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Machine learning (ML) applications have received extensive attention in endocrinology research during the last decade. This review 
summarizes the basic concepts of ML and certain research topics in endocrinology and metabolism where ML principles have been 
actively deployed. Relevant studies are discussed to provide an overview of the methodology, main findings, and limitations of ML, 
with the goal of stimulating insights into future research directions. Clear, testable study hypotheses stem from unmet clinical needs, 
and the management of data quality (beyond a focus on quantity alone), open collaboration between clinical experts and ML engi-
neers, the development of interpretable high-performance ML models beyond the black-box nature of some algorithms, and a cre-
ative environment are the core prerequisites for the foreseeable changes expected to be brought about by ML and artificial intelli-
gence in the field of endocrinology and metabolism, with actual improvements in clinical practice beyond hype. Of note, endocrinol-
ogists will continue to play a central role in these developments as domain experts who can properly generate, refine, analyze, and 
interpret data with a combination of clinical expertise and scientific rigor.
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INTRODUCTION

The use of machine learning (ML) applications in various fields 
of health research are rapidly expanding, and ML has the poten-
tial to improve the current health system and clinical practice. In 
endocrinology and metabolism research, the number of publica-
tions on ML has exponentially increased, reaching roughly 2,000 
publications by the end of the last decade (PubMed query: Search 
((((((“Machine Learning”[Mesh]) OR “Artificial Intelligence” 
[Mesh]) OR “Deep Learning”[Mesh])) OR (((machine learning 
[Title/Abstract]) OR artificial intelligence[Title/Abstract]) OR 
deep learning[Title/Abstract]))) AND ((((((((endocrinology[Title/

Abstract]) OR diabetes[Title/Abstract]) OR pituitary[Title/Ab-
stract]) OR thyroid[Title/Abstract]) OR adrenal gland[Title/Ab-
stract]) OR osteoporosis[Title/Abstract])) OR ((((((“Endocrinology” 
[Mesh]) OR “Diabetes Mellitus”[Mesh]) OR “Pituitary Gland” 
[Mesh]) OR “Thyroid Gland”[Mesh]) OR “Adrenal Glands” 
[Mesh]) OR “Osteoporosis”[Mesh])); search date: January 1st, 
1986 to January 17th) (Fig. 1). The accumulation of structured or 
unstructured medical data, the exponential growth of available 
computing power, and the availability of useful open resources 
for implementing ML have contributed to the expanding ML ap-
plications in health care. In this review, a brief overview of the 
basic concepts of ML, exemplary studies of ML applications in 
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endocrinology research, and related perspectives will be provided 
for endocrinologists and clinical practitioners who are becoming 
interested in the principles of ML.

MACHINE LEARNING: A BRIEF 
INTRODUCTION

Artificial intelligence, machine learning, and deep learning
The terms “artificial intelligence (AI),” “ML,” and “deep learn-
ing” are often used concomitantly and sometimes interchange-
ably in the medical literature. The U.S. Food and Drug Admin-
istration defined AI as “the science and engineering of making 
intelligent machines, especially intelligent computer programs,” 
based on the definition proposed by McCarthy [1,2]. Learning 
and reasoning are the main functions that intelligence refers to 
in this context, although intelligence more broadly includes self-
awareness, introspection, action, heuristics, and practical knowl-
edge [1]. ML is defined as an “AI technique that can be used to 
design and train software algorithms to learn from and act on 

data,” as a subset of AI. Therefore, all ML counts as AI, but not 
all AI involves ML. Deep learning, also known as deep neural 
networks, refers to a subset of ML algorithms implemented by 
stacked multilayer neural networks, mimicking the neural archi-
tecture of the human brain. As noted in a summary report from 
the Third Annual Machine Learning for Health Workshop held 
in December 2018, traditional technical researchers and com-
munities appear to favor the term “ML” when describing the 
methodology underlying their work. However, clinicians tend to 
prefer using “AI” as an umbrella term in the medical literature, 
and this discrepancy might need to be resolved in order to re-
move potential terminological barriers and to prevent unneces-
sary confusion among research communities [3].

Machine learning algorithms and performance metrics
ML algorithms can be classified into four main categories: su-
pervised, semi-supervised, unsupervised, and reinforcement 
learning (Table 1) [4-7]. Supervised learning requires a labeled 
dataset with output mapped to input to train a function. The goal 
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Fig. 1. The increasing trend in the number of artificial intelligence or machine learning-related publications per year in the endocrinology and 
metabolism field. The included publications were confined to PubMed-indexed records until the search date (January 17th, 2020), with com-
binations of search terms including machine learning, artificial intelligence, deep learning, endocrinology, metabolism, diabetes, pituitary, 
thyroid, adrenal gland, and osteoporosis, using PubMed query as follows: search ((((((“Machine Learning”[Mesh]) OR “Artificial 
Intelligence”[Mesh]) OR “Deep Learning”[Mesh])) OR (((machine learning[Title/Abstract]) OR artificial intelligence[Title/Abstract]) OR 
deep learning[Title/Abstract]))) AND ((((((((endocrinology[Title/Abstract]) OR diabetes[Title/Abstract]) OR pituitary[Title/Abstract]) OR 
thyroid[Title/Abstract]) OR adrenal gland[Title/Abstract]) OR osteoporosis[Title/Abstract])) OR ((((((“Endocrinology”[Mesh]) OR “Diabetes 
Mellitus”[Mesh]) OR “Pituitary Gland”[Mesh]) OR “Thyroid Gland”[Mesh]) OR “Adrenal Glands”[Mesh]) OR “Osteoporosis”[Mesh])).
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of supervised learning is to derive a function that infers the most 
desired output for new input from the previously labeled dataset. 
Unsupervised learning explores structures or patterns in unla-
beled datasets to achieve clustering or dimensionality reduction. 
Semi-supervised learning is a blend of those two approaches 
that is suitable for datasets with a small amount of labeled data 
and extensive unlabeled data. Reinforcement learning is suitable 
for finding optimal actions in an unstructured and complex en-
vironment by maximizing the cumulative rewards from actions 
taken in that environment. Unlike supervised learning, which is 
based on prior knowledge of input-output mapping at the start, a 
reinforcement learning function evolves sequentially by collect-
ing information on every action-response relationship during the 
task. Although some guidance on selecting an estimator can be 
obtained from a so-called “cheat-sheet” for initial ML estima-
tors (scikit-learn; https://scikit-learn.org/stable/tutorial/machine_
learning_map/index.html), a one-size-fits-all approach may not 
be applicable in most cases. Estimators are often chosen through 
an iterative process that takes into account the quantity, struc-
ture, and extendibility of the dataset, the characteristics of the 
research hypothesis or problems, the performance of trained 
functions, and researchers’ experiences and intuition (Fig. 2). 
Choosing the performance metrics that best suit the research 

purpose is another task that needs to be carefully accomplished 
after establishing an ML model (Supplemental Table S1) [8-11].

MACHINE LEARNING APPLICATIONS IN 
ENDOCRINOLOGY AND METABOLISM 

Results of the text analysis on the titles of literature were pre-
sented as Fig. 3. The titles of 611 studies (English language, hu-
man study, not a review or meta-analysis) published within the 
last 5 years were parsed to count the frequency of words that 
appeared. Among a total of 2,115 words, the top 30 words with 
high frequency were analyzed. Among diseases, ‘diabetes’ or 
‘diabetic’ appeared most frequently among the top 30 words 
(52%), followed by retinopathy (14%), thyroid (14%), carcino-
ma (8%), and osteoporosis (7%). Regarding ML tasks, ‘risk 
prediction’ or ‘predict’ accounted for 31%, and the composite of 
‘detection,’ ‘classification,’ ‘identification,’ and ‘diagnosis’ 
reached up to 40%, followed by ‘segmentation’ (5%) or ‘bioin-
formatics’ (7%). In this section, studies were summarized to 
present some exemplary cases in utilizing ML applications in 
the endocrinology and metabolism field. Seventeen studies were 
arbitrarily chosen on the basis of (1) the balance between disease 
fields (diabetes, thyroid, pituitary, and bone and mineral disor-

Table 1. Machine Learning Algorithms

Types of learning Supervised learning Semi-supervised learning Reinforcement learning Unsupervised learning

Concept Learning a function that best 
approximates new input to 
the desired output based on 
a given relationship  
between the input and  
labeled output from the  
labeled dataset 

A mixed approach of super-
vised and unsupervised 
learning applicable to a 
small amount of labeled data 
and a large amount of unla-
beled data

Learning by maximizing the 
reward function based on 
the responses yielded by 
various actions to achieve 
arbitrary goals in a given 
unstructured or unknown 
environment 

Finding structures or patterns in an 
unlabeled dataset

Common tasks Regression, classification Regression, classification Taking actions to maximize 
the reward 

Clustering, dimensionality  
reduction

Estimators Naive Bayesian, k-nearest 
neighbors, decision tree, 
support vector machine 
(SVM), neural network,  
logistic/ridge/linear  
regression, elastic net, etc.

Generative model, semi-su-
pervised SVM, etc.

Q-learning, policy gradient, 
actor-critic, etc.

K-means, density-based spatial 
clustering of applications with 
noise (DBSCAN), auto-encod-
ers, deep Boltzmann machine, 
principal component analysis, 
locally linear embedding, etc.

Examples Prediction of gestational  
diabetes according to  
biochemical test results 
based on simple features 
extracted from an electronic 
health records database [4]

The DeepHeart algorithm [7], 
which provides cardiovas-
cular risk scores based on 
heart rate monitoring from 
popular wearable devices 
(Fitbit, Apple Watch, etc.) 

Determining the optimal  
insulin dose in patients 
with type 1 diabetes based 
on activity, hemoglobin 
A1c level, alcohol con-
sumption status, and the 
previous insulin dose [5]

Identifying novel clusters or  
biomarkers based on various  
features collected by an unbiased 
multimodal approach, which 
finds differences in risks for  
certain diseases compared to 
other groups [6]

https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
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ders), (2) inclusion of at least one study which illustrates the var-
ious types of ML applications (supervised, unsupervised, and re-
inforcement learning), and (3) the publication date within last 3 
years. The research topics were categorized into screening and 
diagnosis, risk prediction, and translational research based on 
frequently appeared ML tasks from text analysis (Fig. 3), with 
subcategories that were not mutually exclusive in some cases. It 
should be noted that the selected studies might not be sufficient 
to reflect an entire trend of ML applications in the endocrinology 
field, but it can provide practical examples for understanding the 
utility of ML algorithms applied to various fields of endocrine 
researches. The details of the reviewed studies are summarized 
in Table 2 [4-6,12-26]. 

Screening and diagnosis
Improvement of screening strategies
The development of efficient screening tools for endocrine dis-
orders may have clinical impacts, both in terms of improved 
prognoses of individual patients through disease detection at an 
earlier stage and the cost-effective allocation of public health re-
sources by focusing on individuals with a high risk of disease 
and avoiding unnecessary testing in low-risk groups. Research-
ers have sought to determine whether ML algorithms are able to 
provide a better way of screening for various endocrine diseas-
es. Artzi et al. [4] provided an excellent example of applying the 

principles of ML to find useful screening tools for gestational 
diabetes based on a sizeable electronic health record (EHR) da-
tabase. EHR data of 588,622 pregnancies from 368,351 women 
collected at the nationwide level in Israel between 2010 and 
2017 were used to train an ML model to predict the risk of ges-
tational diabetes. Among 2,355 candidate features, the research-
ers developed a simple model consisting of only nine self-re-
portable questions (without previous laboratory results in some 
cases) based on a gradient boosting model, which showed fair 
discriminatory performance (area under the receiver operating 
characteristic curve, 0.80 vs. 0.68 for the conventional glucose 
challenge test at 24 to 28 weeks of gestation) even at an earlier 
time point relative to the initiation of pregnancy. Medical image 
data have the potential to provide features suitable for the op-
portunistic screening of endocrine disorders. Valentinitsch et al. 
[12] trained an ML model to identify individuals with prevalent 
vertebral fractures based on non-fractured vertebral regions in 
computed tomography scans taken for various purposes. By 
combining global and local density and texture parameters, the 
ML model outperformed volumetric bone mineral density 
(BMD) alone in discriminating the presence of vertebral frac-
tures, suggesting the potential of a semi-automated pipeline for 
the opportunistic screening of individuals with a high risk of 
fracture. Kong et al. [13] developed an ML model to detect fa-
cial features from photos of patients with acromegaly, and their 

Fig. 2. A brief workflow of machine learning-based medical research.
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Fig. 3. Top 30 frequently appeared words in the titles of machine learning (ML)-based endocrinology studies between 2015 and 2019. 
Among a total of 2028 literatures searched by PubMed querya on Jan 17th, 2020, text analysis was performed with nouns and adjectives 
parsed from the titles of 611 studies (English language, human study without review or meta-analysis) published within last 5 years. Cumu-
lative counts of appearance of top 30 words were plotted as horizontal bar plot. Frequently appeared diseases and ML tasks were plotted as 
pie charts separately. aPubMed query: (Search ((((((“Machine Learning”[Mesh]) OR “Artificial Intelligence”[Mesh]) OR “Deep 
Learning”[Mesh])) OR (((machine learning[Title/Abstract]) OR artificial intelligence[Title/Abstract]) OR deep learning[Title/Abstract]))) 
AND ((((((((endocrinology[Title/Abstract]) OR diabetes[Title/Abstract]) OR pituitary[Title/Abstract]) OR thyroid[Title/Abstract]) OR ad-
renal gland[Title/Abstract]) OR osteoporosis[Title/Abstract])) OR ((((((“Endocrinology”[Mesh]) OR “Diabetes Mellitus”[Mesh]) OR “Pi-
tuitary Gland”[Mesh]) OR “Thyroid Gland”[Mesh]) OR “Adrenal Glands”[Mesh]) OR “Osteoporosis”[Mesh])).
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model may have the potential to help the detection of acromeg-
aly at an earlier stage.

Facilitating the diagnostic workflow
Tackling the gray area of diagnostic uncertainty with new mo-
dalities has always been an important task for clinicians. As-
ymptomatic hyperparathyroidism can be challenging to identify 
without a high index of suspicion because it involves subtle bio-
chemical changes and its phenotype overlaps with those of pri-
mary osteoporosis and other rare mineral disorders, including 
familial hypocalciuric hypercalcemia [27]. Somnay et al. [25] 
trained an ML model to identify patients with primary hyper-
parathyroidism among patients who underwent neck surgery, 
including thyroidectomy or parathyroidectomy, although rela-
tively low performance was shown for mild disease. Several 
studies have shown that ML could support the decision process 
of whether to perform an invasive biopsy on a thyroid nodule 
based on ultrasonography, with good classification performance 

similar to that of radiology experts; therefore, ML classifica-
tions might potentially provide guidance to operators during 
data acquisition and measurement [14,28]. A well-validated, ac-
curate, non-invasive ML model may have the potential to re-
place standard invasive diagnostic modalities for certain diseas-
es. For instance, the global burden of nonalcoholic fatty liver 
disease (NAFLD) is rapidly growing, but invasive liver biopsy 
remains the gold standard for diagnosing NAFLD and nonalco-
holic steatohepatitis. Perakakis et al. [15] developed a support 
vector machine-based model to classify NAFLD based on fea-
tures obtained from the lipidomic, glycomic, and liver fatty acid 
analysis of serum samples. For the presence of liver fibrosis, a 
parsimonious exploratory model with 10 lipid species showed 
high accuracy (up to 98%), suggesting the possibility of a tar-
geted lipidomic approach as an alternative non-invasive diag-
nostic tool, although the model needs to be further validated in 
other ethnicities and individuals with a milder spectrum of liver 
diseases [29].
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Table 2. Summary of Recent Studies Related to Machine Learning Applications in the Endocrinology Field

Task Study (disease field) Study subjects Design and method Key finding and limitation

Screening and 
diagnosis

Artzi et al. (2020) 
[4] (Diabetes and 
related disorders)

-�Retrospective nationwide 
electronic health record 
data of 588,622 pregnancies 
from 368,351 women be-
tween 2010 to 2017 in Isra-
el including data of demo-
graphics, anthropometrics, 
laboratory tests, diagnoses, 
and pharmaceuticals

-�Internal validation set 
(n=137,220; with geo-tem-
poral difference)

-�Aim: to establish an ML model 
to improve the prediction of 
gestational diabetes based on 
electronic health record vs. a 
conventional screening tool

-�Reference labels: gestational  
diabetes diagnosis by a two-step 
approach (glucose challenge 
test and oral glucose tolerance 
test at 24–28 weeks of gesta-
tion)

-�Comparator: National Institute 
of Health seven-item question-
naire

-�Methods: supervised learning; 
gradient boosting model

Key implications
-�ML was useful in developing a simple nine-
question model in self-reportable format 
from the large electronic health record datas-
et, which outperformed the current standard 
screening tool (AUROC 0.80 vs. 0.68).

-�May facilitate early-stage interventions for 
women at high risk for gestational diabetes

-�May aid construction of a selective, cost- 
effective screening approach according to 
predicted gestational diabetes risk instead of 
the current universal screening approach

Limitations
-�Inherent bias from retrospective electronic 
health record data review

-�Performance might be different when based 
on actual self-reported surveys.

De Silva et al. 
(2020) [24]  
(Diabetes and  
related disorders)

-�National Health and Nutri-
tion Examination Survey 
(NHANES) 2013–2014 
(n=6,346)

-�Internal validation set 
(n=3,172)

-�External validation set: 
NHANES 2011–2012 
(n=3,000)

-�Aim: to identify predictors of 
prediabetes to build a screening 
model

-�Reference label: prediabetes  
defined using fasting plasma 
glucose, an oral glucose toler-
ance test, or hemoglobin A1c 
(HbA1c) according to American 
Diabetes Association recom-
mendations

-�Comparator: national prediabe-
tes screening instrument

-�Methods: supervised learning; 
logistic regression, artificial 
neural network, random forests, 
gradient boosting

Key implications
-�ML-based models had modest performance 
in discriminating inidividuals with prediabe-
tes, which were comparable to current 
screening instrument (AUROC 0.70 vs 0.64).

-�An application of feature selection methods 
and machine learning algorithms to open da-
taset

-�Novel predictors of prediabetes such as  
serum calcium, hysterectomy, hepatitis B 
were suggested by the feature selection algo-
rithm; may provide new insights, but need to 
be cautious about unobserved confounding.

Limitations
-�Generalizability to other countries cannot be 
guaranteed.

-�A more parsimonious model would be useful 
as a screening tool.

Valentinitsch et al. 
(2019) [12] (Bone 
and mineral  
disorders)

-�Computed tomography data 
from consecutive patients 
between February 2007 and 
February 2008 (n=154)

-�Internal validation with 
four-fold cross-validation 

-�Aim: to identify individuals 
with vertebral fractures using 
opportunistic CT screening

-�Reference label: Presence of 
any vertebral fracture by Genant 
classification grade 1 or higher

-�Comparator: global volumetric 
BMD

-�Methods: supervised learning; 
feature extraction (density and 
texture; Haralick features, histo-
grams of the oriented gradient, 
local binary patterns, 3-dimen-
sional wavelet), classification 
with random forests

Key implications
-�ML model with global and local density and 
texture parameters showed better perfor-
mance in identifying individuals with verte-
bral fractures compared to using volumetric 
BMD alone (AUROC 0.88 vs 0.64).

-�Proposed a quantitative, automatic pipeline 
for opportunistic CT screening for individu-
als with vertebral fractures

Limitations
-�Consisted of oncologic patients; whether the 
pipeline is applicable to the general popula-
tion needs to be validated.

-�DXA data were not available; comparison 
with DXA and FRAX was not possible.

(Continued to the next page)
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Table 2. Continued

Task Study (disease field) Study subjects Design and method Key finding and limitation

Somnay et al. 
(2017) [25] (Bone 
and mineral  
disorders)

-�Retrospective cohort of  
patients (n=6,777) with 
confirmed primary hyper-
parathyroidism who under-
went parathyroidectomy vs. 
controls (n=5,033) who 
underwent thyroidectomy 
from March 2001 to August 
2013

-�Internal validation with 10-
fold cross-validation

-�Aim: to establish an ML model 
discriminating patients with  
primary hyperparathyroidism 
among patients who underwent 
neck surgery

-�Reference label: surgically  
confirmed primary hyperpara-
thyroidism

-�Comparator: not applicable
-�Methods: supervised learning; 
naive Bayesian network with 
adaptive boosting

Key implication
-�ML model helped identifying individuals 
with primary hyperparathyroidism those who 
underwent neck surgery (accuracy 95.2%; 
71.1% in mild case).

-�Tested algorithm performance in the context 
of various relevant clinical situations 

Limitation
-�Cases comprised only patients referred for 
parathyroidectomy; potential for selection 
bias cannot be excluded.

-�Did not include cases of urinary calcium  
excretion or familial hypocalciuric hypercal-
cemia as controls.

Buda et al. (2019) 
[14] (Thyroid  
diseases)

-�Retrospective cohort of 
1,377 thyroid nodules from 
1,230 patients with com-
plete imaging and conclu-
sive cytologic or histologic 
diagnoses from August 
2006 to May 2010 (training 
set: 1,278 nodules in 1,139 
patients between 2006 and 
2009)

-�Internal validation set: 99 
nodules in 91 consecutive 
patients (year 2009–2010)

-�Aim: to provide biopsy recom-
mendations for thyroid nodules 
based on two orthogonal ultra-
sound images

-�Reference label: cytologically 
or histologically confirmed  
malignant or benign nodules on 
fine-needle aspiration (or surgi-
cal specimen where available) 

-�Comparator: decisions from 
three Thyroid Imaging Report-
ing and Data System committee 
experts; nine individual radiolo-
gists in clinical practice

-�Methods: supervised learning; 
region-based convolutional neu-
ral network, multi-task convolu-
tional neural network

Key implication
-�The ML model yielded similar sensitivity 
(87% vs. 87%) and specificity (52% vs. 51%) 
to that of expert radiologists (AUROC 0.87 
vs. 0.82).

-�Showed potential that ML model may be 
helpful to support clinical decision to go on 
invasive procedure for thyroid nodule.

Limitation
-�The final test set included a relatively small 
number of nodules, leading to wide confi-
dence intervals.

-�An external validation set for generalization 
was not available.

-�Applicability of model during the testing in 
clinical practice need to be investigated.

Kong et al. (2018) 
[13] (Pituitary 
diseases)

-�Facial photo and clinical 
data from 527 acromegaly 
patients and 596 normal 
subjects from a hospital  
database in China 

-�External validation set: 114 
age- and sex-matched  
acromegaly patients and 
128 controls 

-�Aim: to detect acromegaly from 
facial photographs

-�Reference label: biochemically 
proven acromegaly by growth 
hormone suppression testing 
with IGF-1 levels

-�Comparator: nine board-certi-
fied endocrinologists or neuro-
surgeons specializing in pitu-
itary disease only through a 
photograph

-�Methods: supervised learning; 
an ensemble of outputs from  
logistic regression, k-nearest 
neighbor, support vector  
machine, random forest, and 
convolutional neural network

Key implication
-�The ML model showed better performance in 
discriminating acromegaly, from the earlier 
stage, based on only by facial photograph 
compared to pituitary disease specialists (F1-
score 0.96 vs. 0.87).

-�May have the potential to facilitate early de-
tection of acromegaly based on facial recog-
nition.

Limitations
-�Did not include side view images.
-�Relatively small sample size as an image-
based study compared to 128,175 retinal  
images in the previous work [26].

-�Model based on a single ethnicity; cannot be 
extrapolated to another ethnicity.

(Continued to the next page)
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Table 2. Continued

Task Study (disease field) Study subjects Design and method Key finding and limitation

Perakakis et al. 
(2019) [15]  
(Diabetes and  
related disorders)

-�Serum samples of 49 
healthy subjects and 31  
patients with biopsy- 
proven NAFLD

-�Internal validation with 
three-fold cross-validation 

-�Aim: to train models for the 
non-invasive diagnosis of 
NASH and liver fibrosis based 
on circulating lipids, glycans, 
fatty acids identified by LC-
MS/MS and biochemical  
parameters

-�Reference label: biopsy-proven 
NAFLD

-�Comparator: not applicable
-�Methods: supervised learning; 
one-vs-rest nonlinear support 
vector machine models with  
recursive feature elimination

Key implications
-�The ML model including 20 features consist-
ed of lipidomics, glycans, and adiponectin 
yielded high accuracy up to 90% in discrimi-
nating healthy individuals from patients with 
NAFLD and NASH.

-�May provide a low-risk cost-effective, non-
invasive alternative method to liver biopsy.

Limitations
-Validation cohort was not available.
-�Needs to be further validated in a different 
population.

Kruse et al. (2017) 
[16] (Bone and 
mineral disorders)

-�Retrospective data from 
10,775 subjects from the 
national Danish patient  
database with information 
on DXA scans, medication 
reimbursements, healthcare 
use, and comorbidities of 
female subjects

-�Aim: to detect patient clusters 
with a high risk of fracture using 
an unsupervised clustering  
algorithm based on DXA scans, 
medication, and health care 
claims dataset

-�Reference label: not applicable
-�Comparator: not applicable
-�Methods: unsupervised learn-
ing; Ward’s-based hierarchical 
agglomerative clustering

Key implications
-�Unsupervised clustering identified four high 
risk clusters and two low-risk clusters among 
nine clusters, which had different patterns of 
medication usage, compliance, and clinical 
outcomes despite similar DXA results.

-�May provide novel insights into establishing 
indications for DXA screening.

Limitations
-�Potential temporal changes in pharmacologi-
cal treatment pattern during the 15-year obser-
vation period

-�Inherent limitations of the secondary use of a 
claims dataset; could not ascertain actual con-
sumption of medication by individual subjects.

Risk prediction Segar et al. (2019) 
[17] (Diabetes 
and related  
disorders)

-�8,756 Patients without heart 
failure at baseline from the 
ACCORD trial dataset 
(50% training set; 50%  
internal validation set;  
conducted between 1999 to 
2009) 

-�External validation set: 
10,819 participants without 
prevalent heart failure from 
the ALLHAT trial 

-�Aim: to develop an ML model 
to predict incident heart failure 
among patients with type 2  
diabetes

-�Reference label: incident hospi-
talization or death due to heart 
failure (captured and adjudicat-
ed by two independent reviewer 
physicians during the trial)

-�Comparator: not applicable
-�Methods: supervised learning; 
random survival forest-based 
model

Key implications
-�The ML-based models showed modest  
performance in prediction for incident heart 
failure among patients with type 2 diabetes in 
the external validation set (C-index 0.70 to 
0.74).

-�Each 1-unit increment in the WATCH-DM 
score was associated with a 24% higher rela-
tive risk of heart failure within 5 years.

-�Strength of analyzing a large number of  
participants from a well-phenotyped clinical 
trial population

Limitations
-�Discrimination for heart failure with  
preserved ejection fraction was relatively low 
in the subgroup analysis.

-�Temporal changes of heart failure biomarkers 
and medications could not be reflected in the 
model.

-�Need to validate the model in lower-risk  
cohorts of individuals with type 2 diabetes.

(Continued to the next page)
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Table 2. Continued

Task Study (disease field) Study subjects Design and method Key finding and limitation

Su et al. (2019) [18] 
(Bone and  
mineral disorders)

-�5,977 Community-dwelling 
American men aged 65 or 
older (MrOS cohort) with 
10-year follow-up data

-�Internal validation with 10-
fold cross-validation

-�Aim: to develop a risk classifi-
cation model for hip fracture 
prediction in community-dwell-
ing men 

-�Reference label: incident hip 
fracture validated by a central-
ized physician using radiology 
reports or X-rays

-�Comparator: FRAX hip fracture 
risk >3.0%

-�Methods: supervised learning; 
classification and regression 
tree (CART) analysis 

Key implications
-�Simple CART model with age and bone den-
sity showed similar performance in predict-
ing incident hip fracture compared to the 
FRAX risk estimator as the current standard 
(AUROC 0.71 vs. AUROC 0.70).

-�Simple classification by age and BMD may 
have a similar predictive performance to the 
FRAX hip fracture risk category.

Limitations
-�Potential of overfitting
-�Limited statistical power for comparison of 
discrimination statistics due to low incidence 
of hip fracture. 

Basu et al. (2018) 
[19] (Diabetes 
and related  
disorders)

-�10,251 ACCORD trial  
participants aged 40 to 79 
years with type 2 diabetes, 
HbA1c 7.5% or higher, or 
cardiovascular diseases or 
risk factors, those who ran-
domized to target HbA1c 
<6.0% (intensive) vs. 
7.0%–7.9% (standard 
group)

-�Aim: to identify subgroups with 
a heterogeneous treatment effect 
in response to intensive glycemic 
therapy

-�Reference label: treatment ef-
fect defined as the absolute dif-
ference in the all-cause mortali-
ty rate between the intensive 
and standard therapy groups

-�Comparator: not applicable
-�Methods: supervised learning; 
gradient forest analysis

Key implications
-�Compared to 3.7% increased mortality by in-
tensive vs. standard therapy in group 4, group 
1 showed a 2.3% mortality reduction in the 
intensive therapy group (95% CI, –0.2% to 
4.5%), which made the obvious contrast with 
the main result from the study.

-�Identified characteristics of patients who may 
have benefited from intensive glycemic ther-
apy (younger individuals with relatively low 
hemoglycosylation index)

-�Offered an example to find, clinically mean-
ingful subgroups with heterogeneous treat-
ment effects using data from randomized  
trials.

Limitations
-�Post hoc analysis of a single trial that was 
conducted before the development of recent 
diabetes medications with cardiovascular 
benefits.

Fan et al. (2019) 
[20] (Pituitary 
diseases)

-�Retrospective cohort of 668 
patients with acromegaly 
included age, gender,  
hypertension, blood  
glucose, laboratory values, 
maximal tumor diameter, 
bilateral Knosp grade based 
on magnetic resonance  
imaging findings, and  
surgical methods

-�Internal validation set 
(n=134) 

-�Aim: to develop an ML model 
for preoperative prediction of 
transsphenoidal surgery  
response in patients with  
acromegaly

-�Reference label: remission  
(at 3 months after surgery, either 
nadir growth hormone <4 ng/mL 
after oral glucose tolerance test 
or GH <1.0 ng/mL in a random 
sample with normal IGF-1  
levels)

-�Comparator: Knosp grade
-�Methods: supervised learning; 
random forest, logistic regres-
sion, logistic generalized addi-
tive models, gradient boosting 
decision tree, gradient boosting 
decision tree, adaptive boosting, 
extreme gradient boost model

Key implications
-�The ML model predicted remission after  
surgery better than standard Knosp grade 
(AUROC 0.82 vs. 0.71).

-�Showed an exemplary case of applying  
various types of ML algorithms in endocrine 
diseases with relatively low frequency.

Limitations
-�Single-center study
-�Limited by short study follow-up duration 
(remission determined at 3 months)

-�Omitted radiomics features 

(Continued to the next page)
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Table 2. Continued

Task Study (disease field) Study subjects Design and method Key finding and limitation

Zaborek et al. 
(2019) [21]  
(Thyroid  
diseases)

-�Retrospective cohort of 598 
patients who underwent to-
tal or completion thyroidec-
tomy with pathology show-
ing benign thyroid disease

-�Initiated levothyroxine at 
1.6 μg/kg/day, with subse-
quent dose titration at 6- to 
8-week intervals

-�Internal validation with 10-
fold cross-validation

-�Aim: to develop an ML-based 
levothyroxine dosing scheme 
after total thyroidectomy to 
achieve euthyroidism

-�Reference label: electronic 
health record-based euthyroid 
dosing

-�Comparator: standard weight-
based dosing

-�Methods: supervised learning; 
support vector machine,  
Bayesian recurrent neural  
network, decision trees, random 
forests, ordinary least squares 
regression, Poisson regression, 
gamma regression, ridge regres-
sion, LASSO

Key implications
-�The predictive accuracy of the dose-sugges-
tion algorithm was modest (64.8%), which 
was better than standard weight-based dosing 
(51.3%).

-�Provided an ML algorithm to suggest dosing 
scheme of levothyroxine after total thyroid-
ectomy, with better accuracy across body 
mass index levels

Limitations
-�Limited to dataset from a single institution; 
need further validation in an external dataset

-�Missing information regarding genetic  
factors and drug compliance; may hinder  
applicability to the real-world setting.

Oroojeni Moham-
mad Javad et al., 
(2019) [5]  
(Diabetes and  
related disorders)

-�Medical records of 87  
patients with type 1 diabetes 
from Mass General Hospi-
tal; data for each patient’s 
visits over a 10-year period 
(training set) between 2003 
to 2013; HbA1c, body mass 
index, activity level,  
alcohol usage status, insulin 
(Lantus) dose

-�External validation with 60 
cases

-�Aim: to explore an effective re-
inforcement learning frame-
work for determining the opti-
mal long-acting insulin dose for 
patients with type 1 diabetes

-�Reference label: physician-pre-
scribed insulin dose

-�Comparator: not applicable
-�Methods: reinforcement learn-
ing; Q-learning with reward 
function set from HbA1c status 
at the visit and change of 
HbA1c from the past visit

Key implications
-�The physician-prescribed insulin dose was 
within the dosing interval recommended by 
the Q-learning algorithm in 88% of test  
cases.

-�A proof-of-concept study to provide clinical 
decision support for determining insulin dose 
in patients with type 1 diabetes, by applying 
reinforcement learning algorithm

Limitations
-�Limited by omitting lifestyle information  
regarding diet, stress, and medication  
adherence

-�A relatively small training set
-�Only one type of insulin (Lantus) was  
examined in the model.

Translational 
research

Liu et al. (2020) 
[22] (Diabetes 
and related  
disorders)

-�20 Drug-naive individuals 
with prediabetes (discovery 
cohort)

-�Determined exercise  
responders and non- 
responders after 12-week 
high-intensity exercise 
training

-�Collected pre- and post- 
exercise period feces to  
analyze gut microbiota  
profile

-�Internal validation with  
10-fold cross-validation

-�Aim: to find an ML model for 
predicting exercise responsive-
ness determined from exercise-
induced alterations in the gut 
microbiota 

-�Reference label: responders  
defined as a decrease in the  
homeostatic model assessment 
of insulin resistance greater than 
two-fold technical error

-��Comparator: not applicable
-�Methods: supervised learning; 
random forest model

Key implications
-�The ML model identified 14 microbiome 
species and 15 metabolites from human feces 
were able to predict exercise responsiveness 
(AUROC 0.75 in the validation set).

-�Provide an example of applying ML  
principles to human-to-mice translational 
study based on microbiome dataset

Limitations
-�Relatively small sample size
-�Limited to Chinese males only
-�Need further validation in different  
population set

(Continued to the next page)
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Table 2. Continued

Task Study (disease field) Study subjects Design and method Key finding and limitation

Williams et al. 
(2019) [23]  
(Miscellaneous)

-�Prospectively collected data 
from archived samples, 
clinical data, with approxi-
mately 85 million protein 
measurements in 16,894 
participants from various 
cohorts including UK 
Whitehall II, Fenland, 
HUNT3, US Covance, 
HERITAGE Family studies

-�70% Derivation set (with 
five repeats of 10-fold 
cross-validation), 15%  
refinement set, and 15% 
validation set for large 
(thousands) cohort

-�80% Derivation set (with 
10-fold cross-validation); 
20% validation set for 
smaller dataset (hundreds)

-�Aim: to develop plasma protein-
phenotype models for 11 differ-
ent health indicators (focusing 
on percentage body fat and inci-
dent cardiovascular events as 
outcomes)

-�Reference label: percentage 
body fat measured by DXA;  
incident cardiovascular events 
ascertained in each cohort

-�Comparator: not applicable
-�Methods: supervised learning; 
dimensionality reduction by 
false-recovery rate-corrected P 
values, proportional hazards 
elastic net models

Key implications
-�The ML algorithm found proteins associated 
with body fat percentage (leptin, FABP, 
SFRP4) and CV events (gelsolin, antithrom-
bin III, sTREM-1).

-�Reveals the potential of ML algorithm  
application to find novel proteomics-based 
biomarkers in large-scale, well-established 
cohorts.

Limitations
-�Caucasian bias in some cohorts; may not be 
generalizable to different populations.

-�Need future investigation for examining the 
sensitivity of current research findings for 
longitudinal changes in health status or risks

Shomorony et al. 
(2020) [6]  
(Miscellaneous)

-�1,385 Data features using a 
multimodal dataset collect-
ed from 1,253 individuals 
including data of whole- 
genome sequencing, micro-
biome sequencing, global 
metabolome, insulin resis-
tance, whole body and brain 
magnetic resonance imag-
ing, bone densitometry, 
computed tomography 
scans, routine clinical labo-
ratory tests, family history 
of disease and medication, 
and anthropometric  
measurements

-�External validation set: 
1,083 individuals from a 
separate cohort (TwinsUK 
registry)

-�Aim: to identify multimodal 
biomarker signatures of health 
and disease risk using the unsu-
pervised approach 

-�Reference label: not applicable
-�Comparator: not applicable
-�Methods: unsupervised learn-
ing; Louvain community detec-
tion, graphical LASSO for net-
work analysis, Markov network 
analysis

Key implications
-�1-stearoyl-2-dihomo-linolenoyl-GPC and 
1-(1-enyl-palmitoyl)-2-oleoyl-GPC were 
identified as novel biomarkers for diabetes, 
whereas cinnamoylglycine showed a novel 
association with lean mass percentage.

-�Provided an example of applying unsuper-
vised learning algorithms to find novel  
associations and biomarker signatures associ-
ated with health and disease statues in a large, 
multimodal dataset

Limitations
-�Underpowered to detect the effects of poly-
genic risk scores based on common variants 
for certain traits (explaining a relatively small 
fraction of the phenotypic variance)

ML, machine learning; AUROC, area under the receiver operating characteristic curve; CT, computed tomography; BMD, bone mineral density; DXA, 
dual-energy X-ray absorptiometry; IGF-1, insulin-like growth factor-1; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; 
LC-MS/MS, liquid chromatography-mass spectrometry; ACCORD, Action to Control Cardiovascular Risk in Diabetes; ALLHAT, Antihypertensive and 
Lipid-Lowering Treatment to Prevent Heart Attack Trial; WATCH-DM, Weight, Age, hyperTension, Creatinine, High-density lipoprotein cholesterol, 
Diabetes control, and Myocardial infarction; MrOS, The Osteoporotic Fractures in Men; FRAX, Fracture Risk Assessment Tool; CI, confidence interval; 
GH, growth hormone; LASSO, least absolute shrinkage and selection operator; HUNT3, the third Nord-Trøndelag Health Study; HERITAGE, HEalth, 
RIsk factors, exercise Training And GEnetics; FABP, fatty-acid-binding proteins; SFRP4, Secreted frizzled-related protein 4; CV, cardiovascular; 
sTREM-1, soluble triggering receptor expressed on myeloid cells-1; GPC, glycerophosphocholine.  
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Finding novel disease clusters and associations
Although unsupervised learning has been utilized less often than 
supervised learning for diagnosis and screening, it may be help-
ful to find novel clusters and associations within a given dataset. 
Kruse et al. [16] applied unsupervised hierarchical agglomera-
tive clustering to find groups with high and low risks of fracture 
in women from a national Danish patient database based on 
BMD, medication reimbursement, anthropometric characteris-
tics, and comorbidities. Among the nine clusters that were iden-
tified, four clusters classified as corresponding to a high risk of 
fracture showed heterogeneous compliance to antiresorptive 
treatments, even with a similar distribution of BMD. The age of 
60 years was the earliest time point that allowed a clear discrim-
ination between high and average fracture risk. Altogether, that 
study provided novel insights regarding characteristics related 
to compliance with bone medications and the optimal age to 
recommend dual-energy X-ray absorptiometry screening.

Risk prediction
Clinical outcomes
Accurately predicting clinical outcomes enables an individual-
ized approach to treatment strategy and monitoring. The Weight, 
Age, hyperTension, Creatinine, High-density lipoprotein cho-
lesterol, Diabetes control, and Myocardial infarction (WATCH-
DM) score was developed to predict heart failure risk among 
patients with type 2 diabetes using ML algorithms based on the 
Action to Control Cardiovascular Risk in Diabetes (ACCORD) 
trial dataset, and showed good predictive performance with an 
external validation set (the Antihypertensive and Lipid-Lower-
ing Treatment to Prevent Heart Attack Trial [ALLHAT]) [17]. 
Su et al. [18] found that a simple model including only age and 
BMD selected by classification and regression tree analysis per-
formed similarly to Fracture Risk Assessment Tool (FRAX) 
categories as a reference tool for predicting incident hip fracture 
in a large cohort of community-dwelling older men.

Treatment responses
ML principles can be used to find specific subgroups with a het-
erogeneous response to treatment. Basu et al. [19] re-analyzed 
the ACCORD trial data to find subgroups with different treat-
ment effects in response to intensive glucose control compared 
to standard therapy. Although intensive glucose control was as-
sociated with increased mortality in the ACCORD trial pub-
lished in 2008, their post hoc analysis identified that a subgroup 
of patients experienced a survival benefit from intensive treat-
ment, and the proportion of patients in the subgroup that made 

the main contribution to increased mortality in the trial was rela-
tively small. This study provides an example of the utility of 
ML in dissecting treatment responses, with the potential for a 
more tailored approach both for interpreting results from previ-
ous trials and for applying therapeutic strategies according to 
individual status. For the prediction of treatment response in pa-
tients with acromegaly, anthropometric and biochemical data 
with imaging features were combined in an ML model that 
achieved better prognostication than the reference prediction 
tool [20]. Good ML models may have the potential to provide 
guidance for dose adjustment, particularly in patients with 
chronic conditions requiring the indefinite replacement of cer-
tain hormones, as in patients who receive thyroid hormone re-
placement after total thyroidectomy or in type 1 diabetes pa-
tients who receive insulin replacement. Zaborek et al. [21] built 
a supervised ML model to guide levothyroxine dose adjustment, 
which showed a fair improvement of predictive accuracy com-
pared to the current standard of weight-based dosing. A rein-
forcement training algorithm has been applied to guide the opti-
mal dosing of long-acting insulin in patients with type 1 diabe-
tes [5]. Although the results are preliminary, these studies illus-
trate the ongoing efforts made by endocrinology researchers to 
improve patient care by achieving better predictions of the dis-
ease course and response to treatment.

Translational research
ML algorithms have become a crucial methodology in transla-
tional research with the rise of the multi-omics approach, which 
produces abundant datasets with numerous features to be ac-
counted for. Liu et al. [22] used an ML algorithm to find key 
microbiota species and metabolites highly related to exercise re-
sponsiveness in humans. Human exercise responders and non-
responders had different patterns of exercise-induced alterations 
in the gut microbiota, and fecal microbial transplantation from 
responders to mice conferred the benefits of exercise on insulin 
sensitivity. A random forest algorithm was used to select 19 fea-
tures (14 species and 15 metabolites) showing a major differ-
ence between the exercise-responsive and nonresponsive groups 
among thousands of microbiota species and metabolites, and 
these features have the potential to be utilized as biomarkers for 
personalized responses to exercise. Another study aimed to dis-
cover proteomics-based biomarkers for 11 health outcomes, in-
cluding percentage body fat, lean mass, current smoking, and 
risk of incident cardiovascular outcomes [23]. By combining 
large, well-established, community-based cohort databases and 
samples, the authors took a comprehensive approach to find 
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highly predictive proteins and related models using elegant ML-
based techniques, although the actual applicability of these find-
ings needs to be validated in long-term studies in different pop-
ulations. Unsupervised learning was also applied to find signifi-
cant associations and interactions among multimodal datasets, 
providing novel insights for potential metabolite biomarkers of 
diabetes and sarcopenia [6]. 

CONCLUSIONS 

High-quality ML-based endocrinology research, like research in 
other medical fields, requires a clear, testable hypothesis based 
on unmet clinical needs, combined with access to a dataset that 
provides sufficient information to solve the problem. As Kim et 
al. [30] clearly addressed in a previous issue of this journal, the 
ability to access a large volume of medical data itself does not 
necessarily enable (or mandate) an ML-based approach due to 
the inherently unrefined, heterogeneous nature of most current 
medical datasets. Well-designed, timely study designs based on 
clinical expertise, an emphasis on using a standardized approach 
to control data quality (beyond a focus on data quantity alone 
and methodological complexity), collaboration and open com-
munication between clinical domain experts and ML engineers, 
developing interpretable ML models in contrast to the black-box 
nature of some algorithms, and creating a supportive environ-
ment with input from government, profit or non-profit sectors, 
study participants, and patients are the core prerequisites for the 
promising changes that are expected in clinical practice in the 
field of endocrinology and metabolism through the convergence 
of artificial and human intelligence [31]. The role of endocrinol-
ogists as domain experts will remain crucial for achieving these 
prerequisites by examining the true clinical impact of flourish-
ing ML-based research products in prospective studies and by 
ensuring the scientific rigor needed to the benefits of this con-
vergence for patients who suffer from endocrine diseases. 
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