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Background-—Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the
identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography–determined
qualitative and quantitative plaque features within a machine learning (ML) framework to determine its performance for predicting RPP.

Methods and Results-—Qualitative and quantitative coronary computed tomography angiography plaque characterization was performed in
1083 patients who underwent serial coronary computed tomography angiography from the PARADIGM (Progression of Atherosclerotic Plaque
Determined by Computed Tomographic Angiography Imaging) registry. RPP was defined as an annual progression of percentage atheroma
volume ≥1.0%. We employed the following ML models: model 1, clinical variables; model 2, model 1 plus qualitative plaque features; model 3,
model 2 plus quantitative plaque features. ML models were compared with the atherosclerotic cardiovascular disease risk score, Duke
coronary artery disease score, and a logistic regression statistical model. 224 patients (21%) were identified as RPP. Feature selection in ML
identifies that quantitative computed tomography variables were higher-ranking features, followed by qualitative computed tomography
variables and clinical/laboratory variables. ML model 3 exhibited the highest discriminatory performance to identify individuals who would
experience RPP when compared with atherosclerotic cardiovascular disease risk score, the other ML models, and the statistical model (area
under the receiver operating characteristic curve in ML model 3, 0.83 [95% CI 0.78–0.89], versus atherosclerotic cardiovascular disease risk
score, 0.60 [0.52–0.67]; Duke coronary artery disease score, 0.74 [0.68–0.79]; ML model 1, 0.62 [0.55–0.69]; ML model 2, 0.73 [0.67–0.80];
all P<0.001; statistical model, 0.81 [0.75–0.87], P=0.128).

Conclusions-—Based on a ML framework, quantitative atherosclerosis characterization has been shown to be the most important feature
when compared with clinical, laboratory, and qualitative measures in identifying patients at risk of RPP. ( J Am Heart Assoc. 2020;9:
e013958. DOI: 10.1161/JAHA.119.013958.)
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R ecent developments in coronary computed tomographic
angiography (CCTA) have enabled reliable noninvasive

assessment of coronary artery disease (CAD).1,2 Beyond the
traditional measure of diameter stenosis, CCTA has also been
used to evaluate atherosclerotic plaque characteristics.3,4

Additionally, more recent studies have demonstrated the
ability of CCTA to quantify the total coronary plaque burden

and to assess longitudinal changes in plaque burden by serial
examinations.5,6

Rapid progression of coronary atherosclerosis has been
found to be associated with a higher risk of future cardiovas-
cular events.7,8 Development and progression of coronary
atherosclerosis are a complex interplay of numerous factors
influenced by clinical comorbidity, medication use, and
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baseline coronary plaque characteristics.8,9 In addition, the
changes of plaque morphology and composition are known to
have dynamic variations.10,11 As a result, the attributable
individual contribution of each factor is difficult to elucidate.

Machine learning (ML) is a field of computer science based
on pattern recognition and computational learning that can
identify patterns and relationships formed from complex
multidimensional databases.12 It relies on computer algorithms
to learn and identify nonlinear and complex interactions among
all variables by minimizing the error between predicted and
observed outcomes. Recent studies that have incorporated ML
methods into medical research have found that ML can be
useful in identifying the causal factors of clinical outcomes and
can effectively develop predictive models when compared with
conventional statistical approaches.13,14

To date, no method exists to identify individuals at risk of
rapid plaque progression (RPP) at a single point in time. In this
study we sought to evaluate the contributory role of clinical and
laboratory variables, as well as qualitative and quantitative
CCTA variables toward RPP in a large, longitudinal cohort. We
integrate these variables within a ML framework to determine
its efficacy in identifying individuals at risk of RPP. Additionally,
we also evaluate the predictive and reclassification perfor-
mance of these ML models against conventional methods.

Methods
The data that support the findings of this study are available
from the corresponding author on reasonable request.

Study Population
This study uses data from the PARADIGM (Progression
of Atherosclerotic Plaque Determined by Computed

Tomographic Angiography Imaging) registry. The overall study
design has been previously described.15 Briefly, PARADIGM is
a prospective, open-label, international, multicenter dynamic
observational registry designed to evaluate associations
between changes in serial CCTA imaging findings and clinical
presentation. Between 2003 and 2015, a total of 2252
consecutive subjects underwent CCTAs at 13 centers in 7
countries. The study protocol was approved by the institu-
tional review boards at all participating sites, and the
participants gave informed consent. Among 2252 consecutive
subjects, we excluded patients with coronary CCTAs of
inadequate image quality for quantitative plaque analysis
(n=492), prior history of coronary revascularization (n=282),
major adverse cardiac events between serial CCTA scans
(n=133), or 5 or more uninterpretable coronary segments
(n=262). Thus, a total of 1083 patients were included in the
current analysis (median interscan interval 3.3 [interquartile
range 2.6–4.8] years).

CCTA Analysis
All testing, data acquisition, and image postprocessing for
CCTA were in accordance with Society of Cardiovascular
Computed Tomography guidelines.16 CCTA was conducted
using a scanner with ≥64 detector rows in all centers.
Baseline and follow-up data sets from each center were
transferred to an offline workstation for analysis using
semiautomated plaque analysis software (QAngioCT Research
Edition v2.1.9.1; Medis Medical Imaging Systems, Leiden, the
Netherlands) with manual correction. Independent level III–
experienced readers who were masked to the clinical and test
results analyzed all CCTAs. Segments with a diameter ≥2 mm
were evaluated using a modified 17-segment American Heart
Association model for coronary segment classification. Seg-
ments were matched between baseline and follow-up CCTA
using branch points as landmarks. For longitudinal compar-
isons of CCTAs, both baseline and follow-up coronary
segments were coregistered using fiduciary landmarks,
including distance from ostia or branch vessel takeoffs.

Plaque characteristics were qualitatively assessed as the
presence or absence of positive remodeling, low-attenuation
plaque, spotty calcification, and napkin ring sign. A remodeling
index was defined as a maximal lesion vessel diameter divided
by the proximal reference vessel diameter. Positive remodeling
was defined as a remodeling index >1.1 and low-attenuation
plaque was defined as any voxel <30 Hounsfield units within a
coronary plaque.4 An intra lesion calcific plaque <3 mm in
length that composed <90° of the lesion circumference
defined as a spotty calcification. Napkin ring sign was defined
as a plaque core with low computed tomography attenuation
surrounded by a rim-like area of higher attenuation.3 The
presence of any high-risk plaque (HRP) feature and the number

Clinical Perspective

What Is New?

• Computed tomography–based quantitative plaque features
are the most important features to predict plaque progres-
sion, and this has been proven effectively by the machine
learning method.

• The machine learning–based model, which integrated clin-
ical, laboratory, and computed tomography–based qualita-
tive and quantitative plaque features, demonstrated notable
discrimination and reclassification for the identification of
patients at risk of plaque progression.

What Are the Clinical Implications?

• The machine learning–based prediction model might be
helpful to identify patients at risk of future plaque progres-
sion from a single point-of-time baseline noninvasive
evaluation.
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of HRP was recorded on a per-patient level. Plaque volumes
(mm3) of all coronary segments were obtained and then
summated to generate the total plaque volume on a per-patient
level. Atherosclerotic plaque volume was further subclassified
by composition, employing predefined intensity cutoff values in
Hounsfield units (HU) for necrotic core (�30 to 30 HU),
fibrofatty plaque (31 to 130 HU), fibrous plaque (131 to 350
HU), and calcified plaque (≥351 HU).17,18 Percentage ather-
oma volume (PAV) was defined as total plaque volume divided
by total vessel volume.19 Maximum per-lesion PAV was defined
as percentage plaque volume of the largest plaque per patient.
RPP was defined as an increase from baseline PAV of more
than 1% per year on follow-up CCTA scan. This cutoff was
derived in previous research with intravascular ultrasound
(IVUS).20 We also observed that PAV progression at the
threshold of 1% per year was associated with major adverse
cardiac events and a composite of cardiac death and acute
coronary syndrome.21

ML Analysis
Seventy-seven parameters (44 clinical, 15 laboratory, 7
CCTA-based qualitative, and 11 quantitative features) were
available for the analysis (Table S1). Analysis was performed
on 3 models with the following combination of variables: (1)
model 1, clinical and laboratory variables only; (2) model 2,
variables from model 1 and computed tomography (CT)-
based qualitative plaque features; and (3) model 3, variables
from model 2 and CT-based quantitative features. ML
involved automated feature selection, splitting the entire
cohort randomly into a training set (70% of data) and a test
set (30% of data) (Table S2), and model building on all 3
models. Splitting of the entire cohort was done in a stratified
manner so that the ratio of events (RPP) to nonevents (non-
RPP) in each split (training [20.3% RPP] and test set [20.8%
RPP]) was identical to that of the entire data set [20.7% RPP]
(Table S2). ML techniques were implemented in the open-
source Waikato Environment for Knowledge Analysis plat-
form.22

Feature Selection
Feature selection was performed using information-gain
attribute ranking.23 Information gain is defined as a
measure of the effectiveness of an attribute in classifying
the training data. It is measured as the amount by which
the entropy of the class decreases, which reflects the
additional information about the class provided by the
attribute. The feature selection is a standard procedure
performed in ML to ensure appropriate performance of the
classification algorithm. Only attributes resulting in informa-
tion gain >0 were used in model building. Ten different ML
classifiers (Table S3) were used to evaluate the prediction

performance, and a boosted ensemble classification algo-
rithm (LogitBoost)13 was used for the analysis due to its
superior performance and also the methodological advan-
tages as discussed below.

Model Building
Predictive classifiers for prediction of RPP were developed
using an ensemble classification approach (“boosting”),
employing an iterative LogitBoost algorithm24,25 and using
decision stumps (single-node decision trees) for each feature-
selected variable as a base classifier13 on the training set
(70% of the data). The hyperparameters used in the Logitboost
method were (1) number of iterations (k)—the appropriate
number of iterations needed to optimize the loss function was
determined using 5-fold internal cross validation while training
the model on the training set (70% data) and (2) shrinkage
parameter (v=0.1). The principle behind ML ensemble boost-
ing is that a set of weak base classifiers can be combined to
create a single strong classifier by iteratively adjusting their
appropriate weighting according to misclassifications. A
series of base classifier predictions and an updated weighting
distribution are produced with each iteration. The strength of
the LogitBoost algorithm is that each weak learner needs only
to be slightly better than a guess, and the distribution of
weights will allow the strong learner to become more
influential and create accurate predictions. Further, Logit-
Boost algorithms use log-likelihood loss for the binary
classification (RPP versus non-RPP) that incorporates the
idea of probabilistic confidence. The predictive performance
of the developed classifier from the training data set was then
evaluated on the unseen test set (30% of data).

Statistical Analyses
Continuous variables are expressed as mean (standard
deviation [SD]), and categorical variables are reported as
counts with proportions. Both the Student unpaired t test
and Pearson chi-squared test were performed for compar-
ison of covariates between groups. A fractional polynomial
model was fitted to evaluate the pattern between high-
ranked features and changes of percentage plaque volume
per year. The linear relationship between changes of
percentage plaque volume per year and high-ranked
features was assessed using linear regression analyses,
and the b coefficients were reported. The performance of
ML (the ML model) for predicting RPP was compared with
10-year atherosclerotic cardiovascular disease risk score
(ASCVD risk score),26 Duke CAD score,27 and statistical
models. Statistical modeling was performed on the same 3
models in ML analysis: (1) model 1, clinical and laboratory
variables only; (2) model 2, variables from model 1 and CT-
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based qualitative plaque features; and (3) model 3, variables
from model 2 and CT-based quantitative features. To avoid
including highly correlated variables in statistical models, we
selected 1 variable with the highest correlation coefficient

with outcome (RPP) when there were significant correlations
among the 77 variables (r>0.7). Then, backward stepwise
logistic regression was performed on the training set with
predictor-entry and removal-significance P values set to

Table 1. Baseline Characteristics of the Study Population

Variables No RPP (n=859) RPP (n=224) P Value

Clinical characteristics

Age, mean (SD), y 59.5 (9) 62.3 (9) <0.001

Male sex, n (%) 490 (57) 134 (60) 0.454

Clinical symptoms 0.190

Asymptomatic 125 (15) 20 (9) 0.028

Shortness of breath 45 (5) 16 (7) 0.271

Atypical chest pain 586 (68) 155 (69) 0.779

Noncardiac chest pain 65 (8) 22 (10) 0.269

Typical chest pain 30 (3) 10 (4) 0.492

Hypertension, n (%) 413 (48) 136 (61) 0.001

Diabetes mellitus, n (%) 152 (18) 64 (39) <0.001

Dyslipidemia, n (%) 312 (36) 94 (42) 0.106

Current smoker, n (%) 136 (16) 62 (28) <0.001

Aspirin use, n (%) 286 (34) 103 (47) <0.001

b-blocker use, n (%) 211 (25) 52 (24) 0.695

RAS inhibitor use, n (%) 213 (25) 83 (38) <0.001

Statin use, n (%) 301 (36) 98 (46) 0.009

Total cholesterol 192.3 (38) 185.2 (39.7) 0.020

LDL cholesterol 116.9 (33.5) 113.8 (35.0) 0.245

HDL cholesterol 52.6 (14.5) 47.8 (11.7) <0.001

ASCVD risk score 10.7 (9.7) 15.3 (12.5) <0.001

Duke CAD score 1.3 (1.1) 2.2 (1.0) <0.001

Qualitative CT features

No plaque at baseline scan 264 (31) 7 (3) <0.001

No plaque at follow-up scan 175 (18) 0 (0) <0.001

Positive remodeling 501 (58) 208 (93) <0.001

Low-attenuation plaque 137 (16) 91 (41) <0.001

Spotty calcification 131 (15) 74 (33) <0.001

Napkin-ring sign 5 (1) 5 (2) 0.021

Diameter stenosis >50% 15 (2) 23 (10) <0.001

Quantitative CT features, mm3

Total plaque volume 65.9 (112.6) 240.9 (241.9) <0.001

Fibrous plaque volume 29.4 (51.9) 110.8 (111.3) <0.001

Fibrofatty plaque volume 13.2 (25.9) 44.6 (54.9) <0.001

Necrotic core volume 1.8 (5.4) 5.4 (10.3) <0.001

Calcified plaque volume 21.5 (52.4) 80.2 (135.9) <0.001

Percentage plaque volume 2.6 (3.9) 9.2 (7.8) <0.001

ASCVD risk score indicates 10-y atherosclerotic cardiovascular disease risk score; CAD, coronary artery disease; CT, computed tomography; HDL, high-density lipoprotein; LDL, low-
density lipoprotein; RAS, renin-angiotensin system; RPP, rapid plaque progression.
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0.05 and 0.10, respectively, with 1000 bootstrapped
repetitions to select the predictors of outcome.28,29 All
predictors that were retained in more than 70% of the
bootstrapped results were retained in the final model,
resulting in 8 predictors being included in the final
statistical model (Table S4). We also tested a series of
statistical models with different thresholds (70%, 60%, and
50%) for the bootstrapped results in the test set (Table S5).
In addition, statistical model 4 was developed using 33
important variables by the ML method (information-gain
method). Variance inflation factors were computed to
assess multicollinearity in a multivariate model with a
variance inflation factor <5 considered safe from multi-
collinearity.30 The variable with the highest variance inflation
factor was removed stepwise from a multivariate model.
Finally, 21 variables were included in statistical model 4
(Table S6 with all variance inflation factors <5).

Receiver operating characteristic curves were fashioned to
evaluate the discriminatory ability of models for predicting
RPP, and areas under the receiver operating characteristic
curve (AUCs) were compared using the method described by
DeLong et al.31 Additional subgroup analyses were also
performed on the basis of sex and age (≥65 or <65 years).
Category-free net reclassification improvement was used to
estimate reclassification performance of the ML model
compared with traditional risk prediction approaches.32

Subjects were categorized as low (<7.5%) or intermediate to
high (≥7.5) based on ASCVD risk score.26 Calibration was
assessed by the predicted and observed proportion of RPP
across quintiles of risk in ML model 3. Statistical analysis was
performed using STATA (version 14; StataCorp, College
Station, TX) and SAS (version 9.3; SAS Institute, Cary, NC).

Results

Baseline Characteristics
The mean age of participants was 60 (SD 9) years, and 624
(57%) were male. The baseline characteristics of participants
according to plaque progression are described in Table 1.
Subjects with RPP were significantly older, had higher
prevalence of hypertension, diabetes mellitus, and current
smoking, and showed a high rate of medication use compared
with those without RPP. Patients with RPP showed lower total
cholesterol and high-density lipoprotein cholesterol level and
higher ASCVD risk score and Duke CAD score than patients
without RPP.

The prevalence of a normal CCTA scan (no plaque) at baseline
and follow-up scan was 25% and 16% (Table 1). The prevalence of
significant stenosis (diameter stenosis >50%) was 4% in the
overall study population; a significantly higher prevalence was
observed in patientswithRPP than thosewithout RPP (10% versus
2%, P<0.001, Table 1). With the exception of napkin ring sign,
qualitative and quantitative plaque and HRP features were
significantly higher in patients with RPP compared with those
without RPP (Table 1, all other P<0.001).

Feature Selection
The information-gain ranking method identified 33 variables
as effectively contributing to RPP among the available total of
77 features. In the overall model, quantitative CT variables
were the highest-ranking features, followed by qualitative CT
variables and, last, clinical/laboratory variables (Table 2 and
Figure 1). Feature selection among clinical and laboratory
variables indicated that the ASCVD risk score was the highest

Table 2. Feature Importance and Linear Regression Coefficient of High-Ranked Features by Machine Learning Algorithm

Rank

Clinical/Laboratory Qualitative CT Feature Quantitative CT Feature

Variable Name
Information
Gain Value

Regression
Coefficient
(b) Variable Name

Information
Gain Value

Regression
Coefficient (b) Variable Name

Information
Gain Value

Regression
Coefficient
(b)

First ASCVD risk score 0.014 0.281 Number of HRP 0.094 0.385 Percentage plaque
volume

0.193 0.529

Second Age 0.012 0.163 Positive remodeling 0.076 0.350 Total plaque volume 0.180 0.469

Third HDL cholesterol 0.012 �0.137 Presence of any
HRP

0.074 0.345 Fibrous plaque
volume

0.177 0.483

Fourth Current smoking 0.010 0.097 Low-attenuation
plaque

0.039 0.242 Plaque burden 0.168 0.452

Fifth RAS inhibitor use 0.008 0.115 Spotty calcification 0.022 0.199 Maximum lesion
plaque volume

0.149 0.468

Sixth Diabetes mellitus 0.008 0.135 Diameter
stenosis >50%

0.020 0.179 Fibrofatty plaque
volume

0.119 0.358

All P<0.01 for regression coefficient. ASCVD risk score indicates 10-y atherosclerotic cardiovascular disease risk score; CT, computed tomography; HDL, high-density lipoprotein; HRP,
high-risk plaque features; RAS, renin-angiotensin system.
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ranking feature, followed by age, high-density lipoprotein
cholesterol, and smoking status. Among qualitative CT
features, the number of HRP was the most important feature,
followed by positive remodeling, low-attenuation plaque, and
SC, respectively. With quantitative CT features, PAV was the
highest contributory feature to RPP, followed by total plaque
volume and fibrous plaque volume.

There was a mostly linear relationship between more
important features and RPP, especially those with qualitative
and quantitative CT features (Figure S1). Regression analysis
of the more important features (qualitative and quantitative
CT features) and RPP also showed that there were statistically

significant linear relationships (Table 2, all P<0.01 for
regression coefficient b).

Predictive Performance for RPP
A calibration plot indicated good agreement between the ML
model 3 and the observed risk of RPP in the internal testing
cohort (Figure S2). AUC analysis indicated that the ML model
3 exhibited superior performance in predicting RPP when
compared with the other ML models (model 3, 0.833 (95% CI
0.775–0.891) versus model 1, 0.618 (0.546–0.689); model 2,
0.734 (0.672–0.796); all P<0.001) (Figure 2). Further, we

Figure 1. Importance of features by information-gain method. The information gain method measured the
entropy gain with respect to RPP for each variable and then ranks the attributes by their individual
evaluations (from top to bottom).
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observed that statistical models 1, 2, and 3 had comparable
predictive performance when compared with their corre-
sponding ML models, ML models 1, 2, and 3 (P=0.897, 0.599,
and 0.064; Table S7). When compared with ASCVD risk score
(AUC 0.597 [95% CI 0.519–0.674]) and Duke CAD score (AUC
0.740 [95% CI 0.683–0.798]) as a traditional risk approach,
ML model 3 showed significantly higher performance (both
P<0.001).

We also observed that statistical model 4 (AUC=0.81) with
21 variables showed slightly higher AUC compared with
statistical model 3 (AUC=0.801). The AUC in ML model 3 was
still higher than that in the statistical model 3 or 4 (0.833
versus 0.801 or 0.810); however, this was not statistically

significant (P=0.064 and 0.128, respectively). After further
stratification into subgroups of age (≥65 or <65) and sex, ML
models exhibited a consistently similar trend of AUC values:
ML model 3 showed a significantly higher performance than
ASCVD risk score, Duke CAD score, or ML model 1 or 2
(Table 3). In addition, for model 3, there was no significant
difference between older and younger patients (AUC 0.831
[95% CI 0.735–0.926] versus 0.829 [95% CI 0.752–0.904],
respectively; P=0.873) as well as between men and women
(AUC 0.853 [95% CI 0.778–0.932] versus 0.827 [95% CI
0.738–0.904], respectively; P=0.558) (Figure 3).

The improved reclassification of the ML model over the
ASCVD risk score was significant in patients at both low and
intermediate to high risk (Table 4). Notably, ML model 3
correctly reclassified patients with RPP as well as without RPP
across overall, low, and intermediate to high ASCVD risk
populations (all P<0.001). When the analysis was restricted to
symptomatic patients, ML model 3 still displayed significantly
improved reclassification over the Duke CAD score (category-
free net reclassification improvement 0.85, P<0.001,
Table 5).

Discussion
In the current study we observed that quantitative CT-based
plaque features were the most important features to predict
plaque progression, followed by qualitative CT-based features
and, last, clinical/laboratory features. It was also observed
that ML model 3 (with clinical/laboratory and qualitative and
quantitative plaque features) showed a higher predictive
performance for RPP when compared with using a combina-
tion of clinical/lab and qualitative CT-based variables (ML
models 1 and 2). The ML model 3 were superior to the
conventional ASCVD risk score and the Duke CAD score.
Furthermore, ML model performance was robust across sex-

Figure 2. Areas under the receiver operating characteristic
curves for the prediction of rapid plaque progression in test set.
ASCVD indicates 10-year atherosclerotic cardiovascular disease
risk; CAD, coronary artery disease; ML, machine learning.

Table 3. Comparison of Model Predictive Performance

Age <65 y Age ≥65 y Men Women

AUC 95% CI AUC 95% CI AUC 95% CI AUC 95% CI

ASCVD risk score 0.54 0.44 to 0.63 0.65 0.52 to 0.77 0.56 0.46 to 0.67 0.64 0.53 to 0.76

Duke CAD score 0.75 0.67 to 0.83 0.71 0.60 to 0.80 0.74 0.66 to 0.83 0.75 0.67 to 0.83

Statistical model 3 0.78 0.69 to 0.87 0.81 0.72 to 0.90 0.82 0.73 to 0.90 0.79 0.69 to 0.89

Statistical model 4 0.81 0.73 to 0.88 0.81 0.72 to 0.89 0.85 0.78 to 0.92 0.78 0.70 to 0.87

ML model 1 0.57 0.48 to 0.66 0.65 0.54 to 0.76 0.59 0.48 to 0.70 0.65 0.56 to 0.75

ML model 2 0.73 0.64 to 0.81 0.73 0.63 to 0.83 0.70 0.61 to 0.80 0.78 0.70 to 0.86

ML model 3 0.83 0.75 to 0.90 0.83 0.74 to 0.93 0.85 0.78 to 0.93 0.83 0.74 to 0.90

ASCVD risk score indicates 10-yr atherosclerotic cardiovascular disease risk score; AUC, area under the receiver operating characteristic; CAD, coronary artery disease; ML, machine
learning.
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and age-based subsets. ML models 2 and 3 provided superior
reclassification when compared with the ASCVD risk score
and the Duke CAD risk score, across varying risk profile
subsets.

The PROSPECT (Providing Regional Observations to Study
Predictors of Events in the Coronary Tree) trial utilizing IVUS
was performed in patients with acute coronary syndromes
already undergoing percutaneous coronary intervention, and
the latter study suggested that coronary atherosclerotic
plaque burden was correlated with a higher incidence of
adverse event rates.33 In addition, serial IVUS demonstrated
the prognostic importance of plaque progression by showing
an association with clinical outcomes.20 However, it should be
noted that these previous IVUS studies are somewhat limited
due to (1) the inclusion of only high-risk patients at the time of
the intervention and (2) limited evaluation targeted at only the
lesion of interest. Additionally, compared with IVUS, CCTA can
uniquely provide quantitative measures of whole-heart
atherosclerotic plaque burden and type in a clinical population
in a noninvasive fashion.

In this study, we attempted to identify the important
clinical and qualitative and quantitative CT features related to
RPP. Although conventional risk factors such as ASCVD risk
score, lipid profile, medication use, or diabetes mellitus are
revealed as important features for plaque progression, CCTA
features, especially those from quantitative plaque analysis,
were the most important factors identified by the ML-based
feature selection algorithm. This is also consistent with
previous findings from our group that identified plaque burden
as an important factor for plaque progression.34 Additionally,
we further extend the findings by integrating qualitative and
quantitative atherosclerotic plaque characteristics within a ML
framework. To our knowledge, this is first study to use ML to
predict the future risk of plaque progression using single-
point-of-time CCTA-based information. The ML findings iden-
tify CCTA-based plaque features that are relevant and
subsequently apportion their respective contributions toward
RPP.

Previous studies applying ML in clinical research mostly
focused on developing a high-performance prediction
model.13,14,35 In terms of developing a prediction model by
ML, it is essential to compare the ML model with a reliable,
well-developed conventional prediction model, and most
previous studies showed a higher performance in ML than a
conventional risk score or a statistical approach.36 In the
current study we use a general risk-prediction model—ASCVD
risk score and Duke CAD score—because there has been no
prior published prediction model for plaque progression. The
ML model showed better performance than general risk-
prediction models. However, when compared with a statistical
logistic regression model, even though ML model 3 showed
noticeable performance of AUC 0.83, it was not statistically

significant. Further, this trend was also consistently observed
when ML models 1 and 2 were compared with their
corresponding statistical models (Table S6). This finding
may be explained by the linear relationship between predic-
tors and plaque progression, especially CCTA features, that
played a larger role when compared with other clinical and
laboratory features (Figure S1). For example, plaque volume is
observed to be linearly increasing with the risk of plaque
progression; a similar relationship was also noticed between

Figure 3. Areas under the receiver operating characteristic
curves for the prediction of rapid plaque progression stratified by
(A) sex and (B) age for Model 3 (P value for differences: A, 0.588;
B, 0.873).
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HRP features and the risk of plaque progression. Furthermore,
the use of ML for feature importance was obligatory in the
identification of input variables for the logistic regression
statistical model, which may contribute toward the statistical
model’s performance. In addition to this, other possible
explanations for this limited result would be that, despite the
PARADIGM registry being the largest available serial CCTA
database, the sample size in the testing cohort was still
relatively small (325 patients). To further explore these issues,
we believe that models validated on external validation
studies (data sets) with a larger sample size are warranted.

The current findings identify the presence and amount of
coronary atherosclerotic plaque burden as the most signif-
icant factors in predicting RPP. As a result, the performance
of models utilizing CCTA-derived variables (ML model 3, ML
model 2, statistical models 2 and 3, and Duke CAD score)
were superior to those using clinical/laboratory variables
only (ML model 1, ASCVD risk score), suggesting that a
single point-of-time CCTA may help to better predict the risk

of RPP in the future. Application of this current novel
prediction tool for RPP may help to identify patients at high
risk of atherosclerotic cardiovascular disease progression.
Undoubtedly, further studies are needed to evaluate the
performance and applicability of this model across different
cohorts as well as to assess how to effectively modify the
natural history of atherosclerotic cardiovascular disease
progression.

Variable selection is essential for developing a prediction
model. We developed 2 different statistical approaches for
variable selection: stepwise selection with (1) logistic regres-
sion analysis 1000 bootstrap methods and (2) variance
inflation factors to avoid multicollinearity. Although these
approaches are frequently used methods to identify important
predictors for developing a prediction model, there are
potential limitations from overfitting and overestimation in
regression coefficients and effect sizes.37,38 In addition, we
found that an increasing number of variables did not improve
the AUC when we tested series of statistical models with

Table 4. Performance of the ML Model for Reclassifying Rapid Plaque Progression Over ASCVD Risk Score

cNRI 95% CI P Value % Event Classified % Nonevent Classified

Overall

ML model 1 0.05 �0.21 to 0.32 0.700 �15% 20%*

ML model 2 0.61 0.35 to 0.87 <0.001 27%* 34%*

ML model 3 1.01 0.78 to 1.25 <0.001 42%* 59%*

Low risk (ASCVD <7.5%)

ML model 1 0.26 �0.16 to 0.69 0.232 �4% 30%*

ML model 2 0.69 0.28 to 1.11 0.002 20% 49%*

ML model 3 1.25 0.91 to 1.59 <0.001 60%* 65%*

High risk (ASCVD ≥7.5%)

ML model 1 0.15 �0.20 to 0.50 0.406 �2% 17%*

ML model 2 0.52 0.19 to 0.85 0.004 32%* 20%*

ML model 3 0.85 0.53 to 1.18 <0.001 37%* 49%*

ASCVD risk score indicates 10-y atherosclerotic cardiovascular disease risk score; cNRI, category-free net reclassification index; ML, machine learning.
*P<0.05.

Table 5. Performance of the ML Model for Reclassifying Rapid Plaque Progression Over Duke CAD Risk Score in Symptomatic
Patients

cNRI 95% CI P Value % Event Classified % Nonevent Classified

Over Duke CAD risk score in symptomatic patients

ML model 1 0.21 �0.08 to 0.48 0.151 �5% 26%*

ML model 2 0.56 0.28 to 0.84 <0.001 15%* 41%*

ML model 3 0.85 0.57 to 1.13 <0.001 21%* 64%*

CAD indicates coronary artery disease; cNRI, category-free net reclassification index; ML, machine learning.
*P<0.05.
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different thresholds for bootstrap methods (50%, 60%, and
70%; Table S5). Thus, statistical models of our data should be
interpreted with caution. On the other hand, ML approaches
have been shown to be beneficial in feature selection over
traditional statistical methods.39,40 In addition, we employed
an iterative LogitBoost algorithm using decision stumps
(single-node decision trees) for each feature-selected variable
as base classifiers to build the classifier. Tree-based boosted
ensemble models have an innate feature of being robust to
correlated features and might have potential benefits in a data
set with multicollinearity variables.24,41 Further, we also used
cross validation to tune the hyperparameters on the training
set to prevent overfitting.

This study is not without limitations. In the current study,
for the purpose of assessing plaque progression in the whole
coronary tree, we included patients with high image quality
and without localized artifacts. In addition, the prevalence of
patients with normal CCTA was 25% at baseline, and
patients who underwent revascularization before follow-up
CCTA were excluded; thus, this study population mostly
consisted of low-risk patients. Thus, the current study may
be prone to potential selection bias. Although numerous
clinical, medication, and laboratory variables were included
in developing the ML model, the possibility of bias from
unmeasured confounding factors cannot be excluded. Addi-
tionally, for a better and generalizable ML prediction model,
we also need external validation in a separate independent
cohort; however, currently, there is no such available serial
CCTA cohort with a large enough sample size for external
validation. Although ML-based algorithms have been widely
used in clinical research, we could not evaluate unnoticed
potential biases from the ML algorithm in the data set,
which is known as the “black-box problem”.36 Therefore, the
causal relationship between features and outcomes is not as
yet known and should not be presently inferred.

Conclusions
With a ML-based framework, the contributory variables for
RPP were identified and ranked. Quantitative atherosclerotic
plaque characterization was more influential when compared
with qualitative CCTA variables or clinical and laboratory
measures. Multidimensional reduction of coronary artery
findings through ML offers a novel approach to identify
patients at risk of future plaque progression from a single-
point-of-time baseline evaluation.
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Table S1. Examination components. 

Demographics and clinical characteristics 

Age, Sex, Ethnicity, history of hypertension, atrial fibrillation, hyperlipidemia, diabetes, coronary 

artery disease, cardiovascular disease, or peripheral artery disease, Family history of CVD, Smoking 

status, Symptom presentation, Height, Weight, Body mass index, Heart rate, Systolic blood pressure, 

diastolic blood pressure, ASCVD risk score 

Medication use 

Aspirin, Thienopyridine, Warfarin, Beta blocker, Calcium channel blocker, Diuretics, RAS, 

Aliskerin, Nitrate, Lipid lowering agent (Statin or others), Hypoglycemics (Metformin or others), 

Insulin 

Laboratory test values 

Creatinine, Blood urea nitrogen, Glucose, Hemoglobin a1c, Calcium, Phosphate, Hemoglobin, 

Hematocrit, Platelet, Total cholesterol, HDL cholesterol, Triglyceride, LDL cholesterol, White blood 

cell count, C-reactive protein 

Qualitative CT parameters 

Positive remodeling, low attenuation plaque, spotty calcification, napkin ring sign, number of high 

risk plaque features, presence of any high risk plaque features, diameter stenosis more than 50% 

Quantitative CT parameters 

 

Total vessel length, Total vessel volume, Total lumen volume, Total plaque volume, Fibrous plaque volume, 

Fibro-fatty plaque volume, Necrotic core plaque volume, Calcified plaque volume, Plaque burden, Percent 

plaque volume, Maximal lesion percent plaque volume 
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Variables Training set (n=758) Test set (n=325) P-value 

Age, mean (SD), years 60.0 (9.4) 60.0 (8.5) 0.977 

Male sex, no. (%) 443 (58) 181 (56) 0.705 

Hypertension, no. (%) 378 (50) 171 (53) 0.398 

Diabetes, no. (%) 150 (20) 66 (20) 0.850 

Dyslipidemia, no. (%) 295 (39) 111 (34) 0.144 

Current smoker, no. (%) 144 (19) 54 (17) 0.329 

Aspirin use, no. (%) 271 (36) 118 (37) 0.861 

Beta blocker use, no. (%) 190 (26) 73 (28) 0.352 

RAS inhibitor use, no. (%) 210 (28) 86 (27) 0.697 

Statin use, no. (%) 282 (39) 117 (38) 0.743 

Total cholesterol 190.2 (38.4) 192.4 (38.6) 0.411 

LDL cholesterol 115.3 (33.7) 118.7 (34.2) 0.158 

HDL cholesterol 51.8 (14.4) 51.2 (13.3) 0.578 

ASCVD risk score  12.0 (11.1) 11.1 (9.0) 0.178 

Duke CAD score 1.5 (1.1) 1.5 (1.2) 0.644 

 

Table S2. Baseline characteristics of training and test set. 

 

RPP, rapid plaque progression; RAS, renin-angiotensin system; LDL, low density lipoprotein; HDL, high 

density lipoprotein; ASCVD risk score, 10-yr atherosclerotic cardiovascular disease risk score, CAD, 

coronary artery disease  
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Table S3. Performance of Machine learning algorithms. 

No ML algorithm AUCs 

Train set Testing set 

1 LogitBoost 0.87 0.83 

2 NaiveBayes 0.84 0.82 

3 BayesNet 0.84 0.82 

4 AdaBoost  0.89 0.81 

5 Random Forest  1 0.82 

6 Bagging 0.96 0.82 

7 Stacking 0.88 0.82 

8 Multi-Layer Perceptron 0.89 0.79 

9 Sequential Minimal 

optimization (SMO) 

0.85 0.83 

10 ADTree 0.87 0.80 

 

1. LogitBoost algorithm 

a. Friedman, Jerome; Hastie, Trevor; Tibshirani, Robert. Additive logistic regression: a 

statistical view of boosting (With discussion and a rejoinder by the authors). Ann. Statist. 

28 (2000), no. 2, 337--407 

2. NaiveBayes algorithm 
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a. George H. John, Pat Langley: Estimating Continuous Distributions in Bayesian 

Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 

338-345, 1995. 

3. BayesNet algorithm 

a. I.H. Witten, E. Frank. Data Mining: Practical machine learning tools and techniques. 2nd 

Edition, Morgan Kaufmann, San Francisco, 2005. 

4. AdaBoost algorithm 

a. Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: 

Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996. 

5. RandomForest algorithm 

a. Leo Breiman (2001). Random Forests. Machine Learning. 45(1):5-32. 

6. Bagging 

a. Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140. 

7. Stacking 

a. David H. Wolpert (1992). Stacked generalization. Neural Networks. 5:241-259. 

8. Artificial Neural Network (Multi-Layer Perceptron) 

a. I.H. Witten, E. Frank. Data Mining: Practical machine learning tools and techniques. 2nd 

Edition, Morgan Kaufmann, San Francisco, 2005. 

9. Sequential minimal optimization (SMO) algorithm for support vector machines (SVM) 

a. J. Platt. Fast Training of Support Vector Machines using Sequential Minimal 

Optimization. In B. Schoelkopf and C. Burges and A. Smola, editors, Advances in Kernel 

Methods - Support Vector Learning, 1998. 

b. S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy (2001). Improvements to 

Platt's SMO Algorithm for SVM Classifier Design. Neural Computation. 13(3):637-649. 

10. ADTree ( The Alternating Decision Tree algorithm):   
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a. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Proceeding of 

the Sixteenth International Conference on Machine Learning, Bled, Slovenia, 124-133, 

1999. 
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Table S4. The statistical model predictors based on 1000 bootstrap sample in the training set. 

Variable Number of the 1000 bootstrap sample retained 

Percent plaque volume 1000 

Number of high risk plaque features 
991 

Body mass index 818 

Spotty calcification 804 

Low attenuation plaque 763 

Any lipid lowering agent use 757 

Hemoglobin 739 

Pre-test probability 730 

Hyperlipidemia 694 

Beta blocker use 689 

Total vessel volume 606 

Hypoglycemics use 578 

Platelet levels 562 

Smoking status 541 

Nitrate use 541 

Thienopyridine use 520 

Chest pain  503 
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Table S5. Statistical models using different threshold of bootstrap samples. 

 Number of variables AUC 95% CI P-value* 

Threshold of 

bootstrap samples 

    

50% 17 0.789 0.725-0.853 0.047 

60% 11 0.792 0.726-0.857 0.060 

70% 8 0.801 0.736-0.864 0.064 

 

AUC, Area under the receiver operating characteristic curve 

*P-value when compared with the ML model 3 
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Table S6. The statistical model 4 predictors with variance inflation factors. 

Variable Variance inflation factors 

Maximal lesion percent plaque volume 4.15 

Fibrous plaque volume 3.90 

Fibro-fatty plaque volume 3.31 

Number of high risk plaque features 3.23 

Positive remodeling 3.06 

Calcified plaque volume 2.35 

Any medication use 1.94 

Diabetes mellitus 1.90 

Hypoglycemics use 1.88 

Smoking status 1.68 

Aspirin use 1.42 

Statin use 1.39 

Ras inhibitor use 1.32 

Age 1.26 

Diameter stenosis 50% 1.25 

Ethnicity 1.23 

Calcium channel blocker use 1.22 

Pre-test probability 1.18 

Diuretics use 1.12 

Total vessel length 1.09 

History of coronary artery disease 1.07 
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Table S7. Predictive performance (AUC [95% CI]) of statistical models compared to corresponding 

machine learning models in the testing set.  

 Statistical model Machine learning model P-value 

Model 1 (clinical and 

laboratory variables) 

0.612 (0.539-0.683) 0.618 (0.546-0.689) 0.897 

Model 2 (Model 1 + 

Qualitative CT 

variables) 

0.721 (0.653-0.788) 0.734 (0.672-0.796) 0.599 

Model 3 (Model 2 + 

Quantitative CT 

variables) 

0.801 (0.736-0.864) 0.833 (0.778-0.887) 0.064 

 

AUC, Area under the receiver operating characteristic curve 
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Figure S1. Fractional polynomial graph between top 3 features in each predictor category and plaque 

progression. 

 

 

 

A, ASCVD risk score; B, Age; C, HDL cholesterol; D, number of high risk plaque features; E, positive 

remodeling; F, presence of any high risk plaque features; G, percent atheroma volume; H, total plaque 

volume; I, Fibrous plaque volume; Y axis: changes of percent plaque volume per year  
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Figure S2. Calibration plot for Machine learning model 3 to predict rapid plaque progression. 
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