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Original Article 

Purpose: The purpose of this study is to compare the performance of the T1 3D 
subtraction technique and the conventional 2D dynamic contrast enhancement (DCE) 
technique in diagnosing Cushing’s disease. 
Materials and Methods: Twelve patients with clinically and biochemically proven 
Cushing’s disease were included in the study. In addition, 23 patients with a 
Rathke’s cleft cyst (RCC) diagnosed on an MRI with normal pituitary hormone levels 
were included as a control, to prevent non-blinded positive results. Postcontrast 
T1 3D fast spin echo (FSE) images were acquired after DCE images in 3T MRI and 
image subtraction of pre- and postcontrast T1 3D FSE images were performed. 
Inter-observer agreement, interpretation time, multiobserver receiver operating 
characteristic (ROC), and net benefit analyses were performed to compare 2D DCE 
and T1 3D subtraction techniques.
Results: Inter-observer agreement for a visual scale of contrast enhancement was 
poor in DCE (κ = 0.57) and good in T1 3D subtraction images (κ = 0.75). The time 
taken for determining contrast-enhancement in pituitary lesions was significantly 
shorter in the T1 3D subtraction images compared to the DCE sequence (P < 0.05). 
ROC values demonstrated increased reader confidence range with T1 3D subtraction 
images (95% confidence interval [CI]: 0.94-1.00) compared with DCE (95% CI: 0.70-
0.92) (P < 0.01). The net benefit effect of T1 3D subtraction images over DCE was 0.34 
(95% CI: 0.12-0.56). For Cushing’s disease, both reviewers misclassified one case as a 
nonenhancing lesion on the DCE images, while no cases were misclassified on T1 3D 
subtraction images.
Conclusion: The T1 3D subtraction technique shows superior performance for 
determining the presence of enhancement on pituitary lesions compared with 
conventional DCE techniques, which may aid in diagnosing Cushing’s disease. 
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INTRODUCTION

Cushing’s disease, or adrenocorticotrophic hormone 
(ACTH) secreting pituitary adenoma, comprises 10% of 
pituitary adenomas, and is responsible for 80-85% of ACTH-
dependent Cushing’s syndrome (1). The majority of cases are 
microadenomas that are < 1 cm in size, almost 50% being 
less than 5 mm, which makes the diagnosis difficult (2). 
The final diagnosis is often based on magnetic resonance 
imaging (MRI) and inferior petrosal sinus sampling (3). 
It is crucial to confirm the pituitary origin of Cushing’s 
syndrome, because the treatment of choice is surgical 
removal of the lesion (4). However, previous studies have 
reported that up to 63% of patients have false negative 
findings on MRI (5-7).  

The T1 3D fast spin echo (FSE) MRI has been recently 
introduced and validated in neuroimaging (8-10), and has 
shown to provide superior image quality, thinner slices, with 
less artifacts and partial volume averaging, in the pituitary 
area, compared to conventional 2D images (11).   

The higher SNR attainable and higher field of spatial 
resolution or spatial resolution with novel sequences has led 
to improvements in the detection rate (10, 12-14). However, 
similar or higher false positive rates remain a problem with 
these conditions (15, 16). In our experience, determination 
of contrast enhancement in ACTH secreting adenomas 
may be troublesome due to the partial volume averaging 
from the frequently small size. volume averaging from the 
frequently small size. The issue of partial volume averaging 
was addressed in a study that evaluated the usefulness of 
sagittal plane dynamic contrast enhancement (DCE) for 
detection of pituitary adenomas (17). It was reported that 
the vessel density and area is lower/smaller compared to 
other pituitary adenomas (18). 

Subtraction of an unenhanced T1-weighted sequence 
from the identical sequence performed after gadolinium 
administration can be helpful for determination of contrast 
enhancement, especially when the lesions are hyposignal 
or hypersignal compared to the surrounding structures on 
T1 weighted images (19-22). Subtraction of an unenhanced 
T1-weighted sequence was shown to be superior in the 
evaluation of signal intensity differences compared to 
conventional side-to-side review, given that the images are 
well-registered, which improves quality of the subtraction 
map and diminishes undesired artifacts (23).  

It is noteworthy that visual assessment is vulnerable 
to optical illusions. Also, comparison of the region of 
interest based on measurements between precontrast 

and postcontrast images on a picture archiving and 
communication system may be misleading due to platform 
based scaling in certain situations (24).

We hypothesized that the assessment of T1 3D 
subtraction method can determine contrast enhancement in 
pituitary lesions with increased accuracy, better confidence, 
and a shorter review time, compared to the conventional 
DCE technique. 

MATERIALS AND METHODS

Subjects
Patient consent was waived for this retrospective study. 

Between May 2015 and November 2016, 12 patients with 
clinically and biochemically proven Cushing’s disease 
underwent 3.0 T MRIs in our hospital. The sample was 
comprised of 10 women, 2 men; mean age, 37 years with 
an age range of 16-66 years. All of the patients underwent 
inferior petrosal sinus sampling, and the petrosal/peripheral 
ACTH ratio was > 2 at baseline, and > 3 at 5 minutes 
after 10 µg of desmopressin was injected intravenously. 
In addition, 23 patients with a Rathke’s cleft cyst (RCC) 
diagnosed on an MRI with normal pituitary hormone levels 
were included. This group was comprised of 20 women, 
3 men; mean age, 40.3 years with an age range of 22-81 
years as a control group, to prevent non-blinded positive 
results. The imaging diagnosis of RCC was determined by 
consensus. 

Among the 12 Cushing’s disease cases, 9 cases were 
surgically confirmed. One patient did not receive surgery 
due to old age, and 2 patients underwent surgery, but an 
immunohistochemical study could not be performed due to 
loss of the small tumor tissue during a frozen biopsy and 
serial section 

Magnetic Resonance Imaging
Patients were scanned on 3.0 Tesla MRI units (Discovery 

MR750/750w; GE Healthcare, Milwaukee, WI, USA), with 
a 32 channel head coil. After a pre-contrast T1 3D FSE 
scan, DCE images were obtained immediately after the 
bolus injection of 0.1 mmol/kg of Gadolinium contrast 
agent (Dotarem; Guerbet, SA, France) that was at a rate 
of 2 ml/s via an antecubital venous access. Postcontrast 
T1 3D FSE images were acquired after DCE images, with 
a 3D fast spoiled gradient echo (FSPGR, acquisition time: 
3:29) sequence in between. Detailed MR parameters for 
conventional DCE imaging and T1 3D FSE are summarized 
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in Table 1. In some cases of Cushing’s disease (n = 6), 
conventional 2D DCE acquired at another institute was 
reviewed instead, because an alternative dynamic technique 
was applied for these cases at our institute. Only images 
taken within a period of three months were included, and 
the image quality and parameters were acceptable for visual 
assessment and similar to those of our imaging protocol. 

Image Subtraction
Precontrast T1 3D FSE images were registered to 

postcontrast T1 3D FSE images by using rigid transformation 
with least-squares as cost functions (25). The registered 
precontrast T1 3D FSE images were subtracted from 
postcontrast T1 3D FSE and stored for visual analysis. The 
above steps were performed with the Medical Processing, 
Analysis, and Visualization software package version 7.3.0 
(National Institutes of Health; mipav.cit.nih.gov).

Image Assessment
The DCE sequences and T1 3D subtraction images were 

reviewed in random order. Two neuroradiologists with 1 
and 3 years of experience with pituitary MRIs, reviewed 
the sequences independently, and were blind to the clinical 
history and the diagnosis. The reviewers recorded the 
interpretation time taken to draw a conclusion (in seconds). 
Visual scoring was performed by a three-point scale of 
contrast enhancement (0: no contrast enhancement, 1: 
suspicious contrast enhancement, 2: definite contrast 
enhancement) on DCE images in the first session. To 
minimize the recall bias, the second session was done a 
week later for T1 3D subtraction images in the same way. 
On T1 3D subtraction images, contrast enhancement of the 
pituitary lesion was defined as a higher signal on the visual 
assessment compared to the subtracted temporal white 
matter. During both sessions, contrast-enhanced T1 3D 
fast spoiled gradient echo (FSPGR) sequence was used as a 
reference for lesion localization. 

Statistical Analysis
Inter-observer agreement for visual conspicuity was 

analyzed using weighted Cohen kappa coefficient: κ values 
> 0.81, were in the range of 0.61-0.80, and < 0.60 were 
considered to reflect excellent, good, and poor agreement, 
respectively. A Mann-Whitney test was performed to 
compare the interpretation time of each sequences. The 
receiver operating characteristic (ROC) for multireader-
multicase (MRMC) analysis was performed with the 
Dorfman-Berbaum-Metz approach by using readers as 

fixed variables and cases as random variables (26, 27). All 
P-values < 0.05 were considered statistically significant. 
A net benefit effect measure that combines sensitivity 
and specificity, adjusted for prevalence was calculated, 
and bootstrapped data was used to derive the confidence 
interval (CI). The net benefit effect is defined as the 
difference in sensitivity with use of T1 3D subtraction 
technique plus the difference in specificity with use of T1 
3D subtraction technique, with the difference in specificity 
weighted by two factors. Those two factors being: (a) a 
weighting value, defined as the relative increased in value 
(i.e., benefit, cost, or utility) of an additional correctly 
identified patient with a true-positive diagnosis compared 
with the reduction in value of an additional patient with 
a false-positive diagnosis; and (b) an adjustment for 
prevalence (i.e., proportion of true-positive diagnoses) 
(28). A significant improvement with T1 3D subtraction 
technique was defined as a positive net-effect measure 
whose 95% CI did not include zero. Statistical analysis was 
performed using SPSS Statistics 23.0 (IBM, Armonk, NY, 
USA), MRMC analysis was performed with SAS (version 9.4, 
SAS Inc., Cary, NC, USA), OR-DBM MRMC 2.5 software; 
University of Iowa, Iowa City, IA), and R statistical software 
R (version 3.3.1; R Foundation for Statistical Computing, 
Vienna, Austria). 

RESULTS

Inter-observer agreement for visual scale of contrast 
enhancement was poor in DCE (κ = 0.57) and good in 

Table 1. Imaging Parameters for the Conventional Dynamic 
Enhancement and T1 3D Fast Spin Echo Sequences

Dynamic contrast 
enhancement

T1 3D fast spin 
echo

Field of view (mm) 180 180

Matrix size 384 × 256 384 × 256

Slice thickness/spacing (mm) 2/3 1/0.5

TR/TE (ms)
380 or 325/9.6 or 

10.1
530/16 or 17

Flip angle 111 Variable

Echo train length 3 24

Number of excitations 1 2

Scan time (minutes: seconds)
2:36 (31seconds/

phase)
3:16

TE = echo time; TR = repetition time 
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T1 3D subtraction images (κ = 0.75). The time taken for 
determining presence of contrast-enhancement in pituitary 
lesions was significantly shorter in the T1 3D subtraction 
images compared to the DCE sequence in the whole 
group (8.1 ± 5.2 seconds and 17.9 ± 12.0 seconds for T1 3D 
subtraction technique and DCE, respectively, P < 0.05) (Table 2). 

Mean ROC values demonstrated increased reader 
confidence range with subtraction images (0.975, 95% CI: 
0.94-1.00) compared with DCE (0.799, 95% CI: 0.70-0.92) (P 
< 0.01). Net benefit effect of subtraction images over DCE 
was 0.34 (95% CI: 0.12-0.56), which is also in concordance 
with the above results.  

For Cushing’s disease, both reviewers misclassified one 
case as a non-enhancing lesion on DCE images, while no 
cases were misclassified on T1 3D subtraction images by 
either reviewer. For RCC, four cases by reviewer 1 and five 
cases by reviewer 2 were misclassified as an enhancing 
lesion on DCE images, while only one case was misclassified 
as an enhancing lesion by reviewer 2 on T1 3D subtraction 
images (Table 3).

Figures 1 and 2 show examples of Cushing’s disease and 
RCC cases misclassified with DCE and correctly classified by 
T1 3D subtraction images.

DISCUSSION

Our study shows that the T1 3D subtraction technique 
reduces inter-observer variability and increases reader 
confidence, requires significantly less interpretation 
time, and increases the accuracy of assessing contrast 
enhancement compared to the conventional 2D dynamic 
scan.   

Image subtraction could be applied to a routine MRI, 
using a variety of commercially or non-commercially 
available workstations or software products. Image 
subtraction can also be integrated into the clinical 

workflow effortlessly, since only minimal processing 
time for registration and subtraction is required. In our 
study, we included RCC patients as a control because 
including only Cushing’s disease patients in diagnosing 
the presence of contrast-enhancing lesions may lead to 
false positive results. The results are noteworthy, because 
the conventional 2D dynamic in this study shows a high 
proportion of misclassification and variability in both 
Cushing’s disease and RCC.  

To the best of our knowledge, there has been no previous 
study to compare the pre-postcontrast subtraction image 
and conventional dynamic study in the evaluation of 
Cushing’s disease. ACTH-secreting adenomas have the 
tendency to be microadenomas that are intrasellar in 
location (29, 30). The success of surgery in Cushing’s 
disease largely relies on precisely locating the tumor 
within the sella turcica (31). The accuracy of the 
conventional dynamic MRI in diagnosing Cushing’s disease 
is suboptimal, only confirming approximately 50-70% 
of Cushing’s disease cases (6, 7, 31, 32). Previous studies 
have shown that dynamic spin echo imaging acquired 
30 to 90 seconds after contrast injection demonstrated 
the best contrast for microadenomas (33, 34), and the 
maximal contrast was obtained within a 2 minute window 
after contrast injection (35). The partial volume effect 
between micro-lesions and surrounding tissues can lead to 
pseudoenhancement in pituitary gland lesions and there 
is no evidence on how long the dynamic scan should be to 

Table 2. Interpretation Time (second) Taken for Determination 
of Contrast Enhancement

DCE T1 3D subtraction P value

Cushing + RCC (n = 35) 17.9 ± 12.0 8.1 ± 5.2 < 0.001

Cushing (n = 12) 23.5 ± 15.2 9.5 ± 6.7 < 0.001

RCC (n = 23) 15.0 ± 8.7 7.4 ± 4.2 < 0.001

DCE = dynamic contrast enhancement; RCC = Rathke’s cleft cyst

Table 3. Interpretation Results for Diagnosis of Cushing Disease and RCC on DCE and Subtraction Images

Cushing (n = 12) RCC (n = 23)

CE Suspicious NCE CE Suspicious NCE

Reviewer 1 DCE 9 (75) 2 (16.7) 1 (8.3) 4 (17.4) 8 (34.8) 11 (47.8)

T1 3D subtraction 12 (100) 0 (0) 0 (0) 0 (0) 1 (4.3) 22 (95.7)

Reviewer 2 DCE 8 (66.7) 3 (25.0) 1 (8.3) 5 (21.7) 5 (21.7) 13 (56.6)

T1 3D subtraction 8 (66.7) 4 (33.3) 0 (0) 1 (4.4) 3 (13.0) 19 (82.6)
Data are presented as number of patients (%). 
CE = contrast enhancement; DCE = dynamic contrast enhancement; NCE = no contrast enhancement; RCC = Rathke’s cleft cyst
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detect contrast enhancement. The 3D FSE with a variable 
flip angle technique enables thin slice imaging without 
exceeding specific absorption rate (SAR) limits (36). The 

3D FSE can potentially minimize the partial volume effect 
between micro-lesions and surrounding tissues, which 
may contribute to the detection of pituitary micro-lesions 

Fig. 1. Images of a 37-year-old female patient diagnosed with Cushing disease. On 
conventional dynamic contrast enhanced images (a), both reviewers recorded the visual scale 
as 1 (suspicious enhancement) (arrows). On subtraction image (b), there is definite contrast 
enhancement of the lesion, which was defined as having a higher value compared to the 
subtracted temporal white matter. Both reviewers recorded the visual scale as 2 (definite 
contrast enhancement) (arrow).

a

b

Fig. 2. Images of a 32-year-old female patient diagnosed with Rathke’s cleft cyst. On 
conventional dynamic images (a), reviewer 1 recorded the visual scale as 1 (suspicious contrast 
enhancement) and reviewer 2 recorded the visual scale as 2 (definite contrast enhancement) 
(arrows). On subtraction image (b), there is no contrast enhancement of the lesion and both 
reviewers recorded the visual scales as 0 (no contrast enhancement) (arrow). 

a

b
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(37). Furthermore, the subtraction technique used in our 
study may be advantageous for detection of adenomas 
with slower enhancement, since the postcontrast T1 3D 
FSE images were acquired more slowly at a delayed phase 
after contrast enhancement. However, even with the 
combination of T1 3D subtraction technique, the presence 
of contrast enhancement still resulted in misclassification 
in some cases. These errors may be further improved by 
the application of more advanced imaging techniques such 
as 3D CAIPIRINHA (controlled aliasing in parallel imaging 
results in higher acceleration) (38), compressed sensing 
(39), or reduced field-of-view imaging (40, 41), which can 
provide higher spatial resolution without increasing scan 
time.  

In a recent review, it was recommended (42), that higher 
resolution DCE scans (field of view 12-14 cm, matrix size 
256 × 192, slice thickness 1-1.5 mm) should be used when 
Cushing’s disease is suspected. Advanced techniques that 
enable volumetric dynamic imaging with thin slices are 
becoming more available (43, 35). These approaches may 
prove to be alternate approaches that can minimize partial 
volume averaging, and decrease ambiguity in determining 
contrast enhancement. 

There are several limitations in our study. First, only 
the presence of contrast enhancement with conventional 
DCE and T1 3D subtraction images were evaluated for 
the pituitary lesion, which may not reflect the practical 
situation. In routine practice, T1 weighted and T2 weighted 
images are also included in the evaluation of a pituitary 
lesion, from which additional information can be drawn. 
Second, features that affect diagnosis such as location of 
the lesion (42), could not be blinded in our study although 
the reviewers focused on contrast enhancement as much 
as possible, this can be a potential source of bias. Third, our 
study design is a retrospective study with a case-control 
design. Fourth, a substantial proportion of our Cushing’s 
disease patients had performed DCE at another institution, 
which may affect the interpretation results due to different 
MRI protocols.  

In conclusion, the T1 3D subtraction technique shows 
superior performance for determining the presence of 
enhancement on pituitary lesions compared with the 
conventional DCE technique, which may aid in diagnosing 
Cushing’s disease.
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