, and the
initiation of AP. Furthermore, prolonged elevated levels of
cytoplasmic Ca?* lead to mitochondrial dysfunction and cell
necroptosis (31). The resulting loss of ATP production by
damaged mitochondria precludes the restoration of normal Ca?*
levels in the ER and cytoplasm by ATP-fueled Ca*" pumps. The
formation of free fatty acids via inner mitochondrial membrane
FAEE hydrolases further limits ATP production by uncoupling
oxidative phosphorylation) (30).

Specifically, Ca?* activates NADPH oxidase to produce ROS
in pancreatic acinar cells (32), which up-regulate the expression
of inflammatory cytokines that contribute to AP (33). Ca>* levels
in cultured pancreatic acinar cells are transiently increased by
cellular exposure to ethanol in combination with the fatty acid
palmitoleic acid, and mice treated with an ethanol and
palmitoleic acid cocktail (hereafter referred to as EtOH/POA
display increased levels of palmitoleic acid ethyl ester, extensive
edema, neutrophil infiltration and acinar cell necrosis (31).

In this study, we used EtOH/POA-treated AR42J cells to
examine the inhibition of EtOH/POA-induced Ca*' increases,
NADPH oxidase activation, ROS production, mitochondrial
function and cell death produced by docosahexaenoic acid
(DHA) treatment. Used as a dietary supplement, DHA serves as
a powerful anti-oxidant that reduces inflammation (34) and
improves the outcomes of patients with AP (35). Necroptosis
appears to be necrotic cell death, but finely regulated by a set of
intracellular signal transduction pathways (36). Necroptosis is
the predominant mode of acinar cell death in severe
experimental pancreatitis (37). In our study, activation of
necroptosis-regulating proteins such as receptor interacting
protein (RIP) and mixed lineage kinase domain-like
pseudokinase (MLKL), as necroptosis indices, were measured in
ARA42]J cells treated with EtOH/POA in the presence or absence
of DHA. The protective effects of DHA have crucial
implications in the prevention or delay of oxidative stress-
associated acinar cell necroptosis following exposure to
EtOH/POA.

MATERIALS AND METHODS

Reagents

DHA (D2534, > 98%), POA (P9417, > 98.5%), apocynin
(PHLS83252, > 95%), Nec-1 (480065, > 95%), GSK-872 (5.30389,
> 98%), and diclorofluorescein diacetate (DCF-DA, 35845,
> 95%) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). BAPTA (ab120503, > 97%) was purchased from Abcam
(Cambridge, UK). Stock solutions of DHA (1-2 uM) and POA (50
uM) in ethanol were prepared for storage at —20°C. Stock

solutions of apocynin (10 pM), Nec-1 (25 uM), BAPTA (5 uM),
and GSK-872 (5 uM), were prepared with DMSO.

Cell line and culture conditions

Rat pancreatic acinar AR42]J cells (pancreatoma, ATCC CRL
1492) were obtained from the American Type Culture Collection
(Manassas, VA, USA) and cultured in Dulbecco’s modified
Eagle’s medium (Sigma, St. Louis, MO, USA) supplemented
with 10% fetal bovine serum (GIBCO-BRL, Grand Island, NY,
USA) and antibiotics (100 U/mL penicillin and 100 pg/mL
streptomycin). The cells were cultured at 37°C in a humidified
atmosphere of 95% air and 5% CO,.

Experimental protocol

To investigate the effect of DHA, the cells (1 x 10° /2 mL)
were pre-treated with DHA (1 or 2 uM) for 1 h prior to treatment
with EtOH (150 mM) and POA (50 uM) and incubated for 6 h
(for cell viability, lactate dehydrogenase (LDH) release, and
caspase-3 activity), 15 min (for RIP1, p-RIP1, MLKL, and p-
MLKL protein levels), or 10 min (for ROS and adenosine
triphosphate (ATP) levels, NADPH oxidase activity, and
mitochondrial membrane potential). To determine the
involvement of NADPH oxidase in necroptosis, the cells were
pre-treated with a NADPH oxidase inhibitor apocynin (10 pM)
for 1 h before EtOH/POA stimulation. To determine the role of
calcium in necroptosis, cells were treated with the Ca®* chelator
BAPTA-AM (5 uM) for 1 h before EtOH/POA stimulation. To
detect necroptosis, the cells were pre-treated with the
necroptosis inhibitor Nec-1 (25 pM) or the RIP3 inhibitor GSK-
872 (5 uM) for 1 h before EtOH/POA stimulation. Control
experiments where cells received no treatment (‘None’) or
treatment with EtOH/POA but not DHA (‘Control’) were
performed in parallel.

Prior to the experiments with DHA, apocynin, BAPTA-AM,
Nec-1, or GSK-872, time-dependent experiments on
intracellular and mitochondrial ROS (for 20 min), cell viability
(for 8 h), and levels of necroptosis-regulating proteins such as
RIP1, p-RIP1, RIP3, MLKL, and p-MLKL (for 30 min) were
performed. In other sets of experiments to determine the effect
of ethanol alone and POA alone on intracellular ROS and cell
viability, the cells were treated with EtOH (150 mM) alone, POA
(50 uM) alone, or EtOH (150 mM) with POA (50 uM) for 10
min (for ROS levels) and 6 h (for cell viability and caspase-3
activity).

To determine the concentration-dependent effects of DHA
on EtOH/POA-induced cell death, the cells (1 x 105 /2 mL) were
pre-treated with DHA (0.5, 1, or 2 uM) for 1 h prior to treatment
with EtOH (150 mM) and POA (50 uM) and incubated for 6 h.
Cell viability was determined using the trypan blue exclusion
assay.

Preparation of cell extracts

Cell extracts were prepared using a method described by
Jeong et al. (38). The cells were harvested by scraping with
phosphate buffered saline (PBS), and pelleted by centrifugation
at 5,000 rpm for 5 min. The cell pellets were resuspended in lysis
buffer containing 10 mM Tris (pH 7.4), 1% Nonidet P-40 (NP-
40) and a commercial protease inhibitor complex (Complete;
Roche, Mannheim, Germany), and lysed by drawing the cells
through a 1-mL syringe with several rapid strokes. The mixture
was then incubated on ice for 30 min and centrifuged at 13,000
rpm for 15 min. The supernatants were collected and used as
whole cell extracts. To prepare cytosolic and membrane extracts,
the cells were extracted in homogenization buffer containing 10



mM Tris-HCI (pH 7.4), 50 mM NaCl, 1 mM ethylene diamine
tetra-acetic acid (EDTA), and a protease inhibitor complex
(Complete; Roche, Mannheim, Germany) and centrifuged at
100,000 x g for 1 hour. The pellets were resuspended on ice in
lysis buffer containing 50 mM HEPES (pH 7.4), 150 mM NaCl,
1 mM EDTA, and 10% glycerol and used as membrane extracts.
The supernatants were used as cytosolic extracts. The protein
concentration was determined by the Bradford assay (Bio-Rad
Laboratories, Hercules, CA, USA).

Measurement of intracellular and mitochondrial reactive
oxygen species levels

Intracellular and mitochondrial ROS levels were measured
according to the method described by Kyung et al. (39). To
measure intracellular ROS levels, the cells were incubated with
EtOH/POA and 10 pM DCF-DA (Sigma-Aldrich, St. Louis,
MO, USA) for 30 min. Next, the cells were washed and scraped
into phosphate-buffered saline (PBS). DCF fluorescence was
measured with a Victor5 multi-label counter (PerkinElmer Life
and Analytical Sciences, Boston, MA, USA) at excitation and
emission wavelengths of 495 nm and 535 nm, respectively. To
measure mitochondrial ROS levels, the cells were incubated
with EtOH/POA and 10 pM MitoSOX red (M36008, Life
Technologies, Grand Island, NY, US) for 30 min. MitoSOX
fluorescence was measured with a Victor5 multi-label counter at
excitation and emission wavelengths of 514 nm and 585 nm,
respectively. ROS levels are expressed as the percentage of the
ROS measured in untreated cells (‘None”’).

Determination of cell viability

The cells were plated in a 24-well plate (3 x 10* cells/well)
and then cultured overnight. Following the addition of DHA
and/or EtOH/POA to the culture, and incubation for a specified
period, the number of viable cells remaining was determined
using the trypan blue exclusion test (0.2%, trypan blue; Sigma,
St. Louis, MO, USA).

Measurement of lactate dehydrogenase release

LDH release was quantified using the LDH Assay kit
(ab102526; Abcam, Cambridge, UK). The cells were lysed with
lysis buffer containing 0.1M Tris (pH7.4), 10% Triton X-100,
and then centrifuged at 10,000 x g. LDH activity was measured
in culture medium as well as in the cells according to Lopez et
al. (40). The LDH release is quantified as a percentage compared
to the total LDH content (LDH in the supernatant + LDH inside
the cells).

Western blot analysis

Western blot analysis was performed using a previously
describe method (41). Whole cell extracts (60 — 80 ug protein
/lane) were separated using sodium dodecyl sulfate
polyacrylamide gel electrophoresis on 10 — 12% acrylamide
gels. The proteins were transferred onto nitrocellulose
membranes (Amersham, Inc., Arlington Heights, IL, USA) by
electroblotting. The transfer of proteins was verified by
reversible staining with Ponceau S. Membranes were blocked
with 3% non-fat dry milk in Tris-buffered saline and 0.2%
Tween 20 (TBS-T) (1 h at room temperature) and then
incubated overnight at 4°C with antibodies against receptor-
interacting protein (RIP1) (#3493S, Cell Signaling
Technology), p-RIP1 (#65746, Cell Signaling Technology),
RIP3 (ab62344, Abcam), mixed lineage kinase domain-like
pseudokinase (MLKL) (ab183770, Abcam), p-MLKL
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(ab196436, Abcam), and actin (sc-47778, Santa Cruz
Biotechnology, Dallas, TX, USA) in TBS-T containing 3% dry
milk. After washing with TBS-T, the primary antibodies were
detected using horseradish peroxidase-conjugated secondary
antibodies (anti-mouse, anti-rabbit) and an enhanced
chemiluminescence  detection system (Santa Cruz
Biotechnology, Dallas, TX, USA) with exposure to BioMax
MR film (Kodak, Rochester, NY, USA).

Measurement of intracellular Ca**

Intracellular Ca>* was determined using a method described
by Zhao et al. (42). To measure intracellular Ca?* levels, the cells
were seeded on 22 mm x 22 mm glass slides in 35-mm culture
dishes and incubated at 37°C in a humidified atmosphere of 95%
air and 5% CO, overnight. Physiological salt solution containing
DHA (2 pM) and fura-2 AM (2 uM) (F1221: Thermo Fisher
Scientific) was then added, and following 30 min incubation at
room temperature, the cells were washed and incubated with 2 uM
DHA in physiological salt solution for 30 min. The cells were then
mounted on an inverted microscope (Nikon, Tokyo, Japan).
Fluorescence measurements were determined using an imaging
system (Molecular Devices, Sunnyvale, CA, USA) and recorded
using a charge-couple device camera (CoolSNAP, Tucson, AZ,
USA). Fluorescence emission was monitored at 510 nm and
reported as the ratio of the respective emission intensity
(F340/F380) resulting from 340 nm and 380 nm excitation
wavelengths.

In addition, intracellular Ca*" levels were measured using
fluo-4 AM, cell permeant (F14201; Thermo Fisher Scientific)
(43). The cells were plated in a 96-well plate (4 x 10° cells/well)
and then cultured overnight. The cells were loaded with fluo-4
by incubation with HEPES buffer (pH 7.4), containing 1 mM
probenecid, 4 uM fluo-4 AM for 1 h at 37°C. Then the cells were
treated with or without 2 pM DHA and incubated 1 h at 37°C.
The fluorescence was measured using a microplate reader
(Molecular Devices, Sunnyvale, CA, USA), at an excitation
wavelength of 494 nm and an emission wavelength of 525 nm.
Ca?" levels were expressed as AF/F,. F is the resting background
fluorescence, AF is the fluorescence change over time after
treatment with or without EtOH/POA in the presence or the
absence of DHA.

Measurement of nicotinamide adenine dinucleotide phosphate
oxidase activity

NADPH oxidase activity was measured by using the
lucigenin assay (44). Membrane and cytosolic extracts were
prepared as described before (38). The assay was performed in
50 mM Tris-MES buffer (pH 7.0) containing 2 mM KCN, 10 pM
lucigenin and 100 uM NADPH. The reaction was initiated with
the addition of 10 pg of membrane-extract protein. Photon
emission was measured using a microplate reader (Molecular
Devices, Sunnyvale, CA, USA). For control experiments,
cytosolic-extract protein was used in place of membrane-extract
protein.

Measurement of caspase-3 activity and adenosine triphosphate
level

Caspase-3 activity was quantified using a Caspase-3 Assay
Kit according to manufacturer’s protocol (ab39383; Abcam).
Whole cell extracts were prepared as described earlier (38) and
mixed with buffer containing a colorimetric substrate for
caspase-3 (N-acetyl-Asp-Glu-Val-Asp p-nitroanilide). The
mixtures were incubated for 1 h at 37°C before measuring the
optical density at 405 nm with a microplate reader. ATP levels in
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whole cell extracts were measured using a Luminescent ATP percentage ratio of red and green fluorescence intensities. The
Detection Assay Kit according to the manufacture’s protocol average intensity per cell was calculated for each experimental
(ab113849; Abcam). group comprised of more than 50 cells.
Measurement of mitochondrial membrane potential (MMP) Statistical analysis

Mitochondrial depolarization was monitored by treating cells All experimental values are expressed as the mean +

with the fluorescent dye 5,5°,6,6’-tetrachloro-1,1",3,3’-tetracthyl standard error (SE) of three different experiments. Analysis of
benzimidazolyl carbocyanine iodide (JC-1) and measuring the variance (ANOVA), followed by the Newman-Keul’s post hoc
intensity of red emission relative to the intensity of green emission test was used for the statistical analysis. A P-value of 0.05 or less
(45). Mitochondrial depolarization is indicated by a decrease in was considered statistically significant.

the red/green fluorescence intensity ratio. To determine changes in

MMP, cells cultured on glass coverslips were treated with DHA

for 2 h and then with EtOH/POA for 10 min, before incubating RESULTS

them with JC-1 reagent (1:100 dilution; 10009908, Cayman

Chemical Company, Ann Arbor, MI, USA) for 20 min. After EtOH/POA increases reactive oxygen species levels and

removing the medium, the cells were dried for 15 min at room induces RIP1-dependent cell death

temperature and washed twice with PBS for 5 min. The cells were

then mounted with mounting solution (M-7534, Sigma Aldrich). To determine the effect of EtOH/POA on ROS production in
JC-1 fluorescence (red; excitation at 590 nm and emission at 610 AR42]J cells, intracellular and mitochondrial ROS levels were
nm, green; excitation at 485 nm and emission at 535 nm) was measured following 5 — 20 min-incubation periods. As shown in
measured with a laser-scanning confocal microscope (LSM 880, Fig. 14 and IC, the maximum increases in intracellular (~1.5-
Carl Zeiss Inc, Oberkochen, Germany). Fluorescent images were fold) and mitochondrial ROS (~3-fold) levels occur within 10
used in conjunction with NIH Image J 5.0 software (National min of exposure of the cells to EtOH/POA. However, treatment

Institutes of Health, Bethesda, MD, USA) to determine the of EtOH alone or POA alone had no effect on ROS levels in
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Fig. 1. The effect of EtOH/POA on ROS production and cell viability in AR42J cells. (A, B, C): Comparison of the levels of
intracellular and mitochondrial ROS measured for untreated cells (‘None’) and for cells incubated with 150 mM EtOH and 50 uM
POA for the indicated time periods (‘EtOH/POA”). *P < 0.05 versus the corresponsding ‘None’. (D): Comparison of the cell viability,
accessed periodically over an 8 h period, for cell cultures incubated with and without 150 mM EtOH and 50 pM POA. *P < 0.05 versus
the corresponsding ‘None’. (E): Comparison of the cell viability at 6 h for cell cultures incubated with 150 mM EtOH alone, 50 pM
POA alone or 150 mM EtOH/50 uM POA. *P < 0.05 versus the corresponsding ‘None’.



AR42] cells after 10 min of culturing (Fig. IB). This result
indicates that FAEE produced by EtOH and POA may stimulate
ROS production.

To examine the effect of EtOH/POA on AR42] cell
viability, cell cultures were treated with EtOH/POA for up to
8 hours. The viable cell number was measured periodically
using the trypan blue exclusion test. Fig. 1D shows that at 6 h,
cell viability decreased by ~25%. However, EtOH alone and
POA alone had no effects on cell viability at 6-h (Fig. /E). To
investigate if the decreased number of viable cells is the result
of EtOH/POA-induced necroptosis, we first determined the
impact of EtOH/POA on cellular levels of the necroptosis-
signaling pathway proteins RIP1, RIP3, and MLKL. Western
blot analysis (Fig. 24) shows that exposure of the AR427J cells
to EtOH/POA for 15 min results in a significant increase in the
phospho-specific forms of RIP1 and MLKL. Moreover, RIP3
increased following treatment with EtOH/POA in a time-
dependent manner. However, EtOH/POA did not increase
caspase-3 activity in AR42J cells (Fig. 2B). Next, we tested
whether the necroptosis inhibitor necrostatin (Nec-1) and
RIP3 inhibitor GSK-872 reduces the magnitude of the
EtOH/POA-induced decreases in cell viability. Cultures
treated with Nec-1 and GSK-872 retained more cells
following incubation with EtOH/POA than did the control
(EtOH/POA alone) (Fig. 2C and 2D). In comparison, the
increased cell retention of cultures treated with the apoptosis
inhibitor Z-VAD-fmk before incubation with EtOH/POA was
found to be considerably smaller (Fig. 2C). Taken together,
EtOH/POA induces AR42J cell death primarily via the
necroptotic pathway.
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Apocynin and BAPTA inhibit EtOH/POA-induced increases in
reactive oxygen species and necroptotic pathway proteins RIP1
and MLKL

Because NADPH oxidase and Ca**-signaling are known to
play key roles in ROS production, our next step was to measure
the impact of the NADPH oxidase inhibitor apocynin and Ca*"
chelator BAPTA on EtOH/POA-induced increases in ROS and
cell death. For this purpose, we first measured intracellular and
mitochondrial ROS production in AR42J cells treated with
EtOH/POA in the presence or absence of these inhibitors. The
results in Fig. 34 and 3B show that apocynin and BAPTA reduce
intracellular and mitochondrial ROS levels in the EtOH/POA-
treated cells.

Next, we tested the effect of 10 uM of the NADPH oxidase
inhibitor apocynin or 5 uM of the Ca*" chelator BAPTA on the
EtOH/POA-induced increase in NADPH oxidase activity in
membrane extracts from AR42J cells. As shown in Fig. 3C,
both apocynin and BAPTA inhibited EtOH/POA-induced
increases in NADPH oxidase activity in AR42J cells. We also
found that the observed EtOH/POA-induced increases in the
levels of phosphophorylated forms of RIP1 and MLK are
suppressed by pre-treatment of the cells with apocynin or
BAPTA (Fig. 3D). Moreover, by measuring cell viability in
cultures treated with EtOH/POA in the presence and absence of
the respective inhibitors, we discovered that EtOH/POA-
induced cell death is also reduced (Fig. 3E). These results
indicate that EtOH/POA increases ROS levels and necroptotic
AR42J cell death by promoting Ca?* overload and NADPH
oxidase activation.
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and GSJ-872 on EtOH/POA-induecd cell
death in AR42J cells. (A): Western blot
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cell viability measured for untreated cell
cultures (‘None’) and for cell cultures
incubated with (or without, ‘Control”) 25
UM necroptosis inhibitor Nec-1 or 10 pM
apoptosis inhibitor Z-VAD-fmk for 1 h,
and then incubated for 6 h with 150 mM
EtOH and 50 uM POA. (D): Comparison
of the cell viability measured for untreated
cell cultures (‘None’) and for cell cultures
incubated with (or without, ‘Control’) 5
uM RIP3 inhibitor GSK-872 for 1 h, and
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Fig. 3. Determination of the effect of apocynin and BAPTA on EtOH/POA-induced alteration of ROS production, NADPH oxidase
activity, necroptotic signal transduction pathway proteins and cell viability in AR42J cells. (A, B): Comparison of the levels of
intracellular and mitochondrial ROS measured for untreated cells (‘None’) and for cells incubated without (‘Control’) or with 10 uM
NADPH oxidase inhibitor apocynin or 5 uM Ca?* chelator BAPTA for 1 h and then with 150 mM EtOH and 50 uM POA for 10 min.
*P < 0.05 versus None; +P < 0.05 versus Control. (C): NADPH oxidase activity in untreated cells (‘None’) and in cells incubated
without (‘Control’) or with 10 uM apocynin or 5 uM BAPTA for 1 h and then incubated with 150 mM EtOH and 50 uM POA for 10
min. *P < 0.05 versus None; +P < 0.05 versus Control. (D): Western blot analysis of phospho-specific and total forms of R1P1 and
MLKL in cells treated as reported in (C) except that a 15 min EtOH/POA incubation period was used. Actin was used as the loading
control. (E): Comparison of the cell viability measured for untreated cells (‘None”) and for cells incubated without (‘Control’) or with
10 uM apocynin or 5 uM BAPTA for 1 h and then with 150 mM EtOH and 50 uM POA for 6 h. *P < 0.05 versus None; +P < 0.05

versus Control.

Docosahexaenoic acid inhibits EtOH/POA-induced increases
in reactive oxygen species levels, nicotinamide adenine
dinucleotide phosphate oxidase activity, and necroptosis

To determine if DHA protects AR42J cells from EtOH/POA-
induced oxidative stress, the effect of DHA on the levels of ROS
and NADPH oxidase in EtOH/POA-treated cells was measured.
At a concentration of 2 uM, DHA almost fully suppresses the
EtOH/POA-induced increases in intracellular (Fig. 44) and
mitochondrial (Fig. 4B) ROS levels and NADPH oxidase
activity (Fig. 4C). We also found that DHA suppresses
EtOH/POA-induced increases in phosphor-specific forms of
RIP1 and MLKL (Fig. 54) and the loss of cell viability (Fig. 5B)
in a concentration-dependent manner.

The major feature of necrotic cells is plasma membrane
permeabilization. This event can be observed by measuring
LDH release. LDH is a cytoplasmic enzyme that is released into
the extracellular space when the plasma membrane is damaged

(46). As shown in Fig. 5C, EtOH/POA increased LDH release.
DHA inhibited EtOH/POA-induced leakage of LDH. This result
indicates that DHA suppressed EtOH/POA-induced necrotic cell
death. Conversely, the effect of EtOH/POA (with or without
DHA) on caspase-3 is comparatively small (Fig. 5D). Because
increased caspase-3 activity is a marker for apoptosis, this result
suggests that EtOH/POA-induced cell death appears to occur
primarily via the necroptosis pathway, consistent with the
observation of the greater restorative effect of Nec-1 and GSK-
872 on cell viability compared to that of Z-VAD-fmk (Fig. 2C
and 2D).

Docosahexaenoic acid does not inhibit EtOH/POA-induced
increases in Ca’" oscillation and levels in AR42J cells

We found that the calcium Ca?" chelator BAPTA inhibited
EtOH/POA-induced increases in NADPH oxidase activity in
AR42]J cells (Fig. 3C). These results indicate that Ca*" may
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mediate activation of NADPH oxidase in EtOH/POA-treated
cells. DHA suppressed EtOH/POA-induced activation of
NADPH oxidase in AR42J cells (Fig. 4C). Thus, our next step
was to examine whether EtOH/POA increases intracellular Ca?*
oscillation and levels and whether DHA inhibits EtOH/POA-
induced increases in intracellular Ca*" oscillation (Fig. 64) and
levels (Fig. 6B) in AR42]J cells.

Accordingly, Ca*" oscillation in AR42J cells treated with
EtOH/POA in the presence and absence of DHA was

monitored by fluorescence imaging with the intracellular Ca**
indicator fura-2 AM. As shown in Fig. 64, EtOH/POA
increased Ca?" oscillation in the cells. Ca®>" oscillation
consisted of an initial increase followed by a decrease of
intracellular Ca?" towards a value close to the pre-stimulation
level. Our results were supported by the study of Fernandez-
Sanchez et al. (13) showing that acute ethanol exposure on
CCK-8-evoked intracellular Ca*" signals in mouse pancreatic
acinar cells, determined using fura-2 AM. As shown in Fig.
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54, EtOH/POA increased Ca?*" oscillation in the cells.
EtOH/POA treatment with DHA (2 uM) showed a similar Ca?"
oscillation to that observed for cells without DHA treatment.

Ca?" levels in AR42J cells treated with EtOH/POA in the
presence and absence of DHA (2 pM) was monitored by
transient fluorescence changes using the intracellular Ca*'
indicator fluo-4 AM. Transient fluorescence changes
(obtained within 1-3 min) were plotted. Ca®" levels, expressed
as AF/F,, were increased by EtOH/POA. However, DHA did
not reduce EtOH/POA-induced increases in Ca?" levels in
ARA42]J cells (Fig. 6B). Taken together, DHA did not reduce
EtOH/POA-induced increases in Ca?" oscillation and levels in
AR42] cells.

Docosahexaenoic acid inhibits EtOH/POA-induced
mitochondrial dysfunction in AR42J cells

Because elevated ROS production such as that observed for
EtOH/POA-treated AR42]J cells (Fig. 14 and /C) can potentially
damage mitochondria, our next step was to determine the effect of
EtOH/POA (with and without DHA) on mitochondrial membrane
potential (MMP) and ATP production. Fig. 74 and 7B show that
EtOH/POA treatment reduces both MMP and ATP production, and
that DHA pretreatment boosts ATP levels and reduces loss of MPP
in EtOH/POA-treated cells. These results indicate that DHA
protects against EtOH/POA-induced mitochondrial dysfunction,
which may occur via DHA-mediated reduction in ROS.
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DISCUSSION

This study was performed to gain insight into the molecular
mechanism by which the omega-3 fatty acid DHA administered
to patients suffering from AP improves disease outcomes.
Because acinar cells perform the exocrine functions of the
pancreas and are key players in AP, they are used for in vitro
studies of the disease. Recent studies have validated the use of
rodent pancreatic acinar cells in place of human pancreatic
acinar cells (47) and thus, our studies were performed using rat
pancreatic acinar AR42J cells as the experimental platform.
Given that alcohol abuse is a major cause of AP (48), and that
FAEEs derived from the esterification of ethanol by endogenous
free fatty acids are the mediators (31, 49), we used a cocktail
(viz. EtOH/POA) of ethanol and palmitoleic acid to simulate the
in vitro effects of ethanol abuse in AR42]J cell cultures.

Inflammation and the associated overproduction of ROS are
key traits of alcoholic pancreatitis (50). Experimentally,
pancreatic acinar cells subjected to chemically induced stress
respond by increasing ROS production (51-55). To examine the
effect of EtOH/POA on AR42]J cells, we measured the levels of
intracellular and mitochondrial ROS and observed that

EtOH/POA increases ROS production while it decreases cell
viability (Fig. 14-1C). Importantly, these effects are attenuated
in cells pre-treated with DHA (Fig. 44, 4B and 4E). Thus, DHA
is effective in blocking the formation of toxic levels of ROS
induced by the EtOH/POA.

Necrosis is recognized as the major form of pancreatic cell
death that occurs during AP. Necroptosis, which is the most well-
understood form of necrosis (37), is initiated by pro-
inflammatory cytokine tumor necrosis factor-alpha (TNF-a) and
is mediated by the signaling kinases RIP and MLKL. RIP1
activation via autophosphorylation leads to activation of RIP3
and hence, MLKL activation by phosphorylation (56-58).
MLKL activation triggers necroptotic cell death. To test whether
EtOH/POA-induced cell death is mediated via the necroptosis
signal transduction pathway, we measured the levels of
phosphorylated and total RIP1 and MLKL. EtOH/POA
treatment increased the phosphorylated forms of RIP1 and
MLKL (Fig. 24). Furthermore, by employing the necroptosis
inhibitor necrostatin-1 (Nec-1) to inhibit necroptosis-promoting
RIP1 kinase activity and Z-VAD-fmk to inhibit apoptosis-
promoting caspase activity, we showed that EtOH/POA-induced
cell death occurs primarily by necroptosis (Fig. 2C). This
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conclusion is further supported by the observation that the
apoptotic marker caspase-3 is not impacted by cell treatment
with EtOH/POA (Fig. 4F).

ROS formation is catalyzed by the membrane-bound
enzyme complex NADPH oxidase. NADPH oxidase is believed
to play a central role in the pathogenesis of pancreatitis (59). We
observed that AR42J cells responded to EtOH/POA by
increasing the level of active NADPH oxidase (Fig. 3C),
consistent with the EtOH/POA-induced increase observed in
intracellular and mitochondrial ROS. Pre-treatment of AR42J
cells with the NADPH oxidase inhibitor apocynin reduced
EtOH/POA-induced increases in NADPH oxidase activity, ROS
formation, phosphorylation of RIP1 and MLKL, and cell death
(Fig. 3). These findings suggest that EtOH/POA-induced cell
death results from increased NADPH oxidase activity.

Previous studies have revealed the interplay between
NADPH oxidase activity and intracellular Ca** overload (60).
ER-stored Ca*" is transiently released into the cytoplasm through
the activation of ER membrane Ca?" channels. In our study we
used the Ca*-specific chelator BAPTA to reveal that the
EtOH/POA-induced increase in NADPH oxidase activity is
Ca*-mediated (Fig. 3C). Moreover, BAPTA blocked the effects
of EtOH/POA on intracellular and mitochondrial ROS
production (Fig. 34 and 3C), phosphorylation of RIP1 and
MLKL (Fig. 3D) and cell death (Fig. 3E) as well. Importantly,
pre-treatment of AR42J cells with DHA attenuated the effects of
EtOH/POA on NADPH oxidase activity, and downstream
processes. However, EtOH/POA-induced, intracellular Ca?*-
oscillation was not affected by DHA (Fig. 5). Even though DHA
had no effect on Ca?"-oscillation, it inhibits NADPH oxidase
activity which induces ROS-mediated necroptosis in AR42J
cells exposed to the EtOH/POA.

Lastly, we examined the effects of EtOH/POA and DHA on
mitochondrial function. Mitochondria are the major source of
ROS. When ROS levels exceed antioxidant enzyme capacity
they are damaged and undergo loss of membrane polarization
and the ability to supply the cell with ATP (61, 62). Moreover,
FAEEs bind to and accumulate within the inner mitochondrial
membrane, uncoupling oxidative phosphorylation causing a loss
of membrane polarization and ATP synthesis (63). The observed
EtOH/POA-induced increase in intracellular and mitochondrial
ROS (Fig. 14 and IB) is accompanied by a significant loss in
MPP and ATP level (Fig. 6). AR42J cells pre-treated with DHA
displayed significantly less mitochondrial dysfunction (Fig. 6),
thus underscoring the protective effect of DHA.

Regarding FAEE toxicity, several studies reported that
nonoxidative metabolites of ethanol such as FAEE accumulate in
higher concentrations in the pancreas than in other organs after
ethanol consumption in human (26) and rats (64, 65).
Administration of FAEEs to rats causes pancreatic damage in
experimental models of pancreatitis (27). However, ethanol
alone and the oxidative metabolite acetaldehyde have minimal or
no effects on damage of pancreatic acinar cells, whereas the
FAEE induces in acinar cell necrosis (65, 66). Criddle et al. (66)
demonstrated that freshly isolated pancreatic acinar cells, from
the pancreas of adult CD1 mice by using collagenase, exposed to
ethanol (up to 850 mM) showed little or no increase in
intracellular Ca?". The oxidative metabolite acetaldehyde (up to
5 mM) had no effect, whereas the nonoxidative unsaturated
metabolite palmitoleic acid ethyl ester (10 — 100 pM, added on
top of 850 mM ethanol) induced sustained, concentration-
dependent increases in intracellular Ca*" that were acutely
dependent on external Ca®>* and caused cell death. They
concluded that nonoxidative fatty acid metabolites, rather than
ethanol itself, are responsible for the marked elevations of
intracellular Ca?* that mediate toxicity in the pancreatic acinar
cells and that these compounds act primarily by releasing Ca*

from the endoplasmic reticulum. Siech and Letko (67) showed
that 180 mM ethanol alone had no statistically significant effect
on cell survival at 4 h-incubation periods using freshly isolated
pancreatic acinar cells from female albino rats. In this study, 150
mM ethanol alone did not affect cell viability (Fig. /B), which
was in agreement of the studies by Criddle et al (66) and Sieh
and Letko (67).

Criddle er al. (66) also demonstrated that 50 uM POA
induces sustained Ca’>" release and increased cell death with
treatment of ethanol from 50 — 850 mM. They found that
ethanol/POA-induced cell death is Ca’"-dependent necrosis.
This study supports the present results showing that 150 mM
ethanol/50 uM POA increased Ca?* release and induced
necroptosis in AR42J cells.

Other studies using cancer cell lines, macrophage, and
primary hepatocytes, the concentrations of ethanol ranging from
2.5% to 0.15% concentration were well-tolerated by cells with
respect to proliferation. Ethanol is a good choice for solvent
since it has low toxicity on human liver cancer cell line HepG2,
human breast cancer cell lines (MDA-MB-231, MCF-7) and
Vietnamese breast cancer stem cell (VNBRCAI) (68). 24-h
treatment of ethanol (0.5%) had little or no toxicity in MCF-7,
murine macrophage RAW-264.7 and human umbilical vein
endothelial cells (HUVEC) (69). In freshly isolated hepatocytes
from male Wistar rat liver, 5% ethanol did not induce
cytotoxicity while 10% ethanol showed cytotoxic effect at 1 h-
culture (70).

For the determination of FAEE, Werner et al. (64) evaluated
whether ethanol-induced pancreatic injury is related to the level
of FAEE generated. The animals were allocated to four groups
that received ethanol (varying concentrations: 2.5% (0.4 g/kg),
5% (0.8 g/kg), 10% (1.6 g/kg), and 20% (3.2 g/kg)). Two hours
after a 2-ml bolus and 6-ml infusion of 2.5% (0.4 g/kg) ethanol
did not induce pancreatic edema or trypsinogen activation in
pancreatic tissues. However, both parameters increased with
doses of 5% ethanol (0.8 g/kg) or greater. FAEE concentration in
pancreas was evaluated by gas chromatography-mass
spectroscopy (GC-MS) after the start of ethanol infusion (2-ml
bolus at 0.8 g/kg; and 6-ml infusion over 2 h at 1.2 g/kg/h).
FAEE concentration of pancreatic tissue was about 150 nmol/g
tissue. FAEE concentration of rat pancreatic homogenates
incubated with 50 mM ethanol was 200 nmol/g tissue at 1 h-
incubation (65). Since FAEE produced by ethanol treatment was
relatively low, FAEE concentration can be determined using GC-
MS in lipid extracts of the cells. FAEE was isolated from the
organic phase by solid phase and concentrated by drying the
samples under nitrogen. FAEE were then quantitated by GC-MS
analysis on a GC coupled to MS (64, 65). Since determination of
the exact concentration of FAEE generated from treatment of
EtOH/POA is important, it is necessary to determine FAEE
concentration in this system for the further study with
collaboration of the specialists in GC-MS analysis.

In regard to the concentration of DHA, treatment with DHA
at 0.1 and 1 puM significantly inhibited the decrease in cell
viability induced by H,0, in retinal ganglion cells (71). 1 uM
DHA inhibited hydrogen peroxide-induced cell death in neural
progenitor cells (72). Previously, we showed that DHA (5 uM)
inhibited hydrogen peroxide-induced cell death and DNA
fragmentation and increases in Bax and p53 in AR42J cells (73).
Therefore, we used DHA (1 or 2 pM for inhibitory mechanism
of DHA in ethanol (150 mM)/POA (50 uM)-induced cell death
using AR42J cells.

In the present study, we used AR42J cells which derive
initially from a transplantable tumour of a rat exocrine pancreas
(74). This is the only cell line currently available that, in culture,
maintains many characteristics of normal pancreatic acinar cells,
such as Ca?" signalling, the synthesis and secretion of digestive



enzymes, protein expression, growth and proliferation (75, 76).
AR42J cell receptor expression and signal transduction
mechanisms parallel those of pancreatic acinar cells. Thus, this
cell line has been widely used as an ‘in vitro’ model to study
acinar cell function (77).

Logsdon et al. (78) demonstrated that glucocorticoids
increased the volume density of secretory granule and the
synthesis, cell content, and mRNA levels of amylase in AR42J]
cells. They also found that dexamethasone increased
cholecystokinin receptors and amylase secretion in AR427J cells
(79). Rajasekaran et al. (80) demonstrated that treatment with 10
nM dexamethasone resulted in a 4.6-fold increase in the secreted
amylase activity by a reorganization of the RER from a tubulo-
vesicular (TV-RER) to a stacked cisternal (SC-RER)
configuration in AR42]J cells. They suggested that SC-RER is a
biosynthetically more efficient form of the RER, which is found
predominantly in actively secreting cells. In the present study,
we did not determine exocrine function of AR42J cells and
determined the EtOH/POA-mediated cell death. Since
EtOH/POA induces intracellular Ca?* which activates amylase
release, AR42J cells treated with dexamethasome might be
useful for determining the effect of DHA on EtOH/POA-induced
alterations in exocrine function in relation to alcoholic
pancreatitis.

Human pancreatic acinar cells were isolated from pancreatic
tissues obtained from aborted foetus (C35 weeks) by autopsy
(81), human pancreatic tissue devoid of islets of Langerhans,
from dead organ donors without morphological or histological
evidence of pancreatic disease (47, 82), or specimens of normal
human pancreas obtained from the patients undergoing resection
of pancreatic tumors (83). At present, human primary pancreatic
acinar cells are not commercially available. Therefore, freshly
isolated pancreatic acinar cells from mice or rats may be useful
to determine the inhibitory effect of DHA on EtOH/POA-
induced pancreatic damage for the further study.

It have been well known that NADPH oxidase and ROS
participate in the regulation of necroptosis and the function of
ROS in necroptosis is to enhance necrosome formation (84-89).
However, some studies reported that activated RIP1 or RIP3 can
promote ROS production (90, 91). In present study, ROS
production was followed by activation of RIP1 in EtOH/POA-
stimulated cells. Inhibition of NADPH oxidase using apocynin
suppressed activation of RIP1 in EtOH/POA-stimulated cells.
These results indicate that ROS mediate RIP1 activation and
necroptosis. Since DHA inhibit ETOH/POA-induced activation
of NADPH oxidase, DHA may recue ROS and subsequently
suppress activation of necroptosis-regulating proteins (RIP,
MLK) in AR42J cells. However, it may be possible that DHA
may directly inhibit necroptosis in ROS-independent manner.
Further study should be performed to determine whether DHA
inhibits necroptosis in ROS-independent way in AR42J cells
exposed to EtOH/POA.

Moreover, melatonin metabolite, N1-acetyl-N1-formyl-5-
methoxykynuramine (92), renin-angiotensin system inhibitors
(93), and overexpression of pancreatitis-associated protein-1
(94) have been suggested as the potential therapeutic candidates
for alcoholic pancreatitis patients by reducing inflammatory and
oxidative injury and pancreatic acinar cell death.

In conclusion, DHA inhibits NADPH oxidase activation,
increases in ROS levels, and activation of necroptosis-regulating
proteins, and prevents mitochondrial dysfunction and thus,
suppressing necroptosis of EtOH/POA-treated AR42J cells.

Abbreviations: DCF-DA, dichlorofluorescein diacetate;
DHA, docosahexaenoic acid; EtOH, ethanol; FAEEs, fatty acid
ethyl esters; MLKL, mixed linecage kinase domain like
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pseudokinase; MMP, mitochondrial membrane potential;
NADPH, nicotinamide adenine dinucleotide phosphate; POA,
palmitoleic acid; RIP, receptor interacting protein; ROS, reactive
oxygen species.
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