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The global pandemic of coronavirus disease 2019 (COVID-19) has resulted in

an increased demand for testing, diagnosis, and treatment. Reverse transcription

polymerase chain reaction (RT-PCR) is the definitive test for the diagnosis of COVID-19;

however, chest X-ray radiography (CXR) is a fast, effective, and affordable test

that identifies the possible COVID-19-related pneumonia. This study investigates the

feasibility of using a deep learning-based decision-tree classifier for detecting COVID-19

from CXR images. The proposed classifier comprises three binary decision trees, each

trained by a deep learning model with convolution neural network based on the PyTorch

frame. The first decision tree classifies the CXR images as normal or abnormal. The

second tree identifies the abnormal images that contain signs of tuberculosis, whereas

the third does the same for COVID-19. The accuracies of the first and second decision

trees are 98 and 80%, respectively, whereas the average accuracy of the third decision

tree is 95%. The proposed deep learning-based decision-tree classifier may be used in

pre-screening patients to conduct triage and fast-track decision making before RT-PCR

results are available.

Keywords: chest X-ray radiography, COVID-19, deep learning, image classification, neural network, tuberculosis

INTRODUCTION

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) has spread from Wuhan to the rest of China and to several other countries since
December 2019. More than 2 million cases were confirmed by April 18, 2020. Worldwide, more
than 150,000 deaths due to COVID-19 have been reported1.

COVID-19 is typically confirmed by reverse transcription polymerase chain reaction (RT-PCR).
However, the sensitivity of RT-PCR may not be high enough for early detection, complicating the
treatment of presumptive patients (1, 2).

Chest radiography imaging such as X-ray or computed tomography (CT), which is a routine
technique for diagnosing pneumonia, can be easily performed, and it provides a quick, highly
sensitive diagnosis of COVID-19 (1). Chest X-ray (CXR) images show visual indexes associated
with COVID-19 (3), and several studies have shown the feasibility of radiography as a detection
tool for COVID-19 (4–8).

1https://www.worldometers.info/coronavirus/
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FIGURE 1 | Workflow for determining whether chest X-ray image shows a normal, tubercular (TB), or COVID-19 infected lung. AXIR (Automated X-ray Imaging

Radiography system).

correct collection of the data, two radiologists review dataset
and only data which is agreed by two radiologists were used
in this study.

Finally, we used the recently published COVID-Chest Xray-
Dataset, which contains a set of images from publications on
COVID-19 topics (7, 8). We used 162 images of COVID-19
infected lungs and transferred them all to image size 1,024
× 1,024 before training and testing. The original COVID-19
image sizes are various (not the same), because the images were
taken from multiple institutions. Therefore, the different image
sizes were normalized to 1,024 × 1,024, which is the smallest
image size of the obtained images, to avoid image size effect
on the performance. Moreover, COVID-19 dataset is based on
pathological diagnosis (7–9)2.

In the case of the AXIR1, among the 1,170 patients’ CXRs
in the total dataset (Table 1), 85 normal and 85 abnormal
CXR (total 170) scans were randomly selected from the data.

TABLE 1 | Data structure for AXIR1.

Normal/

abnormal

Data group Number of

images

Sub total

Abnormal NIH data

(TB + non-TB)a
442 585

(Train 500, Test 85)

(Train with

augmentation 1500)
East Asian Hospital data

(TB + non-TB)b
143

Normal (NIH data + East Asian

Hospital data)

585

(Train 500, Test 85)

(Train with augmentation 1500)

aTB and non-TB are not classified with pathological diagnosis.
bTB and non-TB are classified with pathological diagnosis.

The remaining 1,000 CXRs were split in a 50:50% ratio to
make abnormal (500 patients) and normal (500 patients) cases
for training. Among the 585 abnormal cases, 442 were from
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TABLE 2 | Data structure for AXIR2.

TB/non-TB Data group Number of

images

Sub total

TB TB

(East Asian Hospital data)

372 492

(Train 410, Test 82)

(Train with

augmentation 1500)
TB

(Sehnzen data)

120

Non-TB (East Asian Hospital data) 492

(Train 410, Test 82)

(Train with augmentation 1500)

TABLE 3 | Data structure for AXIR3.

Deep learning algorithm COVID-19/TB Training

(Augmentation)

Test

PyTorch, Resnet18 model,

epoc = 50, 256*256

image size

COVID-19 (GitHub) 120 (608) 42

TB (Shenzen data) 120 (608) 42

TABLE 4 | Data structure for AXIR4.

Deep learning algorithm COVID-19/others Training

(Augmentation)

Test

PyTorch, Resnet18 model,

epoc = 50, 256*256

image size

COVID-19 (GitHub) 120 (608) 42

Non-TB

(Eastern Asian Hospital)

120 (608) 42

NIH data and 143 were from East Asian hospital data. The
normal data images also came from the NIH and East Asian
countries’ data.

In the case of the AXIR2, among the 984 patients in the total
dataset (Table 2), 164 CXR scans (16.7%) were randomly selected
for testing. Among these 164 CXR images, 82 were TB cases,
and 82 were non-TB (other) cases. The remaining 820 images
were split in a 50:50% ratio to make TB (410 patients) and non-
TB cases (410 patients) for training. Among the 492 TB patients’
images, 372 images were from East Asian data, and the remaining
120 TB cases were from Shenzhen data. All 492 non-TB lung
disease images were taken from East Asian hospital data.

In the case of the AXIR3, of the 324 patients’ CXRs in the total
dataset (Table 3), 84 images (23.0%) were randomly selected for
testing. Among these 84 images, 42 were COVID-19 cases and
42 were TB (non-COVID) cases. The remaining 240 scans were
split in a 50:50% ratio to make COVID-19 (120 patients) and TB
(non-COVID) cases (120 patients) for training.

In the case of the AXIR4, among the 324 patients’ CXRs in the
total dataset (Table 4), 84 images (23.0%) were randomly selected
for testing. Of these 84 images, 42 were COVID-19 cases and
42 were non-TB (non-COVID) cases. The remaining 240 scans
were split in a 50:50% ratio to make COVID-19 (120 patients)
and others (non-COVID) cases (120 patients) for training.

We applied several data augmentation algorithms to improve
the training and classification accuracy of the CNN model
and achieved remarkable validation accuracy. For AXIR1, 1,000
images were used for the augmentation of 3,000 images (3

TABLE 5 | Settings for the image augmentation of training data.

Method Setting

Rotation angle 10

Width shift 0.2

Height shift 0.2

Horizontal flip True

times). For AXIR2, 820 images were used to augment 3,000
images (3.7 times). For AXIR3 and AXIR4, 240 images were
used for the augmentation of 1,216 images (5 times). We
applied the augmentation method as shown in Table 5. During
training, the images were randomly rotated by 10◦, translated,
and horizontally flipped. In some cases, twomethods (translation
and rotation) were used at the same time.

Annotation and Classification
We further categorized abnormal patterns of the NIH data
as TB or non-TB. TB patterns were then subcategorized into
seven active TB pattern classes (consolidation, cavitation, pleural
effusion, miliary, interstitial, tree in bud, and lymphadenopathy)
and an additional inactive TB pattern class. These TB pattern
classes are based on those used by the Centers for Disease
Control and Prevention (CDC) of the USA (26, 27). Also,
we subcategorized the Shenzhen TB data into sub-classes
[according to the ChestX-ray14 dataset (NIH data)], which are
infiltration, consolidation, pleural effusion, pneumonia, fibrosis,
atelectasis, nodule, pneumothorax, pleural thickening, mass,
hernia, cardiomegaly, edema, and emphysema. These additional
categorizations are based on the radiological readings for the
purpose of the detailed analysis for sub-patterns of false negative
(FN) and false positive (FP). The resulting annotated data were
reviewed by two radiologists independently. In the case of the TB
data, most data are related with infiltration, consolidation, plural
effusion, fibrosis, and nodule. These patterns are strongly related
with TB patterns.

We also used East Asia countries’ data (TB and non-TB
disease) from our cooperating hospitals to diversify the trained
dataset. Non-TB disease dataset for Easter Asia Hospital is
categorized based on NIH-14 disease pattern related with final
confirmed diagnosis. In the case of the TB data (Eastern Asian
Hospital), we annotated more detailed sub-patterns according to
radiological sub-TB patterns. However, these sub-TB patterns are
categorized with only radiological readings.

Deep Learning Model and Training
Technique
Herein, we used a two-dimensional CNN algorithm with a
PyTorch frame for the training and testing for our two-step CAD
process. Figure 2 shows the overall architecture of the proposed
CNN model, which is based on the pre-trained ResNet18
(28, 29), using the ImageNet dataset. ResNet, the winner of
the 2015 ImageNet competition, is one of the most popular
CNN architectures, which provides easy gradient flow for more
efficient training. The core idea of ResNet is the introduction
of an “identity shortcut” connection, which skips one or more

Frontiers in Medicine | www.frontiersin.org 4 July 2020 | Volume 7 | Article 427

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yoo et al. COVID-19 Image Classifier

FIGURE 2 | The architecture of the ResNet18 convolutional neural network model (28).

TABLE 6 | Classification performance of AXIR1 (Normal/Abnormal) and AXIR2

(TB/non-TB).

AXIR Accuracy Sensitivity Specificity Precision AUC

AXIR1 (Step 1) 0.98 0.99 0.97 0.97 0.98

AXIR2 (Step 2) 0.80 0.72 0.89 0.87 0.80

AUC, area under curve.

layers, thereby providing a direct path to the very early layers
in the network, making the gradient updates for those layers
much easier.

The verification of the model has been performed using an
additional dataset. The performance of the model ResNet18 can
be compared with previous work on neural nets and COVID-19
(9, 28) and verified as good matching with therein.

RESULTS

Accuracy of AXIR1 and AXIR2
(Identification of Normal, TB, and
Non-TB Patterns)
The performances attained by AXIR1 and AXIR2 are listed in
Table 6. The accuracies of the two decision trees were 0.98 and
0.80, respectively.

Furthermore, we investigated the classification capability of
AXIR2 for normality using 100 normal test data. The normal
data can be classified into TB and others with the ratio of 1:3
by AXIR2.

In addition, we analyzed detailed distribution of false negative
(FN) and false positive (FP) classification errors in AXIR2. The
decision tree made 9 FP and 23 FN predictions, as shown
in Table 7. Atelectasis and plural thickening (67% of all FPs)
and infiltration, consolidation, and fibrosis (NIH classification)

TABLE 7 | Sub-patterns for false positive (FP) and false negative (FN) results in

AXIR2.

Prediction results NIH

classificationa

Number

of images

TB pattern in

(30)a
Total

number of

images

FP

(from East Asian

Hospital data)

Infiltration 2 Non-TB 9

Consolidation 1

Atelectasis 3

Plural thickening 3

FN

(from Shenzhen data

and East Asian

Hospital data)

Infiltration 5 Consolidation 23

Consolidation 8 Consolidation

Plural effusion 2 Plural effusion

Fibrosis 6 Consolidation

Nodule 2 Milliary

aSub-patterns are classified with only radiological readings.

(83% of all FNs) are the categories most likely to be involved
in such errors. These three sub-patterns can be categorized as
consolidation sub-pattern in CDC sub-TB classification.

Accuracy of AXIR3 and AXIR4
(Identification of COVID-19 and
Non-COVID Patterns)
Table 8 shows the classification performance of AXIR3 and
AXIR4. In the case of the AXIR3 (COVID-19/TB classification),
all test data are classified correctly, and the accuracy is 100%.
In the case of the AXIR4 (COVID-19/non-TB classification),
accuracy was only 0.89 due to low specificity. Therefore,
the average value of accuracy over both trees was 0.95, and
the average values of sensitivity and specificity were 0.97
and 0.93, respectively.

We tested AXIR1 with 42 COVID-19 test data. Only one
COVID-19 image was predicted as normal (FN) by AXIR1. Also,
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TABLE 8 | Classification performance of AXIR3 (COVID-19/TB) and AXIR4

(COVID-19/non-TB).

AXIR Accuracy Sensitivity Specificity Precision AUC

AXIR3 1.00 1.00 1.00 1.00 1.00

AXIR4 0.89 0.93 0.86 0.87 0.89

Average 0.95 0.97 0.93 0.94 0.95

AUC, area under curve.

FIGURE 3 | Images showing four FPs predicted as COVID-19 and two FNs

predicted as non-TB lung disease in AXIR4 results: infiltration (A–C), pleural

thickening (D), and COVID-19 (E, F) symptoms.

we investigated the classification results of 42 COVID-19 test data
in AXIR2. COVID-19 data were classified by AXIR2 as TB and
other in the ratio 4:1.

In addition, we analyzed the detailed distribution of

FN and FP results in AXIR4. There are six FPs (annotated

as non-TB (non-COVID) but predicted as COVID-19)
and three FNs [annotated as COVID-19 but predicted

as non-TB (non-COVID)]. Figure 3 shows the images

that produced these results. Two of the three FNs were

predicted as TB by AXIR2, whereas one image was predicted
as non-TB.

DISCUSSION

The accuracy of AXIR1 (i.e., the binary decision-tree for
classification of images as normal or abnormal) is 0.98. This
prediction result shows that the ResNet18 model can be used
clinically for the screening of abnormality. However, the accuracy
of AXIR2 (i.e., the binary decision-tree for classification of
images as showing TB or a different disease) is much lower
(0.80), as shown in Table 6. The sensitivity and specificity
for AXIR2 are 0.72 and 0.89 respectively. Table 7 shows the
detailed distribution among these classes for 9 FP and 23 FN
predictions of AXIR2. Atelectasis and plural thickening show
a higher portion of FP (67%) and infiltration, consolidation
and fibrosis are higher potion for FN (83%). In atelectasis and
plural thickening, the region can be similar to plural effusion
in lower lobe in both side of lung. Thus, the algorithm’s
prediction results can show larger portion of FP due to
atelectasis and plural thickening specifically. Clinically, plural
effusion is strongly associated with TB, but atelectasis or
plural thickening is not. Moreover, infiltration, consolidation
and fibrosis, as defined by the NIH, are strongly associated
with TB; however, some of these radiological sub-patterns
can be predicted as non-TB. When these sub-patterns are
annotated as TB, the position of occurrence was frequently
in the upper apex region. The most of cases of FP show
that the locations of occurrence are middle or lower lobe
area. TB screening is not only limited to the normal/abnormal
classification, but can also locate its location in CXR with
abnormalities (30, 31). The clavicle region is known to be
a difficult area to detect TB because it can obscure the
manifestations of TB at the apex of the lung. The automatic
suppression of the ribs and clavicles in the CXR could
significantly improve the decision of radiologists in the detection
of nodule (32, 33). Therefore, applying position-based feature
filtering in the algorithm might improve the accuracy. For
the analysis of sub-pattern, the data were categorized with
only radiological readings. However, all training data structure
for the prediction results of TB and non-TB is based on
pathological diagnosis.

We analyzed the performance of the classification into
COVID-19 and non-COVID through the binary decision trees
AXIR3 and AXIR4. We tested AXIR1 and AXIR2 with COVID-
19 images. Among the COVID-19 test images, 98% (41 images
of 42) were predicted as abnormal in AXIR1. Also, 80% of the
COVID-19 images were predicted as TB in AXIR2. However,
we tested the AXIR3 and AXIR4 step using all the 42 COVID-
19 images for each AXIR. Table 8 shows that the accuracy of
AXIR3 is 100%, although the accuracy of AXIR4 is only 89%.
The average sensitivity (97%) is almost same as the 98% reported
in (9), whereas the average specificity (93%) is slightly higher
than 89%. We think that this is because normal images were
excluded already by AXIR1. Also, if we recall that some FN
images in AXIR4 (annotated as COVID-19) were categorized as
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TB in AXIR2, then those images are predicted as COVID-19 in
AXIR3, and the accuracy could be improved in the real process.

Both COVID-19 and TB cause respiratory symptoms (cough
and shortness of breath). One of the biggest differences is the
speed of onset. TB symptoms do not tend to occur immediately
after infection, but gradually appear, unlike COVID-19, which
can occur within a few days. In this regard, we have combined
the detection of TB or COVID-19.

There are practical considerations that require further
investigation. First, this study used a suitable data group as
training data for each step, but training data should be confirmed
with pathological data. Without the use of pathologically
confirmed data, the results of themodel are unreliable. Therefore,
prediction of new cases requires new pathological data. Second,
the proposed three-level decision tree classifier takes three times
longer than a one-step process using multiple classifiers. Third,
there are many data augmentation strategies for image data.
We added more training data to our deep learning model using
easy-to-implement methods such as horizontal flip, rotations,
and shifts. Image processing techniques using stochastic region
sharpening, elastic transforms, randomly erasing patches, and
many more to augment data can be considered to improve the
performance of the resulting model. Further studies are thus
needed on advanced augmentation techniques for building better
models and creating a system that does not require gathering a lot
of training data to get a reliable statistical model.

CONCLUSIONS

Herein, a deep learning-based three-level decision-tree classifier
for detecting TB and non-TB lung diseases, including COVID-
19, has been presented and validated using patient data. For each

level, a two-dimensional CNN algorithm (ResNet18 model) with
PyTorch frame was used with optimized trained data. Accuracies

of 98 and 80%, respectively, were achieved for AXIR1 (abnormal
vs. normal data) and AXIR2 (TB vs. non-TB data). The lower
accuracy of AXIR2 is due to FP atelectasis and plural thickening
predictions and FN infiltration, consolidation, and infiltration.
An average accuracy of 95% was achieved with AXIR3 (COVID-
19 vs. TB) and AXIR4 (COVID-19 vs. other non-TB). We believe
that this study will have significant clinical applications, allowing
fast follow-up decision making and pre-screening in suspected
COVID-19 cases prior to the availability of RT-PCR results.
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