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INTRODUCTION

Survival rates after kidney transplant are greater than 90% at 1 year, how-

ever, long-term success has been difficult to accomplish [1]. The most com-

mon complication that hinders long-term success is cardiovascular disease 

(CVD), and one of the important factors to induce CVD after kidney trans-

plant is weight gain, which can lead to obesity. After transplant, 50-90% of 

recipients gain weight, with an average first year weight gain of 6 to 10 kg 

and the mean body mass index changes of 2-3.8 kg/m2 [2]. This is signifi-

cantly more than the average yearly weight gain (∆< 1 kg) in US adults.

Exosomes are one of the extracellular vesicles with diameters general-

ly between 30 and 150 nm. They are released from all kinds of our cells, 

then circulate in our body fluid, therefore they can be obtained in vari-

ous body fluids such as plasma, urine, breast milk, cerebrospinal fluid 

and saliva [3]. In addition, they encapsulate cargos of donor cells, which 

include RNAs, miRNAs, lipid and proteins. While circulating our body 

system, they enter recipient cells with these cargos and influence the cellu-

lar mechanism. Thus, it is considered to play important roles in intercellu-

lar communication and maintenance of cellular homeostasis [4-7]. Recent 

evidence has shown that metabolic diseases such as obesity can modulate 
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Purpose: Weight gain after kidney transplantation is a critical factor that can lead to poor outcomes with cardiovascular complications. 
Many studies have been conducted to identify predictive markers of future weight changes at the time of transplant. Recently, circulat-
ing exosomes and its contents including miRNAs and proteins have attracted attention as potential biomarkers. In this pilot study, we 
investigated exosomal proteins and weight change after kidney transplant. Methods: Recipients (n = 10) were classified into two 
groups; weight gainers (n = 5, 9.7 ± 4.4kg) and weight losers (n = 5, -6.4 ± 1.8kg) based on their weight changes at 12-months post-
transplant. Based on the exosomal protein profiles obtained by the LC-MS/MS, differentially expressed proteins were identified between 
the groups. Results: Concentration and the mean size of exosomes significantly increased at 12-months compared to the baseline 
(p = .009) in the total group. Eleven exosomal proteins were found at the baseline as differentially expressed between the two groups. In 
the weight gain group, complement proteins including HV169, C3, C4B, and C4A, were significantly upregulated. Conclusion: Our pilot 
study suggests that exosomal complementary proteins are associated with weight gain after kidney transplantation. Further studies are 
needed to clarify the role of these exosomal proteins in the underlying mechanisms of weight changes in kidney transplant recipients.
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exosomes and exosomal cargos [8,9]. Significantly higher levels of circu-

lating exosomes were observed in obese patients compared to lean con-

trols [10]. A unique difference between exosomal miRNA profiles derived 

from adipose tissue has been observed in obese vs lean subjects [11,12]. 

Importantly, the exosomal miRNAs profiles in obese subjects were in-

volved in modulating inflammatory and fibrotic signaling [11]. 

Based on the evidence, exosomes and their cargos are involved in 

many biologic processes leading to obesity; however, the role that exo-

somes play in weight changes in kidney transplant recipients has not 

been investigated. The purpose of this study is to examine the character-

istics of exosomal proteins in recipients who do and do not gain weight 

at one year following kidney transplant. Our hypothesis is that charac-

teristics of circulating exosomes and their contents would differ between 

the weight gain group and the weight loss group and that exosomes 

would be associated with weight changes following transplant.  

METHODS

1. Subjects

From 2006 to 2011, investigators recruited 153 kidney transplant re-

cipients to participate in a study examining genetic and environmental 

factors (e.g., diet and physical activity) associated with weight gain follow-

ing transplantation. Our pilot study is a substudy that included 10 recipi-

ents whose plasma samples were collected at both baseline at the time of 

kidney transplantation surgery and 12-month after transplantation. All 

patients approved for kidney transplantation surgery at the transplant in-

stitute were eligible for participation in the parent study regardless of race 

and sex. Recipients were excluded if they were taking prednisone or other 

immunosuppressant therapy, to control for any effect of pre-transplanta-

tion immunosuppressant therapy on baseline weight. Institutional Re-

view Board and the Office of Human Subject Research Protection at the 

National Institution of Health approved this research (IRB No. 07-08672-

FB). Written informed consent was obtained from all recipients.

2. Clinical data

Methods and procedures for the present study are described in previ-

ous papers [13,14] and briefly summarized here. Demographic features 

and clinical information including age, gender, race, weight, body mass 

index (BMI; kg/m2), and medication history about prednisone, tacroli-

mus, and mycophenolate were obtained from all participants at the time 

of transplant surgery (baseline) and 12-month after transplant. 

3. Exosome isolation

Blood samples were collected from the antecubital vein into EDTA 

tubes at baseline and 12-month after transplantation. Plasma was sepa-

rated immediately after the blood collection by centrifugation at 1,000 

× g for 10 minutes at 4°C and stored at -80°C until use. Exosomes were 

extracted from 200 μL of plasma by using ExoQuick (System Bioscienc-

es, Palo Alto (CA), USA). Briefly, cells and cell debris were removed by 

centrifugation at 2,000 g for 20 minutes and 10,000 × g for 20 minutes at 

room temperature. Then, supernatant was incubated with thrombin for 

de-fibrination for 30 minutes at room temperature. After adding Dul-

becco’s phosphate-buffered saline (DPBS) with protease inhibitors and 

phosphatase inhibitors, it was spun down at 4,000 × g for 30 minutes. 

Supernatant was transferred to a new tube then incubated with the cor-

responding amounts of ExoQuick solution for 1hour at 4°C. After cen-

trifugation at 1,500 × g for 20 minutes, the exosome pellet was resus-

pended in 200 μL of DPBS with protease inhibitors and phosphatase in-

hibitors. The pellet was dissolved by rotating overnight at 4°C [15].

To confirm the success of exosome isolation, the general marker for 

exosomes, TSG101 protein expression was quantified using ELISA 

(CUSABIO, Wuhan, China). Equal volumes of exosomes (40 µL) from 

all 20 samples were loaded and the absorbance was obtained at 450 nm 

with SpectraMax® M3 Microplate Reader (Molecular Devices Corp., 

Sunnyvale (CA), USA). Other general exosome markers were also tested 

with western blotting. Exosome lysates (15 µL) were fractionated on 

4-12% gradient SDS-PAGE, and western blot analysis was performed us-

ing CD9 and CD63 antibodies (System Biosciences, Palo Alto (CA), 

USA). Signals were detected with HRP-conjugated F(ab’)2 antibody 

(Zymed Laboratories, San Francisco (CA), USA) using the ECL-PLUS 

system (Amersham, Arlington Heights, IL). 

4. Nanoparticle tracking analysis

The size distribution and the number of exosomes were evaluated 

with a nanoparticle tracking system, NS300 (Marlvern Instruments Ltd, 

Worcestershire, UK). All samples were diluted 1,000-fold with DPBS 

and measured 3 times for 30seconds for each sample. Three values were 

processed, and average values of particle size and concentration were 

obtained by nanoparticle tracking analysis software. 
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5. LC-MS/MS analysis

Exosomal protein profiles were evaluated with liquid chromatogra-

phy followed by tandem mass spectrometry (LC-MS/MS). Extracted 

exosomes were modified to a concentration of 2% SDS and heated at 

100°C for 10 minutes. The protein concentration of each sample was de-

termined by Qubit fluorometry (Invitrogen, Carlsbad (CA), USA). 10 μg 

of each sample was processed by SDS-PAGE using a 10% Bis Tris Nu-

Page mini-gel (Invitrogen, Carlsbad, USA) in the MES buffer system. 

The migration window (1 cm lane) was excised and in-gel digestion per-

formed on it using a ProGest robot (DigiLab, Hopkinton (MA), USA). 

Samples were digested with trypsin at 37°C for 4 hours, then quenched 

with formic acid and supernatant was analyzed directly. Half of the di-

gested sample was analyzed by nano LC-MS/MS with a Waters Nano-

Acquity HPLC system interfaced to a ThermoFisherTM Q ExactiveTM. 

Peptides were loaded on a trapping column and eluted over a 75 μm an-

alytical column at 350 nL/min using a 2 hours reverse phase gradient; 

both columns were packed with Luna C18 resin (Phenomenex, Torrance 

(CA), USA). The mass spectrometer was operated in data-dependent 

mode, with the Orbitrap operating at 70,000 FWHM and 17,500 

FWHM for MS and MS/MS respectively. The fifteen most abundant 

ions were selected for MS/MS. Mascot DAT files were parsed into Scaf-

fold software (Proteome Software Inc, Portland (OR), USA) for valida-

tion and filtering, and created a non-redundant list per sample. Data 

were filtered using at 1% protein and peptide false discovery rate (FDR) 

and requiring at least two unique peptides per protein.

6. Statistics

Wilcoxon signed rank and Chi-square tests were used to identify sig-

nificant differences (SPSS Inc. version 22.0). Gene Ontology (GO) analy-

sis was performed with identified proteins to reveal the enriched biologi-

cal pathways. To identify differentially expressed proteins between 

groups, normalized protein expression data (NSAF values) at baseline 

were imported to R, version 3.4.3 (2017-11-30) then analyzed using DE-

Seq2, version 1.18.1 with the cutoff of 0.05 on FDR. Independent Hy-

pothesis Weighting (IHW) was applied for more accurate calculation of 

FDR. Bioconductor version 3.6 with BiocInstaller version 1.28.0 was 

used for DESeq2. 

RESULTS

Table 1 contains the general characteristics of the 10 recipients in this 

study; six were men (60.0%), four were African American (40.0%), and 

the mean age was 52.90 ± 7.03 years. Recipients were classified into two 

groups based on the change of their body weights in 12-month. Among 

10 recipients, 5 showed weight loss (-6.41± 1.83 kg), and 5 showed weight 

gain (9.72 ± 4.40 kg). Although body weight and BMI were similar at 

Table 1. Demographics Subjects 								      

Characteristics 

Weight loss group (n = 5)
Mean ± SD or n (%)

Weight gain group (n = 5)
Mean ± SD or n (%)

p (WL vs WG)

BL 12M BL 12M BL 12M

Age (yr) 55.60 ± 5.89 50.20 ± 7.63 .172
Gender (male) 3 (60.0) 3 (60.0) NS
Race
   African American
   Caucasian
   Multi-race

  
2 (40.0)
2 (40.0)
1 (20.0)

  
2 (40.0)
3 (60.0)
0

  
.549

Hypertension 5 (100.0) 4 (80.0) 5 (100.0) 5 (100.0) NS
Hyperlipidemia 1 (20.0) 3 (60.0) 1 (20.0) 2 (40.0) NS
Diabetes 0 1 (20.0) 0 0 NS
Body weight (kg) 66.82 ± 9.97 60.41 ± 10.06* 78.90 ± 18.48 88.62 ± 20.76* .421 .032
Δ Body weight (kg) -6.41 ± 1.83 9.72 ± 4.40 .009
BMI (kg/m2) 25.28 ± 3.39 22.87 ± 3.72* 27.20 ± 2.06 30.57 ± 2.45* .690 .008
Δ BMI (kg/m2) -2.40 ± 0.59 3.37 ± 1.23 .009
Prednisone (mg/day) 18.00 ± 4.47 4.50 ± 1.12* 20.00 ± 0.00 5.00 ± 0.00* NS each drug
Tacrolimus (mg/day) 3.80 ± 1.48 6.00 ± 2.83 2.00 ± 2.00 5.60 ± 3.36 NS each drug
Mycophenolate (mg/day) 1,712 ± 643.98 916 ± 424.59 1776 ± 306.72 488 ± 459.91* NS each drug

*means p< .05 between baseline and 12-months.
BL = baseline; 12M = 12-months; WL = weight loss group; WG = weight gain group; BMI = body mass index; NS = not statistically significant, 



� Cho, Young-Eun, et al. 122

https://doi.org/10.7586/jkbns.2020.22.2.119www.bionursingjournal.or.kr

baseline between groups, they were significantly different at 12-month. 

Dose of medications was not significantly different between groups. No 

participants had diabetes at baseline and 1 participant in weight loss 

group had diabetes at 12-month. Glucose levels were not significantly 

changed over time in both groups; weight loss group, it was 122.80 ±

35.53 mg/dL at baseline and 117.8 ± 24.85 mg/dL at 12-month (n = 5, 

mean ± SD). In weight gain group, it was 118.6 ± 24.02 mg/dL at baseline 

and 96.50 ±26.49 mg/dL at 12-month (n = 4, mean ± SD). Changes of en-

ergy intake and daily energy expenditure were not significantly changed 

over time (data not shown). 

In order to confirm our method of exosome isolation, we measured 

the exosomal surface markers from selected samples with 3 different 

proteins markers including TSG101, CD63, and CD9 (Supplementary 

Figure 1). Exosomal characteristics were demonstrated by measuring 

particle size and concentration (Figure 1 and Table 2). For the entire 

group, most of the particles were distributed within 30-150 nm range, 

which are the exosomes defined size range (Supplementary Figure 2). 

The concentration was significantly increased over time (p= .009), and 

the mean diameter was also slightly but significantly increased from 

Figure 1. Exosome concentration at baseline and 12-months after kid-
ney transplant. At 12-months after transplant, the number of particles 
was significantly increased (p = .009).
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Table 2. Exosome Characteristics at Baseline and 12-months Between Groups

Characteristics 
  (mean ± SE)

Weight loss group (n = 5) Weight gain group (n = 5) p (WL vs WG)

Baseline 12-months p Baseline 12-months p Baseline 12-months

Exosome Concentration
  (particles/mL)

1.51 × 1012 ±
1.56 × 108

2.34 × 1012 ±
2.25 × 108

.080 1.50 × 1012 ±
1.68 × 108

2.28 × 1012 ±
2.39 × 108

.043 .917 .251

Exosome size 
  (mode, nm)

67.32 ± 2.64 70.56 ± 4.68 .686 69.31 ± 2.20 67.08 ± 2.09 .500 .465 .347

Exosome size 
  (mean, nm)

86.34 ± 3.66 96.50 ± 4.64 .014 83.58 ± 3.18 90.20 ± 5.65 .138 .347 .347

WL = weight loss group; WG = weight gain group.

Figure 2. Enriched biological process from Gene Ontology of exosomal protein profiles (n = 263) in kidney transplant recipients. 
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85nm to 93 nm (p= .037). However, the mode size (the size of the particle 

that occurs the most) did not differ between baseline and 12-month (68 

nm). When examined by group, exosome concentration was signifi-

cantly increased in the weight gain group (p= .043) with a trend towards 

significance in the weight loss group (p= .080). Mode and mean values 

were not significantly changed over time in either group (Table 2). 

Protein contents of exosomes were obtained by liquid chromatogra-

phy followed by tandem mass spectrometry (LC-MS/MS). Examining 

the whole cohort, we identified 263 proteins with a mean of 166 (range 

130-190) proteins from each recipient from both time points. In order to 

classify the proteins in terms of function, Gene Ontology (GO) analysis 

was performed with all 263 proteins (Figure 2). The most enriched bio-

logical processes identified were related to the immune system process 

(41.6%), response to stimulus (33.6%), and multi-organism processes 

(23.2%). The top 3 biological pathways from GO were mainly about im-

mune responses and defense mechanisms, and these were the same 

across all groups. 

Identifying differentially regulated exosomal proteins between groups 

might be useful to predict those recipients who might gain weight fol-

lowing kidney transplant. Differentially expressed proteins in the weight 

gain group at baseline were obtained with a cutoff of 0.05 on FDR. Four 

proteins were significantly upregulated in the weight gain group includ-

ing HV169, C3, C4B, and C4A. Seven proteins were significantly down-

regulated in the weight gain group including ANXA2, DESP, SPRR1B, 

S100A9, CYTA, GSDMA, and H4 (Table 3). 

DISCUSSION 

Significant weight gain is closely related to long-term health compli-

cations after kidney transplant [2]. Research to predict at-risk groups for 

weight gain after transplant is needed to prevent cardiovascular comor-

bidities, which are the leading cause of death after transplant [14]. If a 

panel of biomarkers could be used in clinical settings to individually 

predict and modify personalize clinical management, the long-term 

survival rate and quality of life of transplant recipients could be promot-

ed. Exosomes are emerging biomarkers that contain various cellular in-

formation including miRNAs and proteins [5]. In this study, we found 

11 differentially expressed proteins out of 263 exosomal proteins be-

tween weight gain and loss groups from blood at baseline after kidney 

transplant. Specifically, HV169, C3, C4B, and C4A are significantly up-

regulated, whereas ANXA2, DESP, SPRR1B, S100A9, CYTA, GSDMA, 

and H4 are significantly downregulated in the weight gain group. To our 

best knowledge, this is the first pilot study to demonstrate an exosomal 

protein profile associated with body weight changes in kidney transplant 

recipients. Our pilot study provides the basic understanding of exosome 

characteristics and profile changes that occur following weight changes 

after kidney transplant, which might provide insights for future bio-

marker studies with using exosomes.

Because transplantation significantly affects the immune system [16], 

it is not surprising that most of the exosomal proteins are enriched in 

immune system responses based on the biological pathway analysis 

(Figure 2). Our findings are congruent with a previous study using uri-

Table 3. Differentially Expressed Exosomal Proteins in Weight Gain group at Baseline and their Changes at 12-months After Transplant

Proteins
Baseline 12-months

WL WG p WL WG p 

Upregulated 
  proteins in WG

HV169 (Immunoglobulin heavy variable 1-69)
C3 (Complement 3)
C4B (Complement 4B)
C4A (Complement 4A)

0
0.015 ± 0.005
0.005 ± 0.002
0.005 ± 0.002

0.002 ± 0.002
0.027 ± 0.007
0.010 ± 0.001
0.010 ± 0.001

.028

.007

.003

.001

0.000 ± 0.001
0.028 ± 0.007
0.009 ± 0.003
0.008 ± 0.003

0.000 ± 0.001
0.029 ± 0.005
0.010 ± 0.003
0.010 ± 0.003

NA
.986
.963
.930

Downregulated 
  proteins in WG

ANXA2 (Annexin A2)
DESP (Desmoplakin)
SPRR1B (Cornifin-B, Small Proline Rich Protein 1B)
S100A9 (S100 Calcium Binding Protein A9, 
  Calgranulin B)
CYTA (Cystatin A)
GSDMA (Gasdermin-A)
H4 (Inter-alpha-trypsin inhibitor heavy chain)

0.003 ± 0.001
0.002 ± 0.001
0.004 ± 0.003
0.003 ± 0.003

0.002 ± 0.001
0.001 ± 0.001
0.002 ± 0.003

0.001 ± 0.000
0.001 ± 0.000

0
0

0
0
0

.017

.011

.000

.000

.000

.018

.000

0.003 ± 0.001
0.002 ± 0.001
0.003 ± 0.004
0.002 ± 0.003

0.001 ± 0.001
0.001 ± 0.001
0.000 ± 0.001

0.002 ± 0.001
0.001 ± 0.001
0.002 ± 0.003
0.002 ± 0.002

0.000 ± 0.001
0.001 ± 0.001
0.002 ± 0.001

.986

.963

.986

.986

.986

.986
NA

Values are normalized spectral abundance factors (NSAF, mean ± SD). 
WL = weight loss group; WG = weigh gain group; NA = not applicable.
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nary exosomes in kidney transplant recipients, which demonstrated that 

humoral immune response, complement activation, and response to 

stress pathways were enriched [17]. Perturbed proteins in urinary exo-

somes of kidney transplant recipients were related to inflammatory re-

sponses, which were not observed in control subjects. In our data, signifi-

cantly upregulated proteins at baseline in the weight gain group are also 

immune-related; especially complement component 3, 4B, and 4A (C3, 

C4B, and C4A). C3 and C4 are primarily associated with both innate 

and adaptive immune responses [18], and are known to be involved in 

metabolic diseases including obesity and its comorbid conditions [19]. 

Recently they were demonstrated as predictive biomarkers of metabolic 

syndrome development in two large cohort studies [20,21]. In both stud-

ies, baseline level of C3 and C4 independently predicted increased risk of 

metabolic syndrome over 3-4 year follow-up studies. Interestingly, Xin et 

al. [21] pointed out that activated products or regulators of C3 and C4 

were not associated with metabolic syndrome incidence. This finding 

could support our result that the difference in C3 and C4 level between 

groups at baseline disappeared at 12-month. In our study, difference ex-

pression level of these proteins at baseline was not examined at 12-month. 

These proteins might not be critical to increase weight after transplant. 

Otherwise, they might be involved in the process to initiate weight gain, 

or the mechanisms underlying weight gain may differ in the later phase 

compared to baseline. Further studies are needed to decipher the role of 

these proteins in the underlying mechanisms of weight changes.  

We also found seven exosomal proteins that were significantly less ex-

pressed in the weight loss group at baseline. Annexin (ANXA) 2 was 

down regulated in the weight gain group, and ANXA1 and ANXA2 are 

inversely correlated with weight gain. It has been demonstrated that 

these proteins have anti-inflammatory effect in many diseases [22,23]. 

Gasdermin-A (GSDMA) has negative correlation with weight gain in 

our study. Although few studies have shown the inflammatory role in 

GASDMA [24], other gasdermin family are also involved in anti-in-

flammatory process [25]. Their roles in obesity or weight gain have not 

been investigated; however, their anti-inflammatory roles may be in-

volved in preventing weight gain after kidney transplant. 

A significant increase in exosome concentration was observed at 

12-month after transplant regardless of weight changes. It might be re-

lated to the fluid status of our transplant recipients as some might have 

been hypervolemic at time of transplant (when the baseline sample was 

obtained) due to timing of their last hemodialysis treatment and/or fluid 

management during transplantation [26]. For this reason, the exosome 

concentration might be lower at baseline for our entire sample of recipi-

ents as compared to 12-month post-transplant. In addition, there is a 

possibility that damaged organs may secrete fewer exosomes compared 

to healthy ones. In patients with lung cancer, exosome concentration 

was decreased as the pathological state of lung cancer was improved [27]. 

In our study, therefore, we considered the possibility that as the body 

fluid level adjusts, and the transplanted organ begins to function, the 

concentration of exosomes might be increased. 

There are several limitations to this study. 1) This is a pilot study with 

a limited number of participants. Difference at baseline body weight be-

tween groups might be due to the small number of participants, thus 

might affect the final result of exosomal protein profile. A future study 

with a larger number of participants is needed. 2) We did not include a 

non-transplant control group, however, this is a pilot study in a unique 

clinical population and can provide guidance for future studies. 

Our pilot study compared exosomal protein profiles between baseline 

and 12-month after kidney transplantation in relation to weight chang-

es. We suggest that exosomal proteins obtained from blood should be 

further explored as potential biomarkers to predict those who might 

gain significant weight in general population as well as kidney transplant 

recipients. This novel approach could lead to targets for interventions to 

prevent weight gain and resultant cardiovascular complications. 
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Supplementary Figure 1. Exosome characteristics at baseline and 12-month after kidney transplant (KT). (A) TSG101 expression was measured 
with ELISA from all samples (n = 10). (B) Selected samples were tested with CD63 and CD9 Abs with western blotting.
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Supplementary Figure 2. Exosome characteristics at baseline and 12-month after kidney transplant. (A,B) Most particles of both timepoints (A: 
baseline, B: 12-month) are distributed size range in 30-150 nm.
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