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ABSTRACT 

 

Effects of rapamycin on mTOR signaling in the insular cortex of neuropathic rats. 
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Injury of peripheral nerves can trigger neuropathic pain, producing allodynia and hyperalgesia 

via peripheral and central sensitization. Neuropathic pain is related to physiological changes in 

the primary afferent nerves, including spinal cord and brain. Recent studies have focused on the 

role of the insular cortex in neuropathic pain. Because the insular cortex is thought to store 

pain-related memories, translational regulation in this structure may reveal novel targets for 

controlling chronic pain. In neurons, many proteins that are involved in the inducement of 

synaptic activity and the expression of synaptic plasticity are converged at synapses especially. 

Signaling via mammalian target of rapamycin (mTOR), which is known to control mRNA 

translation and influence synaptic plasticity, may be involved in the development of chronic 

pain. The activity of mTOR and its downstream effectors have been detected in peripheral and 

central regions including pain transmission. mTOR has been studied at the spinal level in 
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neuropathic pain, but its role in the insular cortex under these conditions remains elusive. 

Therefore, this study was conducted to determine the role of mTOR signaling in neuropathic 

pain and to assess the potential therapeutic effects of rapamycin, an inhibitor of mTOR, in the 

insular cortex of rats with neuropathic pain. Mechanical allodynia was assessed in adult male 

Sprague-Dawley rats after neuropathic surgery and following microinjections of rapamycin in 

the insular cortex on post-operative days 3 and 7. To evaluate the effective pain prevention of 

pre-administration with rapamycin in the insular cortex, the animals were microinjected 

rapamycin into the insular cortex before nerve injury. Rapamycin reduced mechanical allodynia 

and downregulated the expression of mTOR signaling pathway, postsynaptic density protein 95 

and N-methyl-D-aspartate receptor, thereby inhibiting neuropathic pain-induced synaptic 

plasticity. Finally, pre-microinjection of rapamycin effectively alleviated development 

mechanical allodynia but failed to the down regulated mTOR signaling pathway. These findings 

suggest that mTOR signaling in the insular cortex may be a critical molecular mechanism 

modulating neuropathic pain.  

 

 

 

 

 

 

 

 

Key words: insular cortex, neuropathic pain, mammalian target of rapamycin (mTOR), post synaptic 

density 95 (PSD95), N-methyl-D-aspartate receptor (NMDAR), synaptic plasticity, rapamycin 
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I. INTRODUCTION 

 

Pain is a survival mechanism that plays a role as a warning sign of ongoing or imminent tissue 

damage. While pain is physiologically phenomenon, neuropathic pain is a pathological condition 

triggered by detrimental changes to the sensory pathway after damage or dysfunction of the 

nervous system.
1,2

 It is characterized by allodynia, hyperalgesia and spontaneous pain. For patients 

with neuropathic pain, the suffering can be severe and have a disturbingly ordinary life.
3
 Despite 

progress in clinical and advanced animal model for research, the mechanisms of neuropathic pain 

remain ambiguous. Because of the complex pathologic mechanisms involved, the development of 

new drugs for such pain has stayed elusive. Thus, understanding the cellular, molecular changing 

mechanisms underlying neuropathic pain states will be a decisive phase in the development of new 

drugs to specifically target the distinct mechanisms of neuropathic pain.      

Neuroplasticity in the form of protein transcription and translation may contribute to the 

development of chronic pain including neuropathic pain.
4
 Since neuropathic pain is mediated by 
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both peripheral and central synaptic plasticity, the molecules implied in the synaptic plasticity may 

serve as the important target for the neuropathic pain.
5,6

 Mammalian target of rapamycin (mTOR), 

a serine/threonine protein kinase that controls protein synthesis and balance, influences extensive 

range of biological functions and regulates neuronal activity including cell growth, memory 

formation, and pain processing.
7-9

 mTOR belongs to the phosphatidylinositol 3-kinase-related 

kinase protein family and forms at least 2 multiprotein complexes known as mTOR complex 1 

(mTORC1) and mTOR complex 2 (mTORC2).
10

 The activation of mTORC1, especially in a 

sensitive to rapamycin, promotes the phosphorylation of downstream molecules, including 

eukaryotic initiation factor 4E-binding protein (4EBP) and p70ribosomal S6 protein kinase 

(p70S6K), which can lead to initiation of new protein synthesis.
11-14

 Increasing evidence has 

supported that mTOR plays an important role in the modulation of neuronal excitability and 

controls learning and memory-associated with long-term plasticity.
12,15-17

 It has been demonstrated 

that P70S6K or 4EBP knock out mice results in deficiency of long-term memory and synaptic 

plasticity.
14,17,18

 Similarity between the molecular mechanisms of long-term memory and pain-

related plasticity suggested that mTOR is a potential target for the induction of pathological states 

including neuropathic, inflammatory and cancer-related pain.
19-23

 One study showed that mTOR 

signaling regulated pain-related synaptic plasticity in the entorhinal-hippocampal pathway in a 

model of persistent peripheral nociception induced by peripheral bee venom injections.
24

 Moreover, 

the levels of mTOR and extracellular signal-regulated kinase (ERK) were increased in the 

cerebrospinal fluid-contacting nucleus of the brainstem after nerve injury.
25

 In the spinal cords of 

rats with chronic constriction injury, inhibition of mTOR with rapamycin reduces the expression of 

postsynaptic density protein 95 (PSD95, also known as SAP90).
26

 PSD95 is an abundant post 

synaptic scaffolding protein regulating the formation, strength and plasticity of excitatory 

synapses.
27

 Furthermore, PSD95 has multiple protein-protein interaction domains that are shown 
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by PSD95-dependent changes in the gating of N-methyl-D-aspartate (NMDA) receptors.
28-31

 

Previous studies reported that NMDA receptors triggers plastic changes during persistent 

inflammation-related pain.
32,33

 Thus, PSD95 may have a role in synaptic plasticity and pain 

hypersensitivity.
34-38

 

The insular cortex (IC) is an integrating region of temporal cortex that has been involved in 

sensory and cognitive process such as learning, memory and sensory perception.
39,40

 For instance, 

conditioned taste aversion and long term potentiation (LTP) in the IC have similar molecular 

mechanisms, which are the activation of ERK1/2,
41

 NMDA receptor dependence,
42

 and protein 

synthesis.
43

 Clinical and basic studies persistently indicate critical roles of the IC in pain 

processing.
44-46

 One study reported plastic changes and LTP in the IC after injury.
39

 Moreover, 

human fMRI studies report a relationship between the IC and chronic neuropathic pain 

conditions,
47,48

 and interestingly, rostral regions of the IC are activated during noxious 

somatosensory stimulation.
49,50

 The rostral agranular IC (RAIC) in rats is essential for modulating 

nociception
51

 and is implicated in pain behavior.
52,53

 Recently, it has been found that lesion in 

RAIC diminished pain-related behaviors in neuropathic pain models.
54

 These results suggest that 

the rostral part of the IC plays a crucial role in pain processing. 

Therefore, the aim of this study was to investigate the role of the mTORC1 pathway in the IC 

after nerve injury. In particular this research has been focused on the relationship between the 

mTORC1 signaling and PSD95 or NMDA receptor 2B (NMDAR2B), which has been implicated 

to be associated with synaptic plasticity. In the present study, based on these lines of evidence, the 

effective pain prevention of pre-administration with rapamycin in the IC was performed. Using 

behavioral test, immunohistochemistry, and western blot study, the effects of rapamycin was 

verified. Lastly, the changes in neuropathic pain and synaptic plasticity after microinjection of 

rapamycin were observed. The findings from this study may provide the foundation for a new 
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molecular target, the mTOR pathway, for understanding neuropathic pain and may contribute to 

potential therapeutic applications. 
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II. MATERIALS AND METHODS 

 

1. Neuropathic pain model 

A. Animals 

Adult male Sprague-Dawley rats, weighing 250-280 g (Harlan, Koatec, Pyeongtaek, Korea) 

were house in plastic cages and allowed to acclimate to the colony room for 7 days after arrival. 

Rats were maintained under 12 hrs light/dark cycles with pellets and water provided ad libitum. 

All experimental protocols in this study were in compliance with the National Institutes of Health 

guidelines and approved by the Institutional Animal Care and Use Committee of Yonsei 

University Health System. 

 

B. Surgical procedure 

Under sodium pentobarbital (50 mg/kg, intraperitoneal, [i.p.]) anesthesia, branches of the left 

sciatic nerve were exposed. In the neuropathic group, The tibial and sural nerves were tightly 

ligated with 4-0 black silk and cut, whereas the common peroneal nerve was left intact (nerve 

injured, NP group).
55

 Animals in the sham group underwent the same procedure for exposing the 

sciatic nerve but without injury. 
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2. Cannula implantation 

Rats were anesthetized with sodium pentobarbital (50 mg/kg, i.p.) and in a stereotaxic frame. 

Guide cannulae (28 gauge) were bilaterally implanted into the RAIC (AP: +0.6 mm, ML: 4.7 

mm, DV: -5.8 mm). 
56

 
51,54

 Rats were allowed to recover for 1 wk after cannula implantation. 

 

3. Drug microinjection into the insular cortex 

Rapamycin (LC Laboratories, Woburn, MA, USA) was prepared in 0.06% dimethyl-sulfoxide 

(DMSO) diluted in normal saline (0.9% NaCl). Microinjections were performed on post-

operative day (POD) 3, POD7 and before nerve injury. Rapamycin (0.5 l of 600 nM) or an 

equivalent amount of vehicle solution was infused into the IC bilaterally through the injection 

cannulae using Hamilton syringes and PE-10 tubing. The injection cannula was maintained in 

position for at least 1 min to allow for drug absorption. 

 

4. Behavioral test 

A. Measuring response threshold 

Mechanical hypersensitivity of the hind paw was assessed before nerve injury and on POD 1, 

3 and 7 by a researcher blinded to the experimental conditions. Rats were habituated for 30 mins 

to the test chambers, a metal mesh floor under plastic domes (8 x 8 x 18 cm). Mechanical 

allodynia was measured by assessing thresholds for hind paw withdrawal to stimulation by an 

electrical von Frey filament (UGO Basile, Varese, Italy). Licking or rapid withdrawal of the hind 

paw was considered as a positive response. The responses were measured eight times in 2-3 mins 
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intervals. The mechanical forces were recorded for each withdrawal of the hind paw.  

 

B. Behavioral test schedule 

(A) Mechanical allodynia test on POD3 and POD7 

After 7 days of acclimation periods, the animals were conducted pre-behavioral test. Then, 

neuropathic pain surgery was performed. On the next day, which was POD1, the pain 

thresholds were measured. In the same manner, in POD3 and POD7, behavioral test was 

conducted. 

 

 

 

 

 

Figure 1. Schematic procedure of nerve injury and behavioral test on POD3 and POD 7. 
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(B) Pre-administration of drug and behavioral test 

The cannulation surgery was performed following one week acclimation periods. After 

cannulation surgery, the animals were provided with 7 days of recovery. The rapamycin or 

vehicle solutions were injected in the IC. Then after 10 mins, neuropathic pain surgery was 

performed. The behavioral test was measured from on POD1 to on POD7. 

 

 

 

 

 

 

Figure 2. Schematic procedure of pre-administration with drug in the IC and behavioral test. 
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(C) Post-microinjection and behavioral test on POD3 and POD7 

After cannulation surgery and recovery periods, the rats were conducted the neuropathic pain 

surgery subsequent to recovery periods. Testing was performed before and at 0.5, 1, 2, 4, 8, 12, 

24 and 48 hrs after drug microinjection on POD3 and POD7. 

 

 

 

 

 

 

Figure 3. Schematic highlighting the time points of drug-microinjection and behavioral test on 

POD 3 and POD 7. 
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5. Histology 

Rats were anesthetized with urethane (1.25 g/kg, i.p.) and perfused transcardially with normal 

saline followed by a 4% solution of formaldehyde in 0.1 M sodium phosphate buffer (pH 6.8). 

The brains were extracted and post-fixed overnight at 4C before cryoprotecting in 30% sucrose 

in phosphate-buffered saline (PBS, pH 7.4) for 24 hours. Coronal tissue sections (30 m) were 

cut using a cryostat (Thermo Scientific, Waltham, MA, USA). The sections were incubated with 

PBS containing 1% normal horse serum for 30 minutes, and then incubated overnight in anti-c-

Fos (1:4,000, Merck Millipore, Darmstadt, Germany) and phospho (p)-ERK (1:2,000, Cell 

Signaling Technology, Danvers, MA, USA) antibodies at 4C. The sections were washed with 

PBS and incubated for 30 minutes in biotinylated antibody (1:50, Vector Laboratories, 

Burlingame, CA, USA). The slides were then washed again and incubated for 30 minutes with 

PBS containing the avidin-biotinylated horseradish peroxide complex (ABC kit, Vector 

Laboratories, Burlingame, CA, USA). After washing, sections were incubated for 5-7 minutes in 

a PBS solution containing 0.1% 3,3’-diaminobenzidine tetrahydrochloride (DAB), 0.1% 

ammonium nickel sulfate, and 10 l of H2O2. The reaction was terminated by washing with PBS. 

The slides were then dehydrated with ethanol, cleared in xylene and covered with Permount 

(Thermo Scientific, Waltham, MA, USA). c-Fos- and p-ERK-labeled cells in the ipsilateral and 

contralateral sites of the rostral IC defined by the rat brain atlas
57

 were observed under light-field 

microscopy (20x objective; Olympus, Tokyo, Japan). To quantify c-Fos- and p-ERK-positive 

cells in the IC, a maximum of eight representative sections of the IC were chosen at random from 

each rat and counted by an observer blinded to the experimental conditions. The numbers of 

positive cells from each section were averaged to represent the cell count of each animal. 

Regions of interest (ROIs) were set for the ipsilateral and contralateral sides.  
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6. Western blot analysis 

As described above, animals were anesthetized with enflurane for decapitation and IC tissue 

sample collection. The ipsilateral and contralateral rostral ICs were quickly dissected, frozen on 

dry ice, and stored at -70C. For protein extraction, samples were homogenized in lysis buffer 

(Intron Biotechnology, Pyeongtaek, Korea) containing phosphatase inhibitor (Roche, Mannheim, 

Germany). Samples were the centrifuged at 12,000x g for 20 mins at 4C, and the supernatants 

were collected. Total protein concentrations were assessed with a spectrophotometer (Thermo 

Scientific), and 30 g of protein per well were denatured and run on 10% gels (Bio-Rad, 

Herculues, CA, USA). Proteins were transferred onto a polyvinylidene difluoride membrane 

(Merck Millipore), and the membranes were blocked by incubating in 3% skim milk. Membranes 

were incubated with primary antibodies against mTOR (1:1,000, Cell Signaling Technology, 

Danvers, MA, USA), p-mTOR (Ser 2448, 1:500, Cell Signaling Technology, Danvers, MA, 

USA), P70S6K (1:1,000, Cell Signaling Technology Danvers, MA, USA), p-P70S6K (Thr 389, 

1:500, Cell Signaling Technology, Danvers, MA, USA), 4EBP (1:1,000, Cell Signaling 

Technology, Danvers, MA, USA), p-4EBP (Thr37/46, 1:500, Cell Signaling Technology, Danvers, 

MA, USA), PSD95 (1:1,000, Cell Signaling Technology, Danvers, MA, USA), NMDAR2B 

(1:1,000, Cell Signaling Technology, Danvers, MA, USA) and ß-actin (1:10,000, Cell signaling 

Technology, Danvers, MA, USA). Membranes were then incubated with the appropriate anti-

rabbit or anti-mouse horseradish peroxidase-conjugated secondary antibodies (1:10,000, Cell 

Signaling Technology, Danvers, MA, USA). Proteins were visualized by applying a 

chemiluminescent substrate (GE Healthcare, Little Chalfont, UK) and observed using the LAS 

system (GE healthcare, Little Chalfont, UK). The signals for phosphorylated proteins were 

normalized to those from the nonspecific forms. ß-actin was used as the loading control. 



 

14 

 

7. Statistical analysis 

Data from the behavioral test were analyzed by two-way analysis of variance (ANOVA) with 

repeated measures, with group and POD as factors, and by unpaired t test for post hoc 

comparisons between groups. Unpaired t tests were performed for the analyses of 

immunohistochemistry and western blotting data. Statistical analyses were performed by SPSS 

20.0 software (IBM Corporation, Armonk, NY, USA). All values are expressed as means ± SEM. 

P value less than 0.05 were considered statistically significant. 
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III. RESULTS 

 

1. The activation of pain marker, mTOR signal pathway, PSD95 and NMDA receptor 2B 

in the insular cortex after neuropathic surgery 

 

A. Development of mechanical allodynia 

It was examined that the time course of behavioral changes in neuropathic pain model
55

 

using the threshold of the injured paws at 1, 3 and 7 days after the neuropathic pain surgery. 

From POD1 to POD7, the thresholds between NP (n=6) and sham groups (n=6) were 

significantly different (group, F(1,10) = 118.917, P < 0.001; POD, F(3,30) = 16.159, P < 0.001;  

group and POD interaction, F(3,30) = 29.5337, P < 0.001; two-way repeated measured ANOVA). 

The mechanical thresholds of the peripheral nerve injury group were decreased compared with 

those of the shams on POD1, POD3 and POD7 (unpaired t test, P < 0.001; Figure 4). 
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Figure 4. Development of mechanical allodynia in nerve-injured (NP, n=6) and sham-injured 

(Sham, n=6) rats. After nerve injury, rats developed significant neuropathic pain on post-operative 

day 1 (POD1), POD3 and POD7 compared with the sham group. Data presented as means ± SEM, 

**
P < 0.01.  
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B. Increased in pain marker expression induced by nerve-injury 

Several authors have proposed that the IC is activated under various type of pain, including 

neuropathic pain.
58,59

 Figure 5A shows histological confirmation of rostral IC with Paxinos and 

Watson’s rat atlas.
57

 To confirm that the rostral IC is involved with neuropathic pain, 

immunohistochemistry was performed to assess the numbers of cells expressed c-Fos and p-

ERK, which are important markers for nociceptive neuronal activation in the CNS.
60

 On POD3, 

rats in the NP group had higher numbers of c-Fos- (Figure 5B, the first row microphotographs 

and Figure 5C, the graph of c-Fos-positive neurons, NP group (n=5), Sham group (n=5), P < 

0.001) and p-ERK- (Figure 5 B, the second raw microphotographs and Figure 5D, the graph of 

p-ERK positive cells NP group (n=4), Sham group (n=4), P < 0.05, scale bar: 200 m) positive 

cells than sham animals. The numbers of cells positive for c-Fos (Figure 5B, the third row 

microphotographs and Figure 5E, the graph of c-Fos-positive cells, NP group (n=6), Sham 

group (n=6), P < 0.01) and p-ERK (Figure 5B, the fourth row microphotographs and Figure 5F, 

the graphs of p-ERK-positive cells, NP group (n=6), Sham group (n=6), P < 0.01) in nerve-

injured rats were also significantly higher than in sham controls on POD7. 
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Figure 5. c-Fos and phospho (p)-extracellular signal-regulated kinase (ERK) expression in 

NP and Sham rats. (A) Histological clarification of rostral IC with rat atlas. Subdivisions of the 

IC were included in the black square box. c-Fos- and p-ERK-positive cells in the AIV and AID 

were analyzed. Abbreviations: AIV, agranular insular cortex ventral; AID, agranular insular cortex 

dorsal; DI, dysgranular insular cortex; GI, granular insular cortex; S2, secondary somatosensory 

cortex; Den, dorsal endopiriform nucleus; VCI, ventral part of claustrum; DCI, dorsal part of 

claustrum. (B) Microphotographs of c-Fos and p-ERK in the rostral IC (AIV and AID areas). The 

arrows mean positive cells for c-Fos or p-ERK. (C) Quantification of c-Fos- and (D) p-ERK-

positive cells on POD3. (E) Quantification of c-Fos- and (F) p-ERK-positive cells on POD7. Scale 

bars, 200 m. Data are presented as means ± SEM. 
*
P < 0.05, 

**
P < 0.01.  
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C. Changes in mTOR, P70S6K, 4EBP, PSD95 and NMDA receptor 2B activity after 

neuropathic pain 

On the basis of the above results, it was hypothesized that chronic pain derived from nerve 

injury alters mTOR signaling in the IC. To test this, I measured protein and phosphorylation 

levels of mTOR and its downstream targets, P70S6K and 4EBP, as well as PSD95 and NMDA 

receptor 2B (NMDAR2B) expression in the IC at 3 and 7 days after nerve injury. The results 

indicate that on POD3, p-mTOR was upregulated in the NP group (n=5) compared with that in 

the sham group (n=8, P < 0.05, Figure 6A), with no difference in the total amounts of mTOR 

(Figure 6B). Furthermore, phosphorylation levels of its downstream targets P70S6K and 4EBP 

were upregulated significantly in the NP group compared with those in shams (p-P70S6K:NP, 

n=5; sham, n=5, P < 0.05, Figure 6C, p-4EBP: NP, n=4; sham, n=4, P < 0.01, Figure 6E). There 

was no changes in total P70S6k (Figure 6D) and 4EBP levels (Figure 6F). Additionally, the 

expression of PSD95 in the NP group (n=5) was higher than in the sham group (n=5, P < 0.05, 

Figure 6G). The level of NMDAR2B was increased in NP group (n=7) compared with the sham 

group (n=7, P < 0.05, Figure 6H). Similarly, mTOR signaling activity was elevated in the NP 

groups compared with that in the shams on POD7. Levels of p-mTOR (Figure 7A) and p-

P70S6K (Figure 7C) in the NP rats (n=4) were higher than in the sham group (n=4, P < 0.01). 

4EBP activity measured by p-4EBP expression was also increased in the NP group (n=4 each, P 

< 0.05, Figure 7E). There were no differences in total levels of mTOR (Figure 7B), P70S6K 

(Figure 7D), and 4EBP (Figure 7F). The levels of PSD95 on POD7 were significantly higher in 

NP rats than in sham controls (n=4 each, P < 0.05, Figure 7G). Finally, the expression level of 

NMDAR2B was increased significantly in the NP group (n=6) compared with the sham group 

(n=6, P < 0.05, Figure 7H). These results suggest that mTOR pathway in the IC strongly is 

related to PSD95 and NMDAR, and lead to neuropathic pain.  
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Figure 6. Phosphorylation of mammalian target of rapamycin (mTOR), p70 ribosomal S6 

protein kinase (P70S6K) and 4E binding protein (4EBP), and expression of postsynaptic 

density protein 95 (PSD95) and NMDAR2B in the IC on the day 3 after nerve injury. (A, 

B) p-mTOR increased in the NP group (n=5) compared with the sham group (n=8), but total 

mTOR levels were not significantly different on POD3. (C, D) p-P70S6K increased in the NP 

group (n=5) compared with the sham group (n=5), but total P70S6K levels were not different. 

(E, F) p-4EBP increased in the NP group (n=4) compared with the sham group (n=4), but total 

4EBP levels were not different. (G, H) PSD95 and NMDAR2B levels increased significantly in 

the NP group (n=5, 7 respectively) compared with the sham group (n=5, 7 respectively). The 
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intensity of the phosphor-form band was normalized to that of the total form, and the total form 

bands were normalized to ß-actin protein. Data are presented as means ± SEM. 
*
P < 0.05, 

**
P 

< 0.01. 
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Figure 7. Phosphorylation of mTOR, P70S6K and 4EBP, and expression of PSD95 and 

NMDAR2B in the IC on the day 7 after nerve injury. (A, B) p-mTOR increase in the NP group 

(n=4) compared with the sham group (n=4), but total mTOR levels were not significantly different 

on POD7. (C, D) p-P70S6K increased in the NP group (n=4) compared with the sham group (n=4), 

but total P70S6K levels were not different. (E, F) p-4EBP increased in the NP group (n=4) 

compared with the sham group (n=4), but total 4EBP levels were not different. (G, H) PSD95 and 

NMDAR2B levels increased significantly in the NP group (n=4, 6 respectively) compared with the 

sham group (n=4, 6 respectively). The intensity of the phosphor-form band was normalized to that 

of the total form, and the total form bands were normalized to ß-actin protein. Data are presented 

as means ± SEM. 
*
P < 0.05, 

**
P < 0.01. 
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2. Effective pain prevention of pre-administration with rapamycin in the insular cortex 

 

A. Changes in pain thresholds induced by pre-rapamycin injection 

To determine whether rapamycin could prevent the development of the induction stage of 

mechanical allodynia, the animals were microinjected rapamycin or vehicle solution via a 

cannula implanted 10 mins before neuropathic surgery. The behavioral responses were recorded 

from POD1 to POD7 (Figure 2). After treatment with drugs, the pain threshold in pre-

administration of rapamycin (Pre-Rapa group) showed significant change compared to pre-

administration of vehicle solution (Pre-Vehicle group) at day 1, 2 and 3 after nerve-injury 

(group, F(1,16) = 65.134, P < 0.001; POD, F(7,112) = 1324.317, P < 0.001; POD and group 

interaction, F(7,112) = 14.918, P < 0.001; rapamycin, n=11; vehicle, n=11 two-way repeated 

measured ANOVA; Figure 8) This result indicated that rapamycin could possibly alleviate the 

neuropathic pain induced by peripheral nerve injury in the induction stage. Data are presented 

as means ± SEM. 
*
P < 0.05, 

**
P < 0.01.    

 

B. Alteration of c-Fos and p-ERK expression induced by pre-rapamycin injection 

Whether pre-administration of rapamycin reduces the expression of markers of nociceptive 

activation in the IC on POD2 after pre-drug injections, the immunohistochemistry was assessed 

(Figure 9A, B). However, unlike the result of behavioral test, rapamycin could not decrease the 

expressions of c-Fos (Figure 9C, the first row microphotographs and Figure 9D, the graph of c-

Fos-positive cells, P > 0.05) and p-ERK (Figure 9C, the second row microphotographs and 

Figure 9E, the graph of p-ERK-positive cells, P > 0.05) in the IC of neuropathic rats. 
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Figure 8. Changes in pain threshold to mechanical stimulation after pre-administration of 

rapamycin on POD1 POD2 and POD3. Intra-IC microinjection of rapamycin could alleviate on 

the induction stage of nerve-injury induced neuropathic pain in rats (POD1, (P < 0.05); POD2, 

(P < 0.01); POD3, (P < 0.05). 
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Figure 9. Pre-microinjection of rapamycin does not reduce pain markers. (A) Schematic 

procedure of pre-administration with drug in the IC and the day of tissue extraction. (B) 

Microinjection site into the IC (left) and a representative photograph of a coronal section (right). 

Scale bar, 1 mm. (C) Microphotographs of c-Fos and p-ERK in the rostral IC. The arrows mean 

positive cells for c-Fos and p-ERK on POD2. On POD2, (D) the numbers of c-Fos-positive and 

(E) p-ERK-positive cells did not decrease significantly in the pre-Rapa group (n=6) compared 

with in the pre-Vehicle group (n=6).  
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C. Change in mTOR, P70S6K, 4EBP, PSD95 and NMDA receptor 2B activity after pre-

rapamycin injection 

The western blot was performed whether pre-microinjection of rapamycin effects mTOR 

signaling pathway, PSD95, NMDAR2B expressions on POD2. Like the results of 

immunohistochemistry, the phosphorylation of mTOR was not decrease significantly on POD2 

in rats pre-receiving rapamycin (Figure 10A, n=5). Similarly, phosphorylation levels of 

P70S6K (Figure 10C, n=6) and 4EBP (Figure 10E, n=5) in the rapamycin-pre-treated group 

were not significantly different (P > 0.05). The expression levels of total mTOR (Figure 10B, 

n=5), P70S6K (Figure 10D, n=6) and 4EBP (Figure 10F, n=5) were not different (P > 0.05).  

Furthermore, the expressions of PSD95 (Figure 10G, n=5) and NMDAR2B (Figure 10H, n=5) 

in the pre-Rapa group were not significantly decrease (P > 0.05). 

 

 

 

 

 

 

 

 

 



 

29 

 

 

Figure 10. Pre-microinjection of rapamycin cannot inhibit mTOR signaling activity in the 

IC. (A, B) p-mTOR and total mTOR levels did not change in the Pre-Rapa group (n=5) 

compared with in the Pre-Vehicle group (n=5). (C, D) Like mTOR, p-P70S6K levels did not 

decreased in the Pre-Rapa group (n=6) compared with in the Pre-Vehicle group (n=6), and total 

P70S6K levels were not different. (E, F) The expression levels of p-4EBP and 4EBP did not 

significantly different in the Pre-Rapa group (n=5) compared with in the Pre-Vehicle group 

(n=5). (G) PSD95 and (H) NMDAR2B levels were not decrease in the Pre-Rapa group (n=5) 

compared with in the Pre-Vehicle group (n=5, P > 0.05). The intensity of the phosphor-form 

band was normalized to that of the total form, and the total form bands were normalized to ß-

actin protein.   
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3. Effects of intracranial administration with rapamycin on neuropathic pain model 

induced nerve-injury 

 

A. Changes in mechanical hypersensitivity induced by rapamycin microinjection of 

intra-IC on POD3 and POD7 

Previous studies demonstrated that intrathecal or systemic rapamycin administration reduces 

neuropathic pain.
61,62

 To determine if this is due to effects in the IC (Figure 9 B), rats with 

neuropathic pain received microinjections of rapamycin (600 nM, n=12) or the vehicle (n=11) 

after mechanical allodynia testing on POD3 (Figure 11A) and POD7 (Figure 11B). 

Microinjection of rapamycin into the IC significantly affected withdrawal thresholds on POD3 

(group, F(1,20) = 18.171, P < 0.001; time, F(8,160) = 10.821, P < 0.001; group and time interaction, 

F(8,160) = 5.191, P < 0.001; n=11 each, two-way repeated measured ANOVA). The analgesic 

effect of rapamycin in comparison with the vehicle persisted for up to 24 hrs after the 

microinjection as measured by mechanical allodynia (0.5 hrs, P < 0.01; 1 hr, P < 0.01; 2 hrs, P 

< 0.01; 4 hrs, P < 0.01; 8 hrs, P < 0.01; 12 hrs, P < 0.01, 24 hrs, P < 0.05). However, there was 

no difference in the withdrawal thresholds between the rapamycin and vehicle groups 48 hrs 

after injection (P > 0.05, respectively). Similar results were observed when microinjections 

were performed on POD7. Figure 8B shows that microinjection of rapamycin on POD7 

decreased mechanical allodynia significantly in comparison with rats receiving the vehicle 

(group, F(1,19) = 14.546, P < 0.01; time, F(8,152) = 6.510, P < 0.001; group and time interaction, 

F(8,152) = 3.223, P < 0.01; rapamycin, n=12; vehicle, n=9, two-way repeated measured ANOVA). 

Mechanical thresholds in the rapamycin-treated group increased compared with the vehicle 

group from 1 hr to 24 hrs after the injections (0.5 hrs, P > 0.05; 1 hr, P < 0.05; 2 hrs, P < 0.01; 



 

31 

 

4 hrs, P < 0.001; 8 hrs, P < 0.01; 12hrs, P < 0.05, 24 hrs, P < 0.05; 48 hrs, P > 0.05).  
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Figure 11. Intracranial administration of rapamycin attenuates mechanical allodynia. (A) 

Changes in paw withdrawal thresholds to mechanical stimulation after microinjection of 

rapamycin (Rapa group, Rapa) or vehicle (Vehicle group, Vehicle) on POD3. The arrow indicates 

the time point of microinjection. Significant differences between the rapamycin (n=12) and 

vehicle groups (n=11) were observed between 0.5 hr and 24 hrs after microinjection. (B) 

Changes in paw withdrawal thresholds to mechanical stimulation after microinjection of 

rapamycin (n=12) or vehicle (n=11) on POD7. The arrow indicates the time point of 

microinjection. Similarly, the rapamycin and vehicle groups were significantly different between 

1 hr and 24 hrs after microinjection. Data are presented as means ± SEM. 
*
P < 0.05, 

**
P < 0.01. 
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B. Changes in the number of c-Fos and p-ERK immune-positive cells induced by 

rapamycin microinjection on POD3 and POD7 

This research was tested whether the inhibition of mTOR by rapamycin reduces the 

expression of markers of nociceptive activation in the IC 3 hrs after rapamycin or vehicle 

injections (Figure 12A). On POD3, rats receiving rapamycin injection had reduced number of 

cells positive for c-Fos (Figure 12B, the first row microphotographs and Figure 12C, the graph 

of c-Fos positive neurons, Rapa group (n=6), Vehicle group (n=6), P < 0.01) and p-ERK 

(Figure 12B, the second row microphotographs and Figure 12D, the graph of p-ERK positive 

cells, Rapa group (n=6), Vehicle group (n=6), P < 0.05) in the IC compared with in rats 

receiving the vehicle. Similarly, on POD7, rats receiving rapamycin injection had reduced 

numbers of cells positive for c-Fos (Figure 12B, the third row microphotographs and Figure 

12E, the graph of c-Fos positive neurons, Rapa group (n=4), Vehicle group (n=4), P < 0.001) 

and p-ERK (Figure 12B, the fourth row microphotographs and Figure 12F, the graph of p-ERK 

positive neurons, Rapa group (n=4), Vehicle group (n=4), P < 0.001). 
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Figure 12. Microinjection of rapamycin reduces the markers of nociceptive activation. (A) 

Experimental schematic highlighting the time points of cannula implantation, nerve injury, 

microinjection and perfusion. (B) Microphotographs of c-Fos and p-ERK in the rostral IC. The 

arrows mean positive cells for c-Fos or p-ERK. On POD3, (C) the numbers of c-Fos-positive and 

(D) p-ERK-positive cells decreased significantly in the Rapa group compared with in the Vehicle 

group. On POD7, (E) the numbers of c-Fos-positive and (F) p-ERK-positive cells decreased 

significantly in the Rapa group compared with in the Vehicle group. Data are presented as means 

± SEM. 
*
P < 0.05, 

**
P < 0.01.    
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C. Changes in p-mTOR, p-P70S6K, p-4EBP, PSD95 and NMDA receptor 2B 

expression induced by rapamycin microinjection on POD3 and POD7 

It was also performed that the levels of mTOR activation in the IC 3 hrs after rapamycin or 

vehicle injections (Figure 12A). On POD3, rats receiving rapamycin injections had lower 

expression of p-mTOR than vehicle-treated rats (Figure 13A, n=5 each, P < 0.05), as well as 

decreased phosphorylation of P70S6K (Figure 13C, n=4, P < 0.01) and 4EBP (Figure 13E, n=4, 

P < 0.01). However, the levels of mTOR (Figure 13B, P > 0.05), P70S6K (Figure 13D, P > 

0.05) and 4EBP (Figure 13F, P > 0.05). Additionally, the expressions of PSD95 (Figure 13G, 

n=5, P < 0.05) and the NMDAR2B (Figure 13H, n=5, P < 0.05) were decreased significantly 

with rapamycin compared with the vehicle.  

On POD7, rats received microinjections of rapamycin or vehicle and mTOR activity and 

PSD95 expression were measured. The phosphorylation of mTOR was decreased significantly 

on POD7 in rats receiving rapamycin (Figure 14A, n=4, P < 0.001). Similarly, phosphorylation 

levels of P70S6K (Figure 14C, n=4, P < 0.05) and 4EBP (Figure 14E, n=4, P < 0.01) in the 

rapamycin-treated group were downregulated compared with in the vehicle-treated group. The 

expression levels of total mTOR (Figure 14B, P > 0.05), P70S6K (Figure 14D, P > 0.05) and 

4EBP (Figure 14F, P > 0.05). In addition, the expressions of PSD95 (Figure 14G, n=4, P < 0.01) 

and the NMDAR2B (Figure 14H, n=5, P < 0.05) in the rapamycin group were significantly 

decreased on POD7 compared with in the vehicle group.      
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Figure 13. Microinjection of rapamycin reversed the upregulation of the mTOR pathway, 

PSD95 and NMDAR2B expression on POD3. (A, B) p-mTOR levels decreased in the Rapa 

group (n=5) compared with in the Vehicle group (n=5), but total mTOR levels were not 

significantly defferent. (C, D) p-P70S6K levels decreased in the Rapa group (n=4) compared 

with in the Vehicle group (n=4), but total P70S6K levels were not different. (E, F) p-4EBP 

levels decreased in the Rapa group (n=5) compared with in the Vehicle group (n=5), but total 

4EBP levels were not different. (G) PSD95 and (H) NMDAR2B levels decreased in the Rapa 

group (n=5) compared with in the Vehicle group (n=5). Data are presented as means ± SEM. 
*
P 

< 0.05, 
**

P < 0.01.   
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Figure 14. Microinjection of rapamycin reversed the upregulation of the mTOR pathway, 

PSD95 and NMDAR2B expression on POD7. (A, B) p-mTOR levels decreased in the Rapa 

group (n=4) compared with in the Vehicle group (n=4), but total mTOR levels were not 

significantly different. (C, D) p-P70S6K levels decreased in the Rapa group (n=4) compared with 

in the Vehicle group (n=4), but total P70S6K levels were not different. (E, F) p-4EBP levels 

decreased in the Rapa group (n=4) compared with in the Vehicle group (n=4), but total 4EBP 

levels were not different. (G) PSD95 and (H) NMDAR2B levels decreased in the Rapa group 

(n=4, 5 respectively) compared with in the Vehicle group (n=4, 5 respectively). The intensity of 

the phosphor-form band was normalized to that of the total form, and the total form bands were 

normalized to ß-actin protein. Data are presented as means ± SEM. 
*
P < 0.05, 

**
P < 0.01.    
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IV. DISCUSSION 

 

Many studies have focused on the processes involved in neuropathic pain, and controlling 

neuropathic pain remains unclear.
3
 This study demonstrates that neuropathic pain after nerve injury 

is accompanied by considerable changes in the biochemistry and neuronal activity of the IC. More 

specifically, nerve injury increases the activation of mTOR in the IC. To my knowledge, this is the 

first study to investigate the role of the mTOR signaling pathway and the potential effects of 

rapamycin in the IC using a neuropathic pain model. 

mTOR has been extensively studied in tumors,
63

 neurodegenerative
64

 and psychiatric 

disorders.
20,65

 Recently, emerging evidence has indicated that mTOR plays a role in pain 

processing, and it is becoming clear that mTOR is important in the regulation of nociception, in 

both peripheral and central nervous system. mTOR belongs to the phosphatidylinositol 3-kinase-

related kinase (PI3K) protein family, which integrates signals from neuronal activity, growth 

factors, and nutrient levels to regulate the initiation of protein synthesis.
66

 The activation of mTOR 

triggers phosphorylation of downstream effectors, such as P70S6K and 4EBP, to regulate mRNA 

translation and protein synthesis.
67-69

 The formation of long-term memory requires protein 

synthesis.
70

 Controlling of protein synthesis plays an important role in regulating synaptic 

plasticity in the CNS. The long-lasting synaptic strength is known as long- term potentiation (LTP).  

LTP exhibits two distinct phases; early-phase LTP (E-LTP) and late-phase LTP (L-LTP). L-LTP 

requires transcription of gene and protein synthesis. LTP is generally considered to be the cellular 

model for learning and memory, as both LTP and memory formation share similar molecular and 

cellular mechanisms. L-LTP and long-term memory can be impaired by inhibition of protein 

synthesis or the mTOR pathway, supporting the critical role of translation control downstream of 

the mTOR pathway in regulating long-lasting synaptic plasticity. Despite accumulating evidence 
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supporting the role of mTOR signaling in pain-related memory processing,
26,71

 little is known 

about the molecular mechanisms of this pathway in the brain.  

Rapamycin, an inhibitor of mTOR, has been developed and widely used as immunosuppressant 

in patients undergoing transplantation surgery, and has also been used as anticancer drug.
72-74

 

Because the side effects from rapamycin are relatively low compared to with other drugs, it has 

also been widely used in chronic pain treatment,
62,75-77

 including the possible development of 

complex regional pain syndrome (CRPS).
78,79

 Intrathecal, intraplantar and systemic injection of 

rapamycin alleviated mechanical hypersensitivity in formalin-induced pain models
80

 as well as 

capsaicin-induced hyperalgesia.
22

 Rapamycin may also reduce mechanical allodynia under 

inflammatory pain conditions.
81

 In this study, behavioral, immunohistochemical test and western 

blot were performed to demonstrate that mTOR signaling in the IC contributes to neuropathic pain 

and regulates mechanical hypersensitivity. Inhibition of this pathway by microinjections of 

rapamycin increased the pain threshold and reduced mechanical hypersensitivity on POD3 and 

POD7. Our findings are compatible with the results of previous data regarding mTOR.
23,26,61

 

However, the analgesic effect did not persist beyond 24 hours after microinjection, and further 

studies are needed to assess the duration of rapamycin’s efficacy.  

The IC is involved in several sensory and cognitive processes, such as learning, memory and 

perception,
82,83

 and connects with other regions to influence other higher-level functions, such as 

pain-perception and decision-making.
39

 While the IC plays an important role in pain 

processing,
45,58,84

 the plasticity of this region in pain-related animal models remains unclear. It was 

shown that nociceptive stimuli activate neurons in the IC, as evidenced by increases in c-Fos,
60

 an 

immediate early marker of activation.
85-87

 A previous study indicated that the role of the p-ERK 

was cell proliferation and differentiation.
88

 Additionally, p-ERK has been implicated in synaptic 

plasticity related to memory and pain hypersensitivity.
19,89-91

 c-Fos and p-ERK levels are increased 
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in the IC following nerve injury, suggesting that this brain region is closely related to pain state. 

Importantly, these changes were attenuated by microinjections of rapamycin, indicating the mTOR 

signaling pathway as a mechanism for plastic changes regulating neuropathic pain.  

Glutamate is predominant neurotransmitter to mediated excitatory synaptic responses in the 

nociceptive pathway. Glutamate also binds to NMDA receptors which are consecutively blocked 

by Mg
2+

, but can be relieved from Mg
2+ 

blockade under pathological states (Figure 15).
92

 

Following intense stimulation or persistent injury, activated C and Aδ nociceptors release a variety 

of neurotransmitters including substance P, glutamate and calcitonin-gene related peptide 

(CGRP).
93,94

 As a consequence, normally silent NMDA receptors located in the postsynaptic 

neuron can now signal increase intracellular Ca
2+ 

and activate Ca
2+ 

dependent signaling pathways 

and second messengers including protein kinase C, Akt and mitogen-activated protein kinase.
53,95

 

This cascade of events will increase the excitability of the output neuron and facilitate the 

transmission of pain signals to the brain. Specifically, the IC receives afferent projections from 

thalamic nuclei, including spinothalamic and spinoreticulothamic tracts, and it forms mutual 

connections with amygdala, anterior cingulate cortex and cortical association areas.
96

 An increased 

in Ca
2+ 

following NMDA receptor activation might activate the PI3K/Akt pathway in the IC. 

Phosphorylated Akt can activate mTOR in the IC neurons, and peripheral nerve injury lead to 

activation of PI3K/Akt/mTOR signaling pathway. Interestingly, there is a report that mTOR 

activation required activation of NMDA receptors in a bone cancer-induced pain model.
68

 This 

study demonstrated that bone cancer pain–induced dorsal horn activation of the mTOR pathway 

participates in NMDA receptor triggered dorsal central sensitization, which indicates that the 

NMDA receptor/mTOR signaling pathway is involved in pain processing. In a neuropathic pain 

model, microinjection of an NMDA receptor antagonist into the IC significantly reduced pain 

behavior.
46

 Furthermore, LTP of synaptic responses in the IC is NMDA receptor dependent,
46

 and 
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inhibition of protein synthesis or of the mTOR pathway can diminish LTP and memory.
97

 These 

data suggest that LTP in the IC regulates neuropathic pain. My research data support this, as 

NMDA receptor expression in the IC was increased after peripheral nerve injury and attenuated by 

a microinjection of rapamycin.    
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Figure 15. Peripheral and central sites in pain perception and sensitization. Normally, the 

NMDA receptor is blocked by its Mg
2+

 ion, however, under continuous stimulation it is removed. 

This enhanced NMDA receptor activation plays a role in pain-related synaptic plasticity, and 

results in the exacerbation of chronic pain. 
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Accordingly, this research was found that nerve injury increased the expression of PSD95, and 

essential scaffold protein in the post synaptic density of excitatory synapses.
26,98

 Dendrites are the 

sites at which neurons receive information from multiple presynaptic factors. Dendritic function is 

critically dependent on dendritic growth and small protrusions called dendritic spines.
99

 A previous 

study showed that the expression of PSD95 significantly increases when mTOR-dependent 

pathways are activated under stress conditions.
100

 This research results similarly demonstrated that 

neuropathic pain increases mTOR signaling and PSD95 expression. Moreover, levels of PSD95 in 

the IC were decreased by inhibition of mTOR with rapamycin. Interestingly, the knockdown of 

PSD95 in the spinal cord delays the progression of neuropathic pain.
98,101

 phosphatidylinositol 3-

kinase (PI3K)/AKT (protein kinase B)/mTOR signaling has emerged as key regulator of dendritic 

size and dendritic complexity as well as of dendritic spine density.
99

 Specifically, the PSD95 is 

largely localized in spines and plays an important role in regulating dendritic spine size and 

shape.
27,102

 Thus, changes in dendritic morphology and synaptic-associated proteins may affect 

synaptic plasticity. In my studies, mechanical allodynia as a result of peripheral nerve injury 

appears to be regulated by mTOR-dependent synthesis of PSD95 in the IC. Taken together, these 

data suggest that mTOR signaling maintains chronic pain conditions via regulation of synaptic 

proteins. 

Based on these evidences, I hypothesized that NMDA receptor-mediated increase in calcium 

concentration which stimulates AKT activation by PI3K calcium/calmodulin-dependent protein 

kinase 2.
103-105

 Once activated, mTOR and its downstream were activated. As a result, synaptic 

proteins at the synapse such as PSD95, synapsin 1 were translated (Figure 16).
106
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Figure 16. Overview of possible mechanisms involved in mTOR signaling mediated synaptic 

plasticity in the IC of neuropathic pain model. Nerve injury results in the excessive release of 

gutamate leading to the over activation of NMDA receptors and releasing calcium ions. Increased 

calcium ions stimulate Ca2+/CaMKII, which is important kinase that is well documented in the fields 

of learning and menory process. Phosphorylation of AKT was induced by activated Ca2+/CaMKII 

and PI3K. Activation of AKT stimulates the phosphorylation of mTOR, a central signaling hub that 

has multiple downstream effectors. Activated mTOR phosphorylates p70S6K and 4EBP, thereby 

stimulate translation. This process facilitates synpatic protein synthesis and transport such as PSD95, 

synapsin 1, and NMDA receptors. Abbreviations: PI3K, phosphatidylinositol 3-kinase; AKT, known 
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as PKB, Protein kinase B; CaMKII, calmodulin-dependent protein kinase II; mTOR, mammlian target 

of rapamycin; P70S6K, known as S6K, ribosomal protein S6 kinase; 4EBP, eukaryotic translation 

initiation factor 4E binding protein; PSD95, postsynaptic density protein 95. 
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The present study used pre-administration with rapamycin in the IC, to effective neuropathic 

pain prevention. The behavioral test result showed that significantly attenuated the nociceptive 

behaviors induced by nerve-injury. In contrast, no statistical significance was detected compared to 

the Pre-Vehicle group in immunohistochemistry and western blot analysis. This presumably 

assumes that the prevention effects of the pain might have another signal pathway different from 

the mTOR-P70S6K-4EBP pathway as mentioned above. Additional research will be needed to 

interpret my findings.  

This study suggests that the mTOR pathway is a critical molecular signaling pathway regulating 

synaptic plasticity in the IC and mechanical hypersensitivity after peripheral nerve injury and 

neuropathic pain. 
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V. CONCLUSION 

This is the first study to investigate the effects of mTOR signaling activation in the IC. Author 

found that neuropathic pain induced nerve injury can activate the mTOR signaling pathway and 

increase synaptic protein PSD95, and NMDAR2B. Increased levels of mTOR signaling, PSD95 

and NMDAR2B were blocked by the rapamycin, the mTOR inhibitor.  

This research provided potent results using behavioral test, immunohistochemistry and western 

blot analysis that mTOR signaling contributes to neuronal plasticity and pain-like behavior in the 

IC of neuropathic pain model. Furthermore, these data suggest that mTOR signaling pathway may 

be significantly important to sustain chronic pain conditions via mRNA translation and protein 

synthesis of memory formation required for modulating pain sensation in the IC. 

Hence, the author can infer that the activation of mTOR signaling is a promising target for 

developing novel neuropathic pain drugs. 
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ABSTRACT (in Korean) 

 

신경병증성 통증 모델의 뇌섬엽에서 rapamycin이 mTOR 신호전달에 미치는 영향 

 

< 지도교수 이 배 환 > 

 

연세대학교 대학원 의과학과 

 

권 민 지 

 

말초신경 손상은 신경병증성 통증을 유발하여 말초 및 중추 감작을 통한 

이질통과 통각과민을 일으키는 것으로 알려져 있다. 신경병증성 통증은 척

수와 뇌를 포함한 일차 구심성 신경의 병리적인 변화를 의미한다. 최근 여

러 연구들은 신경병증성 통증과 관련하여 뇌 섬엽 피질의 역할에 초점을 맞

추어 왔다. 뇌섬엽 피질은 통증과 관련된 기억을 형성하고 저장하는 것으로 

생각되어 왔기 때문에, 뇌 섬엽 피질에서 기억 형성과 연관된 단백질 합성

을 조절하는 요인은 만성통증을 완화시키는 데에 기여할 수 있다. mRNA에서 

단백질로 번역이 되는 과정을 조절하고, 시냅스 가소성에 영향을 끼치는 것

으로 알려져 있는 mTOR 신호전달체계는 신경병증성 통증 모델의 척수 수준

에서 연구가 진행되어 있다. 척수 수준 이상의 중추신경계인 뇌에서의 연구

는 거의 이루어지지 않은 상태이다.  따라서 이 연구는 신경병증성 통증 모
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델의 뇌섬엽 피질에서 mTOR 신호전달의 역할을 규명하고 mTOR의 억제제인 

rapamycin을 뇌섬엽 피질 내로 투여하여 통증예방 혹은 경감효과를 관찰함

으로써 rapamycin의 잠재적인 치료 효과를 평가하기 위해 수행되었다.  

정상 백서의 뇌 섬엽 피질 내로 rapamycin을 미세주입 한 후 신경손상을 

유도하여 신경병증성 통증을 예방할 수 있는 지를 관찰하였다. 또한 

rapamycin의 통증감소효과를 검증하기 위해 백서를 사용하여 신경통증 모델

을 형성, 수술 후 1일, 3일, 7일에 기계적 이질통이 발생한 것을 확인하였

다. 수술 후 3일과 7일째 각각 뇌 섬엽에 rapamycin을 미세주입하여 이질통

의 감소효과를 평가하였다.  

그 결과, rapamycin의 사전 미세주입은 점차적으로 발달되는 기계적 이질

통을 효과적으로 완화시키기는 하였으나 mTOR 신호전달과 관련된 요인들의 

발현량을 감소시키는 데에는 효과가 없었다. 이와는 반대로 통증모델 형성 

이후 미세 주입된 rapamycin은 기계적 이질통을 감소시키고 mTOR와 그 하위 

경로에 있는 분자요인들, 시냅스 말단에 다량 존재하는 단백질인 post 

synaptic density 95와 NMDA 수용체의 발현을 감소시켜 신경병증으로 인한 

통증유발과 관련된 시냅스 가소성을 억제했다. 이러한 결과는 뇌 피질의 

mTOR 신호가 신경병증통증을 조절할 수 있는 중요한 분자 기전일 수 있음을 

시사한다. 
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