Abstract

Mechanism of the Potentiating Effect of Secretin-CCK on Rat Pancreas

Dong Ki Lee, M.D., Jun Myeong Kim, M.D., Sang Ok Kwon, M.D., Kyung Sun Park, M.D., *
Jae Bock Chung, M.D., ** Jin Kyung Kang, M.D. ** and Kyung Hwan Kim, M.D.

Department of Internal Medicine, Pharmacology*, Yonsei University Wonju College of Medicine, Wonju, Korea
Department of Internal medicine**, Pharmacology †, Yonsei University College of Medicine, Seoul, Korea

Background/Aims: The mechanism of secretin and CCK potentiation effect was evaluated in the dispersed pancreatic acini of rat. Methods: To observe the presence of potentiating effect of secretin and insulin on CCK, the amount of amylase release according to secretagogues were measured. The mechanism of the potentiating effect of secretagogues were studied by measuring the change of the intracellular amount of cAMP and IP3, and concentration of intracellular Ca++. Results: In the dispersed pancreatic acini, secretin potentiates the amylase release stimulated by 10^-11 and 10^-10M CCK-8. Insulin slightly increased the secretory response to secretin plus CCK-8, but with no statistical significance. Secretin or forskolin did not increase the intracellular IP3 accumulation stimulated by CCK-8. Also insulin had no influence on the intracellular IP3 accumulation stimulated by CCK-8 plus secretin. CCK-8 and A23187 significantly decreased the intracellular cAMP accumulation stimulated by secretin. But the insulin did not influence the intracellular cAMP accumulation stimulated by secretin plus CCK-8. Secretin alone did not increase the intracellular concentration of Ca++. Secretin and dibutyryl cAMP significantly increased the intracellular concentration of Ca++ stimulated by CCK-8. Conclusions: These results verify the presence of the potentiating effect of secretin but not insulin on CCK. Also the potentiating effect of amylase secretion by the simultaneous activation of the secretin and CCK was shown to be associated with increased intracellular Ca++ concentration, without a further elevation of intracellular IP3 or cAMP accumulation. (Korean J Gastroenterol 1997;29:380 - 393)

Key Words : Dispersed pancreatic acini, Secretin-CCK potentiating effect, IP3, cAMP, Ca++
이자 외분비에 관여하는 인자는 미주신경 반사 신경성 인자와 호르몬성 인자 2가지로 대별할 수 있다. 호르몬성 인자인 secretin과 cholecystokinin (CCK)은 사람들은 물론 쥐, 원숭이 등 각종 동물에서 이자 외분비를 억제시킨다. 이외에도 bombesin, substance P, neurotensin, insulin, epidermal growth factor (EGF), somatostatin 등이 이자 외분비 기능 조절에 관여하는 것으로 밝혀져 있으나 아직 이들의 정확한 역할은 규명되지 않고 있다. 1,9

이자 외분비의 세포내 기전은 일제히 Douglas10에 의하여 규명된 자극-분비연결(stimulus-secretion coupling)을 통하여 이루어지며, 이는 secretin과 CCK와 같은 분비자극 호르몬에 의해 생성된 세포 내 이자 전령 물질을 통해 이루어진다. 즉, 이자 신세포의 무스카린성 주유체나 CCK 주유체가 흡수되면 세포외 인지질이 가수분해되어 inositol 1,4,5-
triphosphate (IP3)와 diacylglycerol (DAG)과 같은 세 포내 전령 물질이 생성된다. IP3은 세포내 Ca++ 을 동원하고, DAG는 protein kinase C를 활성화시켜 이 자 효소 분비가 이루어진다. 한편 secretin이나 vaso-active intestinal polypeptide (VIP)는 intact acini에서 secretin 수용체와 결합하고 adenylate cyclase를 자 극하여 이자 신세포내의 cAMP를 8-30배 까지 증가 시킨다. 11,12 이와 같이 이자 분비 자극 호르몬인 secretin과 CCK는 이자 신세포의 각각 다른 수용체 에 결합하여 서로 다른 이자 전령 물질 체계에 의한 각각의 외분비 기능을 수행하고 있다.

Secretin은 이자 외분비중 수분과 전해질 분비를 촉진하며 CCK는 효소분해 분비를 촉진한다. 13 Secretin과 CCK의 작용중 특이한 것은 두 자극 호르몬을 동시에 투여하였을 때의 이자 외분비가 이들 두 호르몬 각각의 표준 분비분비의 합보다 많은 상승작용(potentiation)이 있다는 것이다. 이러한 생체에서의 secretin-CCK의 상승작용은 오래 전부터 알려져 왔다. 14,15 웅식침취 후 상승되는 혈중 농도에 해당하는 secretin을 외부에서 단독 투여했을 때는 이자 외분비 양이 그다지 뚜렷하지 않다.

이러한 현상은 인체나 개 등 동물에서 생리적 양의
secretin에 의한 이자분비는 CCK가 같이 존재하므로 상승되기 때문으로 설명된다. 15,16 또한 외부에서 약리학적 용량의 secretin 투여에 의한 이자 외분비 기능은 심장장상 내에서 성장 CCK의 분비를 향상시키는 L-phenylalanine의 투여로 증대된다. 17 최근 Jo 등 18은 내장성 CCK와 내장성 secretin이 상승작용으로 이자의 HCO3 분비를 향상시키는데 중요한다는 사실을 입증하였다.

Insulin은 이자 외분비를 직접 자극하는 분비자극 호르몬은 아니지만 이자의 외분비능을 촉진 조절하는 insulo-acinar axis의 중요한 물질로 알려져 있다. 18 Kamo와 Saito19는 insulin이 균위에서 CCK 자극에 의한 amylase 분비를 향상시키는 것을 보고하였으며 insulin 독이함체를 투여하면 음식 섭취후 이자 분비 변동이 차단되다고 하였다. 또한 생체내 실험이나 생체외 실험에서 자연발생 당뇨병20이나 약 물에 의해 당뇨가 초래된 쥐의 이자 외분비 기능 이 저하되며 이는 insulin 투여로 회복한다고 한다. 19,21,22 최근에는 의학생활뿐만 아니라 내장성 insulin24이 쥐에서 식후 이자 분비를 조절하는데 중요할 역할을 하는 것이 밝혀져, insulin도 CCK의 이 자 외분비에 대해 상승작용이 있음이 재확인된 바 있다.

이자 외분비에 대한 secretin-CCK의 상승작용은 직장관류 이자요령이나 생체내 실험에 의한 결과의 분석이며, insulin의 상승작용도 대부분 같은 방법에 의해 규명되어 왔다. 그러나 아직까지 이자 분비에 서 이러한 호르몬간의 상호 작용이 어떠한 기전으 로 이루어져지는지에 대한 세포수준에서의 규명은 미흡한 실정이다. Secretin과 CCK에 의한 상승작용은 이들 호르몬에 대한 이자 신세포 내 전령 물질간의 상호작용에 의한 것으로 생각된다. 이러한 효과는 이자 신세포의 수용체를 직접 자극하지 않고 제2 전령 물질을 증가시키는 Ca++ ionophore인 A23187과 cAMP derivatives, forskolin, cholela toxin 등을 이용한 실험에서도 확인됨이 있다. 25,27 그러나 아직 이들 secretin, CCK 등 분비자극 호르몬과 insulin과 같은 분비조절 물질이 이자 신세포의 이자 외분비에 있어 상승효과를 발휘하는데 있어서, 이자 전령 물질
대상 및 방법

1. 실험 재료

가. 실험 동물

실험 동물로는 1주일 이상 동물실 환경에 적응시키는 200g 안팎의 수컷 스파프(Dawley계)를 사용하였다. 실험 동물은 단백질 21.5%, 지방 3.5%, 칼슘 0.6%이상이 함유된 시판 원조용 동물사료로 사육하였다. 동물실은 오전 6시에 불이 들어 오고 오후 6시에 불이 거지게 함으로 인공 밤낮을 유지하였다.

나. 이자 선태포의 분리

흰쥐를 단두하여 화면시킨 후 이자를 적출하였다. 이자 선태포의 분리는 Anasah 등(1986)의 방법을 변형하여 시행하였다. 원조액의 조성은 25mM HEPES, 104mM NaCl, 4.7mM KCl, 1.2mM KH2PO4, 1.2mM MgSO4, 2.0mM CaCl2, 2mM Glutamine, 15mM glucose와 50X 필수 아미노산 용액 2%(v/v)이었으며, 이 원조액에 0.1% 우혈정 암부인, 0.012% soybean trypsin inhibitor를 첨가한 후 pH를 7.4로 고정하고 100% O2로 포화시키며 37°C로 유지하여 사용하였다. 조직소화(digestion)용 원조액과 세포내 Ca++ 농도 측정에 사용된 원조액은 2.0mM CaCl2로 구성하고, 소화용 원조액에는 collagenase를 50U/ml씩 첨가하였다.

분리과정을 간략히 설명하면 적출 이자 조직 1g 당 소화용 원조액 5ml를 21℃에서 사용하여 조직속으로 구석구석 주입한 후 소화 원조액에 담가 110회/분으로 혼들면서 37°C 항온수조에서 15분간 소화시켰다. 때 15분마다 신선한 효소 용액으로 바꾸어 주면서 총 45분간 소화시키고, 기존 완충액으로 세척한 후 pipette tip을 이용해 기계적 분해를 시켰다. 분쇄된 조직을 nylon mesh를 이용해 여과한 후, 기존완충액을 가하고 2,000g로 15분간 원심분리한 후 상층액을 제거하는 식으로 2번 세척하였다. 이렇게 분리된 선태포는 trypan blue dye exclusion test로 90% 이상의 생존율을 확인한 후 기존 완충액에 희석하여 실험에 이용하였다.

다. 사용 약물

2. 실험 방법

가. 단백 및 amylase 활성 측정

나. 분비 자극물질에 의한 amylase 유리

분리된 이자 선태포를 다시 기존 완충액에서 37°C로 70회/분으로 혼들려 항온수조에서 preincubation 시킨 후 2,000g로 15분간 원심분리한 후 상층액을 희석하여 양과 같은 이자 선태포를 1mg당 완충액 30ml에 부유시킨 후 사용하였다.

완충액에 부유시킨 분리 전북 선태포를 plastic vial에
최종용량 500ul가 되도록 분주 후 37℃에서 70회/분으로 혼들리는 항온 수조에서 30분동안 배양하여 세포액으로 유리되는 amylase 양을 측정하였다. Amylase-유리된 CCK, secretin의 의한 자극 유리 및 CCK의 secretin의 추가 유무, CCK+secretin에 insulin의 추가유무에 따른 자극유리를 판찰하였다. 자극유리에 사용되는 약 양의 분산 선회로 원 성숙액에서 화석이끼 polytron(setting 7번, 10초)을 이용해 기계적으로 분쇄시켜 amylase 총량을 측정하였다. 30분간 배양 후 Eppendorf microcentrifuge로 원심분리(11,000g, 30초)하여 상층액과 세포종으로 분리하였고, 상층액의 amylase 양을 측정하였다. 자극 후 유리된 amylase 양은 기초 유리에 의한 amylase 양을 제거한 자극에 의한 순수 amylase 유리 양으로 표시하였다. 순수 유리양은 자극에 의한 순수 amylase 유리 양을 자극 전 전체 설회로의 amylase 양에 대한 %로 표시하였다.

da. 세포내 IP3 측정

앞에서 분리한 분산 선회로 30분간 preincubation 후 원심분리(2,000g, 15초)하여 상층액을 걸어내고, 이자조직 1mg를 10ml의 원성숙액에 부유시킨 후 어리 농도의 CCK-8(10^-12~10^-8M), CCK-8+ secretin, CCK-8+ forskolin 및 CCK-8+ secretin+ insulin이 함유된 plastic vial에 최종용량 500ul가 되도록 분주하였다. 분주후 가볍게 흔들어 혼합해주고, 5조 후에 100ul의 ice-cold 20% perchloric acid를 넣고 염증속에 20분 방치하였다. 방치 후 4℃에서 2,000g로 15분간 원심분리한 후 상층액을 취해 600M HEPES 완충액을 포함하는 1.5M KOH로 중화시킨 후 Universal indicator를 사용하여 pH 7.5로 적정하였다. 적정이 끝난 후, 세포내 IP3의 양을 D-Myo-inositol 1,4,5-triphosphate(IP3)_3H assay system을 이용하여 측정하였다.

라. 세포내 cAMP의 측정

앞에서 분리한 분산 선회로 30분간 preincubation 후 원심분리(2,000g, 15초)하여 상층액을 걸어내고 이자조직 1mg을 30ml의 원성숙액에 부유시킨 후 어리 농도의 secretin(10^-12~10^-8 M), secretin+CCK-8, secretin+A23187 및 secretin+CCK-8+insulin이 담겨있는 plastic vial에 최종용량 500ul가 되도록 분주하였다. 분주 후 37℃에서 70회/분으로 혼들리는 항온 수조에서 30분간 배양한 다음 1ml의 ice cold ethanol(99.9%)을 가한 후 얼음에 10분간 방치하였다. 이후 11,000g로 5분간 원심분리 후 상층액은 취해 55℃에서 중탕하면서 N2 가스로 ethanol을 증발시켰다. 음은 pellet을 0.05M acette buffer 250ul에 녹인 다음 적당히 화석시킨 후, 세포내 cAMP의 양을 cAMP_[32] assay system을 이용하여 측정하였 다.

마. 세포내 유리 Ca++ 농도 측정

앞의 방법으로 원심 1바리에서 얻은 어리 부산 선회로 15ml의 세포 부유액을 만든 후 fura-2/AM을 5μM 되게 하고, 37℃의 온도하에서 30분간 배양하였다. 그후 원심분리로 상층액을 제거함으로 세포외역에 존재하는 어분의 fura-2/AM을 제거하였으며, 2회 세척후 15ml의 기본 완충액에 다시 부유시켰다. 설회로내 유리 Ca++ 농도 Fluorescence Spectrophotometer (F-2000, Hitachi Ltd., Tokyo, Japan)을 이용하여 fluorescence intensity를 지속적으로 측정하여 산출하였다. 일정한 속도로 회전하는 교반기의 cuvette내에 500ul의 세포 부유액을 넣고 37℃의 온도하에서 정량이 이루어지도록 약 5분정도 기다린 후, 어분과 자극을 하고 유리 Ca++ 농도의 변화를 측정하였다. 실험 결과 0.1% Triton X-100 및 10mM EGTA를 가하여 F_max(fluorescence maximum)와 F_min(fluorescence minimum)을 각각 구하였다.

Fura-2를 적석시킨 선회로 분비자극 물질 투여에 따른 세포내 Ca++ 농도를 파장 340nm 및 380nm로 0.5초 간격으로 변경해 자극 시키면서, 그에 의해 유발되는 형광신호를 510nm emission filter를 통해 측정하였다. 이때 Ca++와 결합한 fura-2 분자가(Ca++-fura-2 complex)는 340nm에 의해, 그리고 free form의 fura-2 분자는 380nm에 형광신호가 최대로 나타나기 때문에, 이들의 형광비를 아래의 식에 대입하여 세포내 유리 Ca++ 농도로 환산하였다.
여리 반응을 나타내는 농도는 모두 $10^{-10}M$이었다 (Fig. 1A).

Secretin 대신 forskolin $10^{-8}M$을 CCK-8에 첨가함으로 amylase 유리는 CCK-8 단독 투여군에서 보다 증가하였으나 통계적으로 유의하지 않았다 (Fig. 1B).

나. Insulin 투여에 따른 CCK-8 및 CCK-8+ secretin의 amylase 유리 반응의 변동

분산 선포조직의 CCK-8 농도 반응은 insulin $10^{-6}M$ 투여에 의해 별 변동이 없었다 (Fig. 2A). 또한 secretin $10^{-8}M$ 투여에 의한 CCK-8의 농도 반응

![Graph A](image)

![Graph B](image)

Fig. 1. Response of amylase release stimulated by CCK-8 according to (A) secretion($10^{-8}M$) or (B) forskolin ($10^{-8}M$) in dispersed pancreatic acini. Values shown are the percent of released amylase to the total amount of intracellular amylase of acini. Plus-minus values are means ± SE. Number of experiments in four. *p < 0.05 vs. control.
나. Secretin 또는 forskolin 투여에 따른 CCK-8의 IP3 반응의 변동

Secretin 10^{-7}M 처리로 분산 세포의 IP3 농도는 22.4±0.69pmol/mg protein으로 대조군과 별 차이가 없었으며, CCK-8 10^{-10}M 및 10^{-8}M에 secretin 10^{-7}M을 처리하여도 CCK-8 단독에 의한 세포내 IP3 증가와 통계적으로 유의한 차이는 없었다(Fig. 3A). 또한 secretin 대신 forskolin 10^{-5}M을 투여한 경우에도 CCK-8 단독 투여군과 세포내 IP3양의 차이는 없었다(Fig. 3C).

다. Insulin 투여에 따른 CCK-8+secretin의 cAMP 반응의 변동

분산 세포에 insulin 10^{-6}M을 첨가하였을 때 세포내 IP3 양은 29.0±2.7pmol/mg protein으로 대조군과 별 차이가 없었으며 CCK-8+secretin 반응 역시 insulin 투여에 따른 세포내 IP3 양의 증가는 관찰할 수 없었다(Fig. 3D).

3. 분비작용물질에 의한 세포내 cAMP의 변동
가. Secretin에 의한 cAMP의 반응곡선

분산 세포의 기초 cAMP 양은 18.5±6.3pmol/mg protein이었으며 secretin 10^{-12}, 10^{-11}, 10^{-10}, 10^{-9}, 10^{-8}M을 투여한 후 cAMP의 양은 17.9±5.2, 22.2±6.6, 27.7±8.7, 54.5±9.9, 68.4±12.5pmol/mg protein으로 유량 의존적으로 증가하였 다(Fig. 4A).

나. CCK-8 또는 A23187 투여에 따른 secretin의 cAMP 반응의 변동

CCK-8 10^{-10}M 처리로 분산 세포의 cAMP 농도는 29.9±4.9fmol/tube로 별 차이가 없었으며, secretin 10^{-3}M 및 10^{-4}M에 CCK-8 10^{-10}M을 처리하였을 때 cAMP 농도는 44.7±6.2, 25.1±1.5fmol/tube로 CCK-8을 처리하지 않았을 때의 55.3±1.7, 38.9±1.7fmol/tube보다 의의있게 낮았 다(Fig. 4B). 또한 secretin 10^{-3}M 농도에서 CCK-8 대신 A23187 10^{-6}M을 투여한 경우 세포내 cAMP 농도는 27.9±3.7fmol/tube로 secretin 단독 투여군의 44.3±0.99fmol/tube보다 의의있게 낮았다(Fig. 4C).
Fig. 3. Intracellular IP3 accumulation in dispersed pancreatic acini according to secretagogues. A. Intracellular IP3 accumulation according to CCK-8. B,C. Intracellular IP3 accumulation stimulated by CCK-8 10^{-10}, 10^{-9} M according to secretin 10^{-8} M (B) or forskolin 10^{-6} M (C). D. Intracellular IP3 accumulation stimulated by CCK-8 10^{-8} M + secretin 10^{-8} M, CCK-8 10^{-8} M + secretin 10^{-8} M according to insulin 10^{-6} M. Number of experiments in three.

다. Insulin 투여에 따른 secretin + CCK-8의 cAMP 반응의 변동

분산 세포에서 insulin 10^{-6} M을 점차하므로 세포 내 cAMP 양은 9.1±1.7fmol/tube로 대조군과 별 차이가 없었으며 secretin+CCK-8 투여 역시 insulin 투여에 따른 세포 내 cAMP 양의 증가는 관찰할 수 없었다(Fig. 4D).

4. 분비자극 물질에 의한 세포 내 Ca^{++} 농도의 변화

Secretin 10^{-8} M 혹은 10^{-8} M 단독 투여에 의해서는 세포 내 Ca^{++} 농도의 변화는 관찰할 수 없었다. CCK-8 10^{-10} M 단독 투여에 의해 증가된 세포 내 최고 Ca^{++} 농도는 대조군 100%로 하였을 때, secretin 10^{-8} M, 10^{-6} M을 CCK-8 투여전 처치한 결과 세포내 Ca^{++} 농도는 각각 103.7±2.75%, 110.1±3.84%로 secretin 10^{-8} M 전처리시 유의한 증가가 있었다. 또
Fig. 4. Intracellular cAMP accumulation in dispersed pancreatic acini according to secretagogues. A. Intracellular cAMP accumulation according to secretin. B, C. Intracellular cAMP accumulation stimulated by secretin 10⁻⁶, 10⁻⁸M according to CCK-8 10⁻⁹M (B) or A23187 10⁻⁷M (C). D. Intracellular cAMP accumulation stimulated by CCK-8 10⁻⁹M + secretin 10⁻⁸M, CCK-8 10⁻⁹M + secretin 10⁻⁶M according to insulin 10⁻⁶M. Number of experiments is three. *p < 0.05, **p < 0.01 vs. control.

한 secretin 대신 dibutyryl cAMP 10⁻⁴M을 전처리하였을 때에도 세포내 Ca²⁺ 농도가 CCK-8 단독 투여에 비하여 111.9±4.3%로 의외있게 증가하였다(Fig. 4).

고 참고

Hansky 등[3]이 개에서 pancreozymin과 secretin을 동시에 투여하였을 때 이차 분비 효과가 최대에 달함을 보고하였다. 이후 이러한 CCK와 secretin의 이

상승작용은 생체 내에서 콜린성 신경 의존성 현상이라는 보고도 있어. 생체내에서는 이 두 호르몬의 상호작용에 의한 상승작용이 이차 신세포에 대한 신경전달 체계와도 연관이 있을음을 시사하였다. 또한 이상의 생체내 실험연구와는 달리 혈류나 신경자극 효과를 매개한 이차분산 신세포에 대한 CCK와 secretin의 외분비 상승작용의 존재도 오래 전에 보고된 바 있으며, 이는 이러한 상승작용의 세포수준에서의 기전에 대한 명확한 규명은 미흡하였다.

이자의 외분비 기능은 자극-분비 연계(stimulus-secretion coupling) 과정을 통하여 수행된다. 즉, secretin이나 VIP는 세포막의 adenylyl cyclase를 자극하여 세포 내 cAMP를 생성하며 CCK나 acetylcholine은 세포막의 phospholipase를 자극하여 inositol trisphosphate(IP3)와 diacylglycerol(DAG)을 형성한다. 이중 IP3는 endoplasmic reticulum으로부터 Ca^{2+}을 세포외로 유리시킨다. 이렇게 분비작용을 통해 이차 신세포 전립분말들인 cAMP, Ca^{2+} 및 DAG 등은 여러 protein kinase, protein phosphatase와 같은 주효기를 활성화시킴으로써 이차 외분비 기능을 수행한다. 이와 같이 secretin과 CCK는 서로 다른 세포내 경로를 통해 외분비 기능을 향상시키므로 이 두 분비작용 호르몬의 상승작용을 새로운 수준에서 규명하기 위해서는 이들 두 호르몬에 의해 생성되는 세포내 전립분말들의 변화를 살펴보는 것이 중요하다고 생각된다.

본 실험에서는 두 분비작용 호르몬 단독 투여군에서 보다 두 분비작용 호르몬을 동시에 투여한 군에서 cAMP와 IP3의 생성량의 증가는 관찰할 수 없었다. cAMP의 경우는 secretin 단독 투여의 경우보다 CCK를 첨가한 군에서 오히려 감소하였고, CCK 대신 A23187 첨가자에도 같은 효과를 관찰할 수 있었다. 따라 서 두 분비작용 호르몬을 동시에 투여한 때 서로 상대방의 호르몬에 의해 일차적으로 생성되는 이차 전립 물질의 양을 증가시키지 않는 것을 알 수 있었다. cAMP에서와 같이 두 분비 작용 물질 동시에 투여에 따른 이차 전립 물질의 감소는 세포내 되먹이 기전에 의한 것으로 생각된다. 반면 이차 전립 물질 중 Ca^{2+}의 양은 CCK 단독 투여군에서 보다 secretin을 동시에 투여한 경우 세포내 농도가 유의하게 증가하였다.

증가된 세포내 Ca^{2+}이 secretin 동시 투여에 의해 생성된 세포내 cAMP의 영향을 가를 확인하기 위해 secretin 대신 직접 dibutyryl cAMP를 CCK에 첨가 투여해본 결과, CCK 단독 투여시보다 보다 세포내 Ca^{2+} 농도가 유의하게 증가되는 것을 확인할 수 있어 secretin에 의해 생성된 cAMP가 세포내 Ca^{2+} 동일(mobilization)을 증가시켜 세포내 Ca^{2+} 농도를 증가시켰다고 생각한다. 본 실험에서와 같이 세포내 cAMP의 생성이 secretin-CKK 상승작용에 관여하는 사실은 다른 실험에서도 규명된 바 있다. Secretin 대신 직접 cAMP의 analogue인 8-Bromo cAMP, adenylyl cyclase 활성물질인 forskolin 혹은 cAMP 분해를 억제하는 3-isobutyl-1-methyl-xanthine 등에 의해서도 역시 CCK의 외분비 상승작용이 있음을 통하여 증명되었다. 즉 secretin 대신에 forskolin이나 cAMP analogue를 투여할 때에도 CCK 단독 투여에 의하여 생성되는 세포내 IP3의 양에는 변화를 주지 않고 세포내 calcium의 양을 증가시키는 것으로 생각된다.

외분비 상승기전은 환자의 이차뿐 아니라 이차와
같이 amylase의 외분비 기능이 있는 이하선 섬세포에서도 증명되었다. 40-41 McKinney와 Rubin 42은 cAMP와 phorbol 12,13-dibutyrate를 병합 투여하여 amylase 분비가 상승함을 밝혀내 이 상승기전에 protein kinase C가 관여할 것이라고 추측하였다. 한편 친척 이하선 섬세포를 이용하여 β-아드레날린성 효소 제제인 isoproterenol과 풀린성 효소 제제인 carbachol을 투여하여 각각에 의한 세포내 cAMP와 IP3을 통한 세포내 calcium 농도를 증가시켜 외분비 상승작용이 확인되었다. 43 이 실험에서는 isoproterenol 대신 8-Bromo cAMP, forskolin 또는 3-isobuty-1-methylxanthine를 이용하거나 carbachomine 대신 calcium ionophore인 A23187이나 ionomycin 등을 사용하였을 때에도 역시 같은 상승 작용을 확인할 수 있었다. 또한 1,2-bis-[2-amino-phenoxyl]-ethane-N,N',N'',N''-tetracetic acid로 세포내 free calcium을 chelation 시켰을 때는 상승작용이 없었으나, calmodulin 전달체에 의해서 isoproterenol 단독에 의한 amylase 분비는 줄지 않았으나, isoproterenol과 carbachol의 두 분비 자극 물질 또는 carbachol 단독에 의한 amylase 분비가 증가되었다. 이러한 결과로 외분비의 상승기전은 이 자 전달 물질 생성후 cAMP계와 세포내 calcium계 간의 상호작용에 의한 것으로 생각되며, 이는 cAMP에 의한 calcium 분비를 자극하는 물질에 의한 calcium 분비의 민감도가 증가된 것으로 생각하였다.

분비작물 물질에 의한 세포내 Ca2+의 증가는 IP3에 의한 세포내 장가 calcium이 세포질로 유리됨에 의한 것도 있지만 세포외액으로부터 유입되었을 가능성도 있다. 따라서 상승기전에 관여하는 세포내 Ca2+ 증가의 유래를 규명할 필요가 있다. Yoshimura와 Nezu 43는 친척의 주위관류 이하선 섬세포 (perifused salivary acini)를 이용한 실험에서 주위관류액의 calcium을 제거하였을 때 isoproterenol과 carbachol의 두 분비 자극 물질에 의한 상승기전 효과가 없을 수 없음을 관찰하였으며 세포내 calcium chelator인 BAPTA를 투여하였을 때에는 두 분비자극 물질 병합 투여에 의한 상승기전을 관찰할 수 없었기 때문에 두 분비자극 물질에 의한 상승기전에 관여하는 세포내 Ca2+ 증가는 세포외액에서 유입된 것이 아니라 세포 내에서 유리되었음을 보고하였다. Rubin과 Adolf 44는 이하선 신세포를 saponin으로 투과성 세포(permeabilized cell)로 만들어 분비작물 호르몬 대신 직접 IP3와 cAMP를 투여할 때 IP3 단독 투여시보다 세포내 Ca2+ 농도가 증가함을 보고하였다. 또한 이 실험에서는 cAMP 투여에 따른 세포내 Ca2+ 동원은, IP3 투여에 따른 Ca2+ 동원과는 달리, endoplasmic reticulum 막에서 IP3의 경쟁적으로 세포질막 결합을 차단하는 heparin에 의해 차단되지 않는 않았다. 나아가서 non-mitochondrial microsomal Ca2+-ATPase inhibitor인 thapsigargin을 투여하였을 때는 IP3에 의한 Ca2+의 동원은 완전되지 않았으나 cAMP에 의한 Ca2+ 동원은 일부만 차단되었다. 따라서 cAMP가 이하선의 외분비 기능에 작용하는 기전은 IP3의 Ca2+ 동원 능력의 예민도를 조절할 뿐 아니라 보편 IP3-insensitive Ca2+ pool도 동원시킴으로써 이루어진 것이라고 주장하였다.

cAMP가 어떻게 IP3의 세포내 Ca2+ 유효성에 영향을 미치는지에 대하여는 잘 알려져있지 않다. Burgess 등 45는 guinea pig의 간세포를 이용하여 cAMP-dependent 호르몬인 Ca2+-mobilizing 호르몬의 기능을 어떻게 변화시켜 상승기전을 나타내려는 것을 연구하였다. cAMP-dependent protein kinase는 (1,4,5)IP3 receptor/channel protein을 phosphorylation 시키고 이것이 간세포에서 2기로 기전에 의해 IP3에 의한 Ca2+ 분비에 영향을 미치는 것으로 보고하였다. 첫째는 유리되는 Ca2+의 전체량은 IP3 수용체 기능체로만 작용하는 것이 아니고, 관련된 Ca2+ pool의 크기를 증가시킨다는 것이다. 둘째로 더욱 중요한 것은 cAMP dependent protein kinase는 IP3에 의한 Ca2+ 유효에 대한 EC50을 감소시키는데 이는 IP3-binding site의 친화력을 증가시키거나 Ca2+-gating mechanism을 변화시킴으로써 가능하다고 주장하였다. 그러나 cAMP-dependent protein kinase에 의한 IP3 receptor/channel protein의 인산화는 여러 세포마다 그의의에 다르므로 이자 신세포에서의 역할과 의외에 대해서는 더욱 연구가 필요하다고 생각된다.
Secretin은 외분비 기능에 영향을 미치는 기전은 본 실험이와 같이 세포내 Ca\(^{2+}\) 농도의 증가가 큰 역할을 한다. 이는 Ca\(^{2+}\) 농도의 증가가 amylase 등의 세포의 유출(exocytosis)에 가장 많은 관여를 하기 때문에로 생각된다. 하지만 secretin 대신 cAMP-dependent protein kinase (PKA) activator인 (Sp)-5,6-DCI-cBIMPS를 투여하여 cAMP-PK 활성도를 최대로 자극하였을 때에도 secretin 투여시에서 보다 이차 외분비 양이 적었다는 보고가 있다.\(^{46}\) 이는 secretin이 cAMP를 통한 외분비 기능이외에도 calcium pathway의 영향을 미치는, 즉 이중효과를 갖는 간접적 증가라고 할 수 있다. 또 cAMP analogue가 퀘적 이차 투과성 분산 세포에서 amylase의 세포외 유출에 어떠한 영향을 미치는지는 조사한 실험이에는, Ca\(^{2+}\) free medium에서도 cAMP에 phorbol ester(TRA), GTP(y S)와 같이 calcium pathway와 관계없이 세포내 전령 물질의 조합으로도 amylase의 세포외 유출이 일어날 것을 관찰하였 다.\(^{47}\) 따라서 이차에서 amylase를 세포외 유출시키는 외분비 기능을 전적으로 Ca\(^{2+}\)에 의존하는 과정만은 아닐 것으로 생각된다. 따라서 본 실험이는 분산 세포에서 secretin 첨가후 세포내 Ca\(^{2+}\) 농도가 증가하여 이것이 amylase 분리에서 주요한 증가기로 생각되며, cAMP가 Ca\(^{2+}\)과 무관한 경로로 외분비 산성기전에 일부 관여할 수 있을 것으로 추측된다.

Insulin은 직접적인 이차 외분비 자극 호르몬은 아니지만 이차 산성기에 단백질, RNA 및 DNA 합성을 자극하고\(^{48,49}\) amylase gene transcription을 유도시킨\(^{51,52}\)으로써 이차 외분비 기능을 조절하는 것으로 알려졌다. 특히 이차 외분비 기능에 있어 insulo-acinar axis가 주장된 이래\(^{53}\) insulin은 CCK 자극에 의한 이차 외분비에 산성작용이 있음을 증명되었다.\(^{243}\) 이상과 같은 일련의 생체 실험이에서의 insulin의 이차 외분비의 산성기전에 관한 실험이는 단순 세포수준에서의 insulin의 외분비 산성기전에 의 영향은 Matsushita 등\(^{54}\)의 환자가 이차 산성기로 이 용한 연구에 의하여 처음으로 알려졌다. 이 실험이에서 세포수준에서의 insulin의 산성기전은 CCK 혹은 secretin 단독에 대하여는 그 산성기전이 없으나 CCK와 secretin 동시에 투여시에만 산성기전을 확인할 수 있었다. 또한 이 산성작용의 기전은 이차 세포막의 Na\(^{+},K\(^{+}\)-ATPase 활성도의 증가와 관련이 있었음을 보고하였다. 본 연구에서도 분산이자 산성기에서 insulin은 CCK 단독의 경우보다는 CCK+ secretin의의의외분비 기능의 증가 경향을 보였다. 하지만 Matsushita 등\(^{54}\)의 결과와는 달리 insulin에 의한 외분비 산성작용은 secretin-CK 산성작용의 효과에는 흐린 못 미치는 것이었으며 동계적 인 유의성도 없었다. 본 실험이에는 특히 insulin의 이차 외분비의 영향이 한 장기 내에서 일어나기 때문에 permutation effect가 있을 것으로 생각되어 insulin을 혈중 농도보다 현저 높은 1pM의 농도까지 투여해 보았으나 역시 뚜렷한 외분비 산성기전은 관찰할 수 없었다. 또한 본 실험이를 통하여 insulin이 생체 실험이에는 이차 외분비 기능에 산성작용이 뚜렷하여도 분산 세포에서도는 그 기능이 멀리되지 않고, insulin이 세포내 전령 물질 생성량도 변화시키는 것으로 확인되었다.

본 실험이에서 확인된 환자의 이차 분산 세포에서의 secretin-CK의 산성작용은 세포 실험이와 같이 신경성질 효과 없이도 가능하며 이 산성작용의 기전은 두 분비 자극 호르몬에 의한 억제죄로 생성된 cAMP와 IP\(_3\) 생성 후에 세포내 Ca\(^{2+}\) 농도 증가에 의해 이루어지는 것으로 생각된다. 이는 같은 외분비 기능이 있는 환자의 분산 투과성 이형성 세포에 cAMP와 IP\(_3\)의 두 이차 전령 물질을 직접 투여하여 규명한 산성작용의 확인실험이\(^{56}\)의 결과와 유사성을 보인다. 그러나 본 실험이에서 확인된 두 이차 전령 물질에 의한 세포내 calcium 증가의 정확한 정량적인 유래 및 calcium 증가에 따른 여러 protein kinase 등을 포함한 추적기의 변화에 대한 연구가 필요하다고 생각된다.

요 약

목적: 환자의 분산 세포에서 amylase 유무에 대한 CCK와 secretin 및 insulin의 산성작용 유무와 그 기전을 알아보기 위하여 다음과 같은 실험이 시행하였다. 대상 및 방법: 분비자극 물질에 의한
이자 외분비 상승작용 유무를 살펴보기 위하여 secretin, CCK 및 insulin 투여 후 이들 물질에 의한 분산 선파프에서의 amylase 유리를 측정하였다. 또한 이러한 분비자극 물질에 의한 상승작용 기전을 알아보기 위하여 분비자극 물질 투여 후 분산 선파프 내 IP₃과 cAMP 생성량의 변동 및 세포내 Ca²⁺ 농도 변동을 관찰하였다. 결과: 분산 선파프의 amylase 유리는 CCK 단독 투여군에 비하여 CCK-8 + secretin 투여군에서 상승되었으며 특히 CCK-8 농도 10⁻¹¹, 10⁻¹⁰M에서 amylase 유리가 의미있게 증가하였다. 그러나 CCK + secretin의 상승작용에 대해 insulin은 별 영향이 없었다. CCK-8 투여로 세포내 IP₃는 증가하였으나 secretin이나 forskolin의 투여에 의해 더 이상의 증가는 없었으며, insulin 투여로 별 변동은 없었다. secretin 투여로 세포내 cAMP량은 현저히 증가하였으나 secretin에 CCK-8d이나 A23187을 투여한 군에서 세포내 cAMP의 양은 별 변동이 없고 오히려 의미있게 감소하였다. 하지만 insulin 투여 후에도 따른 cAMP 생성량의 변화는 관찰되지 않았다. 세포내 Ca²⁺의 농도는 CCK-8 단독 투여 때보다 secretin이나 dibutyryl cAMP를 전 투여한 군에서 유의하게 증가하였다. 결론: 이자 분산 선파프에서 CCK의 외분비 기능에 대한 secretin의 상승작용이 확인되었다. 하지만 insulin의 CCK 및 CCK+secretin에 대한 외분비 상승작용은 두려워하지 않았다. Secretin-CCK의 상승작용 기전은 각각의 호르몬에 의해 일차적으로 생성된 cAMP나 IP₃과 같은 세포내 전이 물질 생성량의 증가에 기인한 것이 아니고 이들 세포내 전이 물질 생성후 cAMP에 의한 세포내 Ca²⁺ 농도의 증가에 의한 것으로 생각된다.

색인단어: 이자 분산 선파프, secretin-CCK 상승작용, IP₃, cAMP, Ca²⁺

참고 문헌

