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Fasting plasma glucose (FPG) has been recognized as
an important indicator for the overall glycemic state
preceding the onset of metabolic diseases. So far, most
indentified genome-wide association loci for FPG were
derived from populations with European ancestry, with
a few exceptions. To extend a thorough catalog for FPG
loci, we conducted meta-analyses of 13 genome-wide
association studies in up to 24,740 nondiabetic subjects
with East Asian ancestry. Follow-up replication analyses
in up to an additional 21,345 participants identified three
new FPG loci reaching genome-wide significance in or
near PDK1-RAPGEF4, KANK1, and IGF1R. Our results
could provide additional insight into the genetic varia-
tion implicated in fasting glucose regulation.

Fasting plasma glucose (FPG) levels are tightly regulated as
a part of metabolic homeostasis (1). Failure in blood glu-
cose regulation can lead to elevated FPG levels, represent-
ing an independent risk factor for type 2 diabetes (T2D)
and a predictor of cardiovascular disease (2,3). The fasting
glucose level is a moderately heritable trait with the heri-
tability around 30% (4–6). A considerable number of ge-
netic determinants influencing fasting glucose levels has
been identified from numerous genetic studies in the
past few years. The total heritability of fasting glucose
levels, however, is yet to be fully explained.

To date, 39 genetic loci harboring variants associated with
FPG have been identified from genome-wide association

(GWA) studies and GWA meta-analyses that were con-
ducted in populations of European ancestry (7,8). The ge-
netic basis of glycemic regulation has not been fully
explored in non-European populations, with only one study
in East Asians that identified a single locus associated with
FPG (rs895636 at the SIX2-SIX3 loci) (9). Considering dif-
ferences in the allele frequencies and linkage disequilibrium
(LD) structures among ethnic groups, large-scale genetic stud-
ies in populations of non-European ancestries may increase
the chance to detect additional novel genetic loci for FPG.

GWA meta-analyses have an advantage to identify
genetic variants with small effect size and low allele
frequency that were hardly detected in a single GWA
study (10). Therefore, in this study, we aimed to identify
novel loci influencing fasting glucose variation by con-
ducting GWA meta-analysis in East Asian populations.
We conducted a two-stage association study, comprising
a discovery set (stage 1) of 24,740 individuals from the
Asian Genetic Epidemiology Network (AGEN) and follow-
up de novo genotyping replication set (stage 2) of 21,345
individuals from independent East Asian populations
(Table 1 and Supplementary Fig. 1).

RESEARCH DESIGN AND METHODS

Study Subjects
Stage 1 subjects were drawn from 13 GWA studies
participating in the AGEN consortium, which was organized
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in 2010 to enable GWA studies of metabolic traits such
as diabetes, hypertension, and obesity. These 13 studies
consist of 24,740 subjects from the Korea Association
REsource (KARE) project, Health Examinee shared
control study (HEXA), Cardiovascular Disease Associa-
tion Study (CAVAS), three Singapore Prospective Study
Programs (SP2), Shanghai Breast Cancer Study (SBCS),
Shanghai Men’s Health Study (SMHS), Genetic Epide-
miology Network of Salt Sensitivity (GenSalt), Cardio-
metabolic Genome Epidemiology (CAGE) Network, Cebu
Longitudinal Health and Nutrition Survey (CLHNS),
Cardiometabolic Risk in Chinese (CRC) study, and the
Korean Cancer Prevention Study-II (KCPS-II). Stage 2

included 21,345 subjects from five independent studies
for de novo replication analysis. Each study obtained
approval from the appropriate institutional review
board, and all participants provided written informed
consent across the studies. Information including the
study design and descriptive characteristics of each par-
ticipating study is outlined in Supplementary Table 1
and the Supplementary Data.

Phenotype Measurement
Fasting glucose levels were measured from whole blood,
plasma, or serum for each cohort. Fasting whole-blood
glucose levels were multiplied by 1.13 to convert to FPG
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levels. Anthropometric measurements, such as BMI, were
obtained by standardized procedures.

Genotyping, Imputation, and Quality Control
Genotyping and quality control methods for individual
studies are outlined in Supplementary Table 2. A variety
of genotyping platforms from Affymetrix or Illumina were
applied to each individual GWA analysis to obtain the
entire genome scan data. Imputation of genotypes to
the HapMap Phase 2 (CHB + JPT except for CLHNS,
which used HapMap CHB + JPT + CEU) as the reference
panel was carried out using the programs MACH, IMPUTE,
or BEAGLE. Imputed single nucleotide polymorphisms
(SNPs) with high imputation quality (proper-info .0.5
for IMPUTE and Rsq .0.3 for MACH and BEAGLE)
were used for subsequent association analysis. Genotyp-
ing for de novo replication in stage 2 was carried out by
TaqMan, Multiplex PCR invader assay, or Sequenom
MassArray method.

Statistical Analyses
Only nondiabetic individuals were tested for FPG by
excluding diabetic patients, individuals using antidiabetes
medicine, and individuals with fasting glucose $7 mmol/L.
The rank-based inverse normal transformed FPG was
tested for the association analyses to improve the normal-
ity of the FPG distribution and alleviate the impact of
outliers. Association analyses were adjusted for sex and
BMI (plus recruitment area in KARE and National Center

for Global Health and Medicine [NCGM] studies) to com-
pensate for multivariate linear regression analyses in
the additive genetic mode. For the family design of the
GenSalt study, family relationship was adjusted using a
linear mixed model in which family identification was used
as a random effect. Association analyses were performed
using the programs SNPTEST, Mach2qtl, or PLINK (Sup-
plementary Table 2). The meta-analysis was conducted
using an inverse-variance method assuming fixed effects
with a Cochran Q test to assess heterogeneity between the
13 studies. All meta-analyses were performed using the
METAL software, and study-specific genomic control ad-
justment was applied. Genomic control inflation factor (l)
was estimated from the median of the x2 statistic divided
by 0.456. The l for the meta-analysis was 1.06 (and was
less than 1.029 for individual studies), indicating that the
results seen in stage 1 were probably not the result of
population stratification. The Manhattan plot showing
the negative log P value distribution for stage 1 meta-
analysis results was generated by WGAViewer software.
The quantile-quantile plot of trend test P values showed
deviations from the null distribution due to the strong
associations observed for FPG. Regional association plots
from genome-wide meta-analysis results were generated
using the LocusZoom software.

Gene Relationships Across Implicated Loci Analysis
To understand gene relationships across implicated loci,
a Gene Relationships Across Implicated Loci (GRAIL)

Table 1—Study design and samples

Representative Study Ethnic group Genotyping method Sample size

Stage 1 (discovery) KNIH KARE Korean Affymetrix 5.0 7,696
HEXA Korean Affymetrix 6.0 3,385
CAVAS Korean Illumina 1M 3,205

NUS SP2(1) Chinese Illumina 1M 933
SP2(2) Chinese Illumina 610K 1,044
SP2(3) Chinese Illumina 550K 305

VU/SCI SBCS Chinese Affymetrix 6.0 2,017
SMHS Chinese Affymetrix 6.0/Illumina 660K 291

Tulane University GenSalt Han Chinese Affymetrix 6.0 1,832
NCGM CAGE Japanese Illumina 550K 756
UNC CLHNS Filipino Affymetrix 5.0 1,624
Harvard University CRC Chinese Illumina 610K 733
Yonsei University KCPS-II Korean Affymetrix 5.0 919
Stage 1 total 24,740

Stage 2 (de novo replication) KNIH Health2 Korean TaqMan 5,277
RIKEN/UT BBJ Japanese Multiplex PCR invader assay 1,883
SJTU SJTUDS Han Chinese MassARRAY 3,412
Ehime University JMGP Japanese TaqMan 10,299
CUHK CUHKS Han Chinese Sequenom MassARRAY 474
Stage 2 total 21,345

Overall AGEN AGEN-FPG East Asian 46,085

Stage 1 includes 13 studies that provided full GWA analysis results for FPG. Stage 2 includes five studies that provided de novo
replication results of SNPs selected from stage 1. BBJ, BioBank Japan; CUHK, Chinese University of Hong Kong; CUHKS, Chinese
University of Hong Kong Diabetes Study; Health2, Health2 Study; JMGP, The Japanese Millennium Genome Project; KNIH, Korea
National Institute of Health; NUS, National University of Singapore; SCI, Shanghai Cancer Institute; SJTU, Shanghai Jiao Tong Uni-
versity; SJTUDS, Shanghai Jiao Tong University Diabetes Study; UNC, University of North Carolina; UT, The University of Tokyo; VU,
Vanderbilt University.
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analysis was conducted as described previously (11,12). A
total of 43 FPG genes comprising 40 previously known
genes (Supplementary Table 3) and 3 genes newly impli-
cated in this study (Table 2) were included for the anal-
ysis. PubMed abstracts published after December 2006
were not included for the analysis to reduce confounding
by results from FPG GWA studies.

RESULTS

Our stage 1 meta-analyses from 24,740 AGEN subjects
revealed signals showing strong evidence for FPG associ-
ations. Most of them were in known FPG loci (Fig. 1).
Twenty-three of 40 FPG loci that were detected mostly
in the European populations were replicated in our stage
1 meta-analyses (with P, 0.05 and a consistent direction
of effect) (Supplementary Table 3). Of these, 11 (GCKR,
SIX2-SIX3, G6PC2-ABCC11, CDKAL1, TMEM195, GCK,
SLC30A8, GLIS3, CDKN2A/B, MTNR1B, and FOXA2)
reached genome-wide significance and showed similar di-
rection of association as in the original reports (Table 2).

After removing signals within previously identified
FPG loci, SNPs showing the deviation between the
distributions of the observed and expected P values
were still observed on the quantile-quantile plot (Supple-
mentary Fig. 2). Those signals likely represent new FPG
loci that require validation in additional investigations.
For follow-up replication, we selected three independent
signals (i.e., with pairwise LD statistics r2 ,0.2 and minor
allele frequency $0.05 within a 500-kb window of the
genomic region) from the stage 1 meta-analysis based
on our arbitrary inclusion threshold (P , 5 3 1027),
heterogeneity P value .0.01, and at least 10 studies hav-
ing been included in the meta-analysis. To consolidate
genetic associations for the promising three new variants,
we conducted de novo genotyping. The stage 2 replication
analysis (five studies, up to 21,345 subjects) showed a sta-
tistically significant association of these three variants
with FPG and the same direction of association as in
the stage 1 analysis results (Table 2).

An overall meta-analysis of the total samples (18
studies, up to 46,085 subjects) identified three novel
loci for FPG reaching genome-wide significance (P , 5 3
1028). These FPG-associated loci were located close to
PDK1-RAPGEF4 (rs733331, Poverall = 6.98 3 10211),
KANK1 (rs10815355, Poverall = 1.26 3 1029), and IGF1R
(rs2018860, Poverall = 2.99 3 1028) (Table 2 and Fig. 2).
The newly identified loci in our study showed less signif-
icant association in European ancestry subjects studied by
the MAGIC investigators (P , 5 3 1023) (2). Notably,
two of the new loci (near PDK1-RAPGEF4 and KANK1)
have very low minor allele frequencies (,0.01) in Euro-
peans (Supplementary Table 4).

DISCUSSION

SNP rs733331 is located on chromosome 2q31 between
PDK1 (pyruvate dehydrogenase kinase (PDK) isozyme 1)
and RAPGEF4 (Rap guanine nucleotide exchange factor 4).
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Pyruvate dehydrogenase, a mitochondrial multienzyme
complex, is one of the important key enzymes responsible
for glucose homeostatic regulation. The enzyme activity
by cyclic de-phosphorylation cascades is regulated by a specific
PDK. A previous functional study reported that liver-
specific Pdk1 deficiency in mice was associated with
postprandial hyperglycemia (13). In addition, a potential
regulator of PDK1, the pancreas-specific miR-375, was
directly implicated in the regulation of glucose-induced
biological responses (14). RAPGEF4 has a role in initiating
insulin secretion and mediating cAMP-dependent pulsatile
insulin release (15).

The rs10815355 signal on chromosome 9p24 is located in
an intron of KANK1 (KN motif and ankyrin repeat domains
1), which has a role in the formation of the cytoskeleton by
regulating actin polymerization. KANK1 negatively regulates
the formation of actin stress fibers and cell migration
through the inhibition of r-associated kinase activity (16).

Recently, the population-based Metabolic Syndrome in
Men (METSIM) study conducted exome array analysis
in 8,229 nondiabetic Finnish males (17). This study demon-
strated that genetic variant rs3824420, encoding Arg667His
in KANK1 and located 90 kb from rs10815355, was associ-
ated with circulating proinsulin levels and related insulin
processing and secretion traits (17). In the METSIM
study, rs10815355 also exhibited association with pro-
insulin levels at GWA significance (Supplementary Table
5). The substantial attenuation in association for both
SNPs in conditional analysis suggests that rs10815355
likely represents the same signal as rs3824420 for
the proinsulin levels. This result is supported by the
strong LD (r2 = 0.787, D’ = 1.000 [K.L.M. and METSIM
scientists, unpublished data]) calculated by the genotypes
in METSIM (Supplementary Table 5).

Both rs10815355 and rs3824420 were not significantly
associated with fasting glucose levels in METSIM (Supple-
mentary Table 5). On the other hand, in addition to the
strong association of rs10815355 for FPG, our AGEN stage
1 meta-analysis (seven studies, up to 11,822 subjects) dem-
onstrated that rs3824420 was also marginally associated
with fasting glucose (Pstage 1 = 0.035). Considering the sub-
stantial differences in SNP minor allele frequency and

LD between the two ethnic groups, these discrepancies be-
tween AGEN and METSIM are not surprising (Supplemen-
tary Table 6). It is known that genetic variants with
low allele frequency are hardly detected in the GWA stud-
ies (18).

Unlike the case of FPG, both rs10815355 and rs3824420
were not associated with the insulin-related traits such as
fasting insulin and HOMA of b-cell function in one of the
AGEN stage 1 studies (KARE, up to 7,183 subjects) (Sup-
plementary Table 7). To detect the evidence of association
for these traits in the East Asian populations, meta-
analysis combining all AGEN stage 1 data (thus improv-
ing power by increasing the sample size) should be carried
out (Supplementary Table 7).

Although two SNPs, rs10815355 and rs3824420, are
weakly linked in East Asians (r2 = 0.087, D’ = 0.362 in
HapMap CHB/JPT), the association strength of one SNP
was moderately diminished after adjustment for the other
SNP in our conditional analyses using data from three
AGEN stage 1 studies, KARE, HEXA, and CAVAS (up to
12,178 subjects) (Supplementary Table 8). These results
plausibly indicate the functional relevance of rs10815355
to rs3824420 in the KANK1 region for FPG association in
the East Asian populations. Further study will be needed
to determine whether these signals share an underlying
unrevealed causal variant for FPG levels. Other condi-
tional analyses demonstrated that association signals of
rs10815355 and rs3824420 for FPG remained after ad-
justment for the insulin-related traits (Supplementary Ta-
ble 9). These results suggested that the FPG association of
the KANK1 region was not simply secondary to the asso-
ciation for insulin-related traits in our study.

SNP rs2018860 in 15q26 is located in an intron of
IGF1R (insulin-like growth factor receptor), which is in-
volved in cell growth, differentiation, migration, and
metabolism and is a major aspect of glucose homeosta-
sis (19). IGF1R, the protein encoded by IGF1R, has ty-
rosine kinase activity that stimulates growth in many
different cell types and blocks apoptosis in multiple sig-
naling pathways (20,21). Recent GWA analyses detected
the association of IGF1R with higher serum uric acid
concentrations in European populations (22). Serum

Figure 1—Genome-wide Manhattan plot of the meta-analysis for FPG in East Asian populations. Shown are the –log10 P values using the
trend test for SNPs distributed across the entire autosomal genome (NCBI build 37). The red dots at each locus indicate the signals with
P < 1026 detected in the GWA meta-analysis. Approximately 2.4 mol/L SNPs that were present in at least 13 stage 1 studies were used to
generate the plot.
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uric acid levels as a potential biomarker have been
reported in association with impaired glucose metabo-
lism (23). In addition, a two-stage study reported a pu-
tative role of IGF1R variants on insulin resistance and
arterial hypertension (24). Expression of a dominant-
negative IGF1R in muscle leads to severely impaired
insulin-mediated glucose uptake (25). b-Cell2specific
knockout of IGF1R results in hyperinsulinemia and im-
paired glucose tolerance (26). IGF1R is involved in me-
diating GLP-1 increase in glucose competence and
proliferation on the b-cell (27).

Given the knowledge that the substantial elevation of
FPG is one of the typical signs of T2D, we investigated the
relevance of the three new FPG signals to T2D risk from
AGEN-T2D meta-analysis data (11). None showed evidence
for association with T2D (Supplementary Table 10). These
results indicate that the three new variants influencing
FPG likely have limited impact on T2D risk, as exemplified
by MADD and SLC2A2 loci in the previous report (2).

We performed the GRAIL literature-based annotation
analysis (12) to investigate functional connectivity among
the three new FPG genes from this study and the 40 known

Figure 2—Regional association plots of three newly discovered FPG loci. A2C: The SNP positions are shown at the top and the regional
association results from the GWA meta-analysis are shown in the middle. The trend test 2log10 P values are shown for SNPs distributed in
a 0.8-Mb genomic region centered on the most strongly associated signal, which is depicted as a purple diamond for the combined stage 1
and 2 results. The locations of known genes in the region are shown at the bottom. The genetic information is from the Human Genome
hg19, and the LD structure is based on the 1000 Genomes East Asian Ancestry data (March 2012). chr, Chromosome.
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genes from previous studies (Supplementary Table 11).
The strongest connections were observed in biological
pathways, such as insulin secretion, circadian rhythm,
and carbohydrate digestion, along with the most frequently
connecting terms, including insulin, glucose, circadian, and
growth. The results highlighted biological functions of
newly identified loci in the regulation of glucose metabo-
lism (Supplementary Table 12 and Supplementary Fig. 3).

This study is the largest GWA study meta-analysis, to
our knowledge, conducted for FPG in East Asians. In
conclusion, our meta-analysis identified three novel loci
in or near the PDK1, KANK1, and IGF1R genes at genome-
wide significance levels. This study was also able to rep-
licate many of the FPG risk loci that were previously
established in Europeans. The identification of these
loci provides the possibility to further the functional
connection and the causal evidence in fasting glucose
regulation and related diseases.
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Appendix

The programs discussed in the RESEARCH DESIGN AND METHODS section are available
from the following Web sites: PLINK, http://pngu.mgh.harvard.edu/~purcell/plink;
WGAViewer, http://compute1.lsrc.duke.edu/softwares/WGAViewer; METAL, http://www
.sph.umich.edu/csg/abecasis/Metal/index.html; SNAP, http://www.broadinstitute.org/
mpg/snap; HapMap, http://hapmap.ncbi.nlm.nih.gov; LocusZoom, http://csg.sph
.umich.edu/locuszoom; GRAIL, http://www.broadinstitute.org/mpg/grail.
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