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Abstract

Background: Online haemodiafiltration (OL-HDF) may improve middle molecular clearance in contrast to
conventional haemodialysis (HD). However, OL-HDF requires higher convective flows and cannot sufficiently
remove large middle molecules. This study evaluated the efficacy of a medium cut-off (MCO) dialyser in removing
large middle molecular uraemic toxins and compared it with that of conventional high-flux (HF) dialysers in HD and
predilution OL-HDF.

Methods: Six clinically stable HD patients without residual renal function were investigated. Dialyser and treatment
efficacies were examined during a single midweek treatment in three consecutive periods: 1) conventional HD
using an HF dialyser, 2) OL-HDF using the same HF dialyser, and 3) conventional HD using an MCO dialyser.
Treatment efficacy was assessed by calculating the reduction ratio (RR) for β2-microglobulin (β2M), myoglobin, κ
and λ free light chains (FLCs), and fibroblast growth factor (FGF)-23 and measuring clearance for FLCs.

Results: All three treatments showed comparable RRs for urea, phosphate, creatinine, and uric acid. MCO HD
showed greater RRs for myoglobin and λFLC than did HF HD and predilution OL-HDF (myoglobin: 63.1 ± 5.3% vs.
43.5 ± 8.9% and 49.8 ± 7.3%; λFLC: 43.2 ± 5.6% vs. 26.8 ± 4.4% and 33.0 ± 9.2%, respectively; P < 0.001). Conversely,
predilution OL-HDF showed the greatest RR for β2M, whereas MCO HD and HF HD showed comparable RRs for
β2M (predilution OL-HDF vs. MCO HD: 80.1 ± 4.9% vs. 72.6 ± 3.8%, P = 0.01). There was no significant difference
among MCO HD, HF HD, and predilution OL-HDF in the RRs for κFLC (63.2 ± 6.0%, 53.6 ± 15.5%, and 61.5 ± 7.0%,
respectively; P = 0.37), and FGF-23 (55.5 ± 20.3%, 34.6 ± 13.1%, and 35.8 ± 23.2%, respectively; P = 0.13). Notably, MCO
HD showed improved clearances for FLCs when compared to HF HD or OL-HDF.

Conclusions: MCO HD showed significantly greater RR of large middle molecules and achieved improved
clearance for FLCs than conventional HD and OL-HDF, without the need for large convection volumes or high
blood flow rates. This would pose as an advantage for elderly HD patients with poor vascular access and HD
patients without access to OL-HDF.
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Background
Patients with end-stage renal disease (ESRD) have higher
rates of cardiovascular (CV) morbidity and mortality than
the general population. In addition to traditional risk fac-
tors, haemodialysis (HD) patients have a higher prevalence
of non-traditional risk factors, such as anaemia, inflamma-
tion, oxidative stress, and accumulation of toxins that are
inherent to the ‘uraemic milieu’ [1]. Middle molecules
have a broad range of molecular size from 500 to 60 kDa
and include a number of cytokines, adipokines, growth
factors, and other signalling proteins that are significantly
elevated in dialysis patients compared with those in indi-
viduals with normal kidney function. The serum levels of
interleukin (IL) 1β (17.5 kDa), IL-6 (21.0–28.0 kDa), and
IL-18 (18.0 kDa) as well as κ (22.5 kDa) and λ (45.0 kDa)
free light chains (FLCs) are also elevated in patients with
advanced chronic kidney disease (CKD) [2]. The levels of
fibroblast growth factor (FGF)-23 (22.5–32.0 kDa), a
growth factor involved in renal phosphate handling and
the development of mineral and bone disorders in CKD,
also can increase up to > 200-fold. These and many other
middle molecules are implicated in chronic inflammation,
atherosclerosis, structural cardiac disease, and protein-
energy wasting and are key players in the inflammation-
CVD pathway [3].
The introduction of HDF with online production of

large volumes of substitution fluid (online HDF [OL-
HDF]) markedly enhanced convective removal of middle
molecules in contrast to that with high flux (HF) HD.
Large observational cohort studies suggest that OL-HDF
treatment may decrease mortality risk compared to con-
ventional HD [4]. However, primary analysis of recent
randomized controlled trials failed to demonstrate definite
survival benefit of OL-HDF compared with conventional
HD [5–7]. Current HF membranes have cut-off size values
of approximately 20 kDa, and thus, have a limited ability
to clear larger middle molecules such as serum FLC and
FGF-23. Therefore, OL-HDF with maximal convection
volumes may still be insufficient to prevent accumulation
of these large uraemic toxins that accelerate the develop-
ment of CVD in HD patients [8, 9].
The so-called medium cut-off (MCO) membrane has a

steep sieving curve characterised by high membrane cut-
off and high retention onset values that are close to but
lower than those of albumin [10, 11]. Such features en-
able MCO membranes to enhance the removal of a wide

range of large middle molecules approximately up to
50.0 kDa with minimal albumin loss. Only a few studies
have compared the efficacy between HD with MCO
membranes and postdilution OL-HDF with conventional
HF membranes [12, 13]. HD treatments using MCO
membranes effectively removed a wide range of middle
molecules in contrast to HF HD and even surpassed the
performance of postdilution OL-HDF for large middle
molecules. However, comparisons between HD with
MCO membranes and predilution OL-HDF in the re-
moval of middle to large uraemic toxins in Asian HD
patients are lacking. The current study aimed to investi-
gate the reduction ratios (RR) of an MCO membrane in
the removal of middle molecules and whether there are
differences in the RR of large uraemic solutes between
HD with MCO membranes and conventional HF HD or
predilution OL-HDF in actual clinical settings.

Methods
Study population
This observational prospective study was performed at
the dialysis unit of Gangnam Severance Hospital, Seoul,
Republic of Korea and approved by its Institutional Re-
view Board (No. 3–2018-0151, KCT 0003009). We col-
lected clinical and HD treatment data from six clinically
stable HD patients who provided their written informed
consent.

Study design
Treatment efficacies were examined during a single mid-
week treatment in three consecutive periods with a 2-week
washout period: 1) conventional HD using an HF mem-
brane (HF HD; Rexeed-21A®, Asahi Kasei Medical, Tokyo,
Japan), 2) OL-HDF using the same HF membrane in predi-
lution mode (predilution OL-HDF), and 3) conventional
HD using an MCO membrane (MCO HD; Theranova
400®, Baxter, Hechingen, Germany). The HD membrane
characteristics are described in detail in Table 1.
The dialysis prescriptions were based on their routine

prescription. The dialysis session duration was 4 h, and
the BFR was 250 mL/min, with the ultrafiltration volume
adjusted according to each patient’s dry weight (un-
changed from their usual treatment). OL-HDF was per-
formed in predilution mode based on each patient’s
usual total convective ultrafiltration volume.
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The efficacy of each dialyser membrane treatment was
assessed by calculating the RR for the small and middle
molecular uraemic toxins: urea (60 Da), phosphate (95
Da), creatinine (113 Da), uric acid (168 Da), β2M, myo-
globin (16.7 kDa), κFLC, λFLC, and FGF-23.
Blood samples were collected prior to the beginning

and at the end of each HD session. Postdialysis blood
samples were obtained 20 s after diminishing the pump
speed to 50 mL/min. We calculated the RR for the small
and large middle molecules using the following formula:
RR (%) = [1 − (Cpost/Cpre)] × 100, where Cpre and Cpost
are the measured plasma levels of the solute before and
after dialysis, respectively. The postdialysis levels were
corrected for haemoconcentration by assuming that the
distribution volume of each free surrogate large middle
molecule is equal to the extracellular volume, that the
extracellular volume is 20% of the end dialysis body
weight, and that intradialytic body weight loss reflects
the change within the extracellular volume. Thus, the
postdialysis large middle molecular levels were corrected
by dividing the raw data of the large middle molecules
by [1 + (intradialytic weight loss [kg])/0.2 (end dialysis
body weight [kg])] [14]. The postdialysis albumin level
was corrected using the haematocrit level [15]. Spent di-
alysate was collected continuously at 10 mL/min through
the dialysate drain. Overall clearance was calculated by
dividing the total FLC removal by the area under the
plasma water concentration–time curve. Total FLC re-
moval was calculated by multiplying the dialysate FLC
concentration by the ultrafiltration volume and the total
spent dialysate volume [16].

Measurement of the uraemic toxins and albumin levels
The levels of β2M and FLC were determined using the
commercially available equipment Immulite 2000 XPi
(Siemens Healthcare Diagnostics SA, Zürich, Switzerland;
reference interval, 0.61–2.37 μg/mL) and SPA Plus® (Bind-
ing Site, Birmingham, UK; reference interval, 5.71–26.30

mg/L). The level of FGF-23 was estimated via enzymatic
measurement using the FGF-23 (C-terminal) ELISA kit
(Biomedica, Vienna, Austria). The albumin levels in the
spent dialysates were assessed using the albumin ELISA
kit (ab227933; Abcam, Cambridge, MA, USA). All serum,
plasma, and spent dialysate samples were collected and
sent to laboratory facilities under standardised conditions.

Statistical analysis
Data were expressed as numbers (percentages) and means
± standard deviations or medians (interquartile ranges) ac-
cording to the presence of normal distribution. The vari-
ables from the six patients were classified into three
different groups: HF HD, predilution OL-HDF, and MCO
HD; these were calculated using the linear mixed model
for unstructured covariance patterns. The Friedman test, a
nonparametric test, was used in accordance with non-
normality of the pre- and post-κFLC parameters. Post hoc
P values, which reflect the significance of the difference
between each pair determined by the least significant dif-
ference, were used. For more conservative interpretation,
P values of < 0.0167 (Bonferroni method) were considered
statistically significant. Analyses were performed using the
SAS version 9.3 (SAC Institute Inc., Cary, NC, USA).

Results
Clinical features of the patients
Six clinically stable HD patients with no residual renal
function participated in this observational prospective
study. Their baseline clinical characteristics are sum-
marised in Table 2. They were all elderly male patients
(age, 66.1 ± 9.1 years) and had a mean HD vintage of
3.8 ± 1.8 years. The mean dry weight was 64.0 ± 8.3 kg,
and the mean UF during predilution OL-HDF treatment
was 1850.0 ± 634.8 mL with no significant differences
among 3 treatment modalities (P = 0.75). OL-HDF was
performed in predilution mode and delivered sufficient
convection volumes (49.91 ± 0.47 L/session).

Predialysis parameters and changes in the serum solutes
before and after dialysis
There was no significant difference in the mean single-
pooled Kt/V urea level among HF HD, predilution OL-
HDF, and MCO HD (1.51 ± 0.14, 1.51 ± 0.18, and 1.45 ±
0.20, respectively; P = 0.8215). The blood cell counts and
serum levels of total protein, calcium, urea, phosphate,
creatinine, uric acid, β2M, myoglobin, κFLC, FGF-23,
λFLC, and albumin were measured (Additional file 1). No
differences were detected in the predialysis parameters,
such as serum albumin, myoglobin, β2M, κFLC, λFLC,
and FGF-23, among the three groups. Figure 1 and Table 3
show the RR for the small water-soluble molecules and
large middle molecules during each dialysis treatment and
comparison among the three dialysis modalities.

Table 1 Characteristics of the dialysers

Dialyser Rexeed-21A® Theranova 400®

Membrane material PS PAES/PVP blend

Surface area (m2) 2.1 1.7

Membrane wall thickness (μm) 45 35

Membrane inner diameter (μm) 185 180

Flux HF MCO

β2M (11.8 kD) 0.85 1

Albumin (66.5 kD) 0.002 0.008

UF coefficient (mL/h/mmHg) 90 48

KoA urea (mL/min2) 1569 1482

PS polysulfone, PAES polyarylethersulfone, PVP polyvinylpyrrolidone, UF
ultrafiltration, HF high-flux, MCO membrane cut-off, KoA mass transfer
area coefficient
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All three dialysis treatments showed comparable RRs
for the small molecular uraemic toxins (i.e. phosphate,
urea, creatinine, and uric acid). MCO HD showed
greater RRs for myoglobin than did standard HF HD
and predilution OL-HDF (myoglobin: 63.1 ± 5.3% vs.
43.5 ± 8.9% and 49.8 ± 7.3%, P < 0.001). Of note, predilu-
tion OL-HDF showed the greatest RR for β2M, whereas
MCO HD and HF HD showed comparable RRs for β2M
(predilution OL-HDF vs. MCO HD: 80.1 ± 4.9% vs.
72.6 ± 3.8%; P = 0.01). Further, there was no significant
difference among MCO HD, HF HD, and predilution
OL-HDF in terms of the RR for FGF-23 (55.5 ± 20.3%,
34.6 ± 13.1%, and 35.8 ± 23.2%, P = 0.13).

Free light chain reduction ratio and clearance during
MCO HD compared to HF HD and predilution OL-HDF.
MCO HD showed significantly greater RR for λFLC com-
pared to HF HD and OL-HDF (λFLC: 43.2 ± 5.6% vs.
26.8 ± 4.4% and 33.0 ± 9.2%, respectively; P < 0.001). Ac-
cordingly, clearances for λFLC was significantly greater
during MCO HD compared to HF HD and OL-HDF
(8.0 ± 1.4 vs. 2.8 ± 0.7 and 3.1 ± 0.5mL/min, respectively;
P < 0.001). No significant difference was observed for the
RR for κFLC among three dialysis modalities (63.2 ± 6.0%,
53.6 ± 15.5%, and 61.5 ± 7.0%, respectively; P = 0.37). How-
ever, MCO HD showed almost twice the clearances for

κFLC compared to HF HD or OL-HDF (16.8 ± 6.4 vs.
10.3 ± 4.3, and 9.8 ± 3.8mL/min; P < 0.05) (Fig. 2).

Albumin loss during MCO HD and predilution OL-HDF
Serum albumin levels before and after predilution OL-
HDF (from 3.85 ± 0.29 to 3.76 ± 0.33 g/dL) and MCO
HD (from 3.77 ± 0.30 to 3.58 ± 0.32 g/dL) showed min-
imal changes with no significant difference in the RR for
albumin among HF HD, predilution OL-HDF, and
MCO HD (1.7 ± 3.6%, 2.3 ± 4.1%, and 4.9 ± 2.8%, respect-
ively; P = 0.22). In contrast, albumin leakage to the efflu-
ent by MCO HD (median 3.16 g session− 1, interquartile
range 2.17–3.59 g session− 1) was greater, compared to
both HF HD (median 0.06 g session− 1, interquartile
range 0.03–0.13 g session− 1) and predilution OL-HDF
(median 0.07 g session− 1, interquartile range 0.05–0.74 g
session− 1), (P = 0.009) (Table 4).

Safety
During the study, there were no episodes of intradialytic
hypotension and no clinically significant complications
reported.

Discussion
The primary aim of this study was to investigate the effi-
cacy of three different HD modalities commonly used in
clinical practice: HF HD, predilution OL-HDF, and the
newly introduced MCO HD in removing middle to large
molecular-weight uraemic solutes at relatively low BFR.
We found somewhat varying results regarding the large
middle molecular reduction properties among the three
dialysis modalities. MCO HD showed the greatest RRs
for myoglobin and λFLC, and the gap was markedly
great in relation to those in HF HD and predilution OL-
HDF. In contrast, no significant difference was observed
for the RR for κFLC among three dialysis modalities.
Meanwhile, MCO HD showed highest overall clearance
for FLCs. Predilution OL-HDF showed the greatest RR
for β2M, and MCO HD unexpectedly showed the lowest
RR for such. The extent of middle molecular reduction
was not predicted by its molecular weight, as the extent
of reduction depended not only on the size of the mol-
ecule but also on other physiochemical properties, such
as charge, hydrophilicity, or membrane binding [17].
The overall RRs for the small water-soluble molecules,
such as phosphate, urea, creatinine, and uric acid, were
comparable among the three dialysis modalities.
Recently, Kirsch et al. demonstrated that HD using

MCO membranes at a BFR of 300–400mL/min efficiently
remove large middle molecules [12]. Our study further
demonstrate that even at lower BFRs (250mL/min), MCO
HD can achieve efficient RRs for large middle molecules
and clearance of FLCs compared to HF HD or predilution
OL-HDF. Notably, the reduced efficiency in both diffusive

Table 2 Baseline characteristics of the study population

Variables Mean ± SD or N (%)

Age, years 66.1 ± 9.1

Male sex 6 (100.0)

Vascular access

Native, graft 5 (83.3), 1 (16.7)

Cause of ESRD

ADPKD, HTN, diabetes 2 (33.3), 1 (16.6), 3 (50.0)

Height, cm 171.6 ± 4.9

Dry weight, kg 64.0 ± 8.3

Volume distribution, L 36.3 ± 3.4

Urea reduction ratio, % 72.3 ± 2.5

UF volume, mL

High-flux HD 1833.3 ± 585.4

Predilution OL-HDF 1850.0 ± 634.8

MCO HD 2033.3 ± 436.7

Dialysis vintage, years 3.8 ± 1.8

Residual urine level, L 0.0 ± 0.0

CRP level, mg/L 2.1 ± 2.3

Data are expressed as means ± SDs or N (%)
SD standard deviation, ESRD end-stage renal disease, ADPKD autosomal
dominant polycystic kidney disease, HTN hypertension, UF ultrafiltration, HD
haemodialysis, OL-HDF online haemodiafiltration, MCO membrane cut-off, CRP
C-reactive protein
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Table 3 Reduction ratio (%) for the various uraemic toxins and albumin according to the treatment modalities

Variables High-flux
HD (1)

Predilution
OL-HDF (2)

MCO HD
(3)

Overall
P

post hoc P

(1) vs (2) (1) vs (3) (2) vs (3)

Urea 72.5 ± 2.8 72.4 ± 3.9 70.8 ± 5.2 0.7769 0.9686 0.4949 0.5543

Phosphate 57.2 ± 6.1 54.3 ± 16.8 52.6 ± 9.4 0.5976 0.7031 0.3275 0.8228

Creatinine 65.3 ± 3.5 66.2 ± 4.3 63.7 ± 3.8 0.5436 0.699 0.4445 0.2943

Uric acid 77.2 ± 3.3 76.8 ± 2.5 75.2 ± 4.1 0.6338 0.8099 0.3637 0.4297

β2M 74.6 ± 5.2 80.1 ± 4.9* 72.6 ± 3.8* 0.0305 0.0811 0.4466 0.0096

Myoglobin 43.5 ± 8.9* 49.8 ± 7.3† 63.1 ± 5.3*† 0.0005 0.2015 0.0003 0.0025

FGF-23 34.6 ± 13.1 35.8 ± 23.2 55.5 ± 20.3 0.1281 0.9192 0.0509 0.1370

κFLC 53.6 ± 15.5 61.5 ± 7.0 63.2 ± 6.0 0.3703 0.2621 0.1668 0.6542

λFLC 26.8 ± 4.4* 33.0 ± 9.3a 43.2 ± 5.7*a 0.0002 0.1589 < 0.0001 0.0368

Albumin 1.7 ± 3.6 2.3 ± 4.1 4.9 ± 2.8 0.2173 0.8041 0.1116 0.2227

Data are expressed as means ± standard deviations. *†P < 0.05/3 = 0.0167, aP < 0.05 by the post hoc test using the linear mixed model with the least significant
difference between two groups
HD haemodialysis, OL-HDF online haemodiafiltration, MCO membrane cut-off, β2M β2-microglobulin, FLC free light chain, FGF fibroblast growth factor

Fig. 1 Bar graphs show reduction ratio (%) for the various uraemic toxins according to the treatment modalities. a Small water-soluble molecules.
b Large (middle) molecules. Data are expressed as mean ± SDs. **†P < 0.05/3 = 0.0167, *P < 0.05 by the post hoc test using the linear mixed model
with the least significant difference between two groups. SD: standard deviation; HD: haemodialysis; OL-HDF: online haemodiafiltration; MCO:
membrane cut-off; β2M: β2-microglobulin; FLC: free light chain; FGF: fibroblast growth factor
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and convective solute removal in predilution OL-HDF
may account for the observed lower RR for large middle
molecules and FLC clearance in our study. However, the
mean convection volume achieved during our predilution
OL-HDF treatments was 49.9 L/session that is larger than
the mean convection volume that has been shown to con-
fer survival advantage for both all-cause mortality and CV
mortality in Japanese patients with ESRD on predilution
OL-HDF [18]. This is convection volume comparable with
that recommended by recent clinical studies on postdilu-
tion OL-HDF [19] and indicate that our OL-HDF treat-
ment was assessed at its proper capacity.
The RR of FLCs and myoglobin in our study using

MCO HD are similar to those of MCO AA reported by
Kirsch et al. (κFLC: 66.3 to 72.9% and λFLC: 42.5 to
52.71%, myoglobin 63.1 to 67.9%). This MCO AA dia-
lyzer has the most similar membrane characteristics to
the Theranova 400® used in our study based on the man-
ufacturer’s information. Moreover, the clearances for

FLCs observed in our study using MCO HD are also
close to those of Kirsch et al. (κFLC 26.2 to 35.0 mL/min
and λFLC 8.5 to 10.0 mL/min) and the small differences
observed could be potentially attributed to variations in
dialysis parameters. Interestingly, despite similar RR for
κFLC among three dialysis modalities, κFLC clearance
was much higher with MCO HD. This finding suggests
that MCO HD may provide greater removal of middle
molecules.
Predilution OL-HDF showed a greater RR for β2M

than did MCO HD, and HF HD and MCO HD achieved
comparable RRs for such. It is well known that higher
BFR, larger surface size, and larger convection volume
increase β2M clearance in HF HD or HDF. Dialyser
membrane characteristics may also contribute to RR and
Rexeed-21A® demonstrates good clearance for β2M in
both HD and HDF treatments [20]. The positive effects
of a high convection volume and a larger membrane sur-
face area are well demonstrated by the better β2M RR

Fig. 2 Bar graphs show FLCs clearance (mL/min) depending on treatment modalities. Data are expressed as mean ± SDs. **P < 0.05/3 = 0.0167,
*P < 0.05 by the post hoc test using the linear mixed model with the least significant difference between two groups. SD: standard deviation; HD:
haemodialysis; OL-HDF: online haemodiafiltration; MCO: membrane cut-off; FLC: free light chain

Table 4 Albumin leakage (g session−1) depending on treatment modalities

Variables High-flux
HD (1)

Predilution
OL-HDF (2)

MCO HD
(3)

Overall
P

post hoc P

(1) vs (2) (1) vs (3) (2) vs (3)

Albumin 0.06
(0.03–0.13)a

0.07
(0.05–0.74)b

3.16
(2.17–3.59)ab

0.009 0.249 0.028 0.028

Data are expressed as medians (Q1–Q3). abP < 0.05 by the post hoc test using the linear mixed model with the least significant difference between two groups
HD haemodialysis, OL-HDF online haemodiafiltration, MCO membrane cut-off
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achieved in OL-HDF. The extent of middle molecular
reduction was not predicted by its molecular weight, as
the extent of reduction depended not only on the size of
the molecule but also on other physiochemical proper-
ties, such as charge, hydrophilicity, or membrane bind-
ing [17]. It may be difficult to compare our study data
directly with previous studies in the literature because of
variability in dialysis BFRs, dialyzer characteristics, and
convection volumes. Notably, patients enrolled in the
present study could not tolerate high BFR that is pre-
requisite for postdilution HDF with high substitution
volume. Therefore, the BFR used for all dialysis modal-
ities in our study was fixed at 250 mL/min to mimic ac-
tual clinical practice settings where HD patients with
poor vascular access cannot tolerate higher BFR. Among
Korean HD patients enrolled in Clinical Research Center
registry for ESRD, median value of BFR was 250 mL/min
and average BFR for Japanese HD patients treated with
predilution OL-HDF is 230.8 ± 42.9 mL/min. Therefore,
evaluation of MCO HD at a low BFR can be meaningful
for many Asian patients as well as elderly HD patients
with poor vascular access.
In maintenance HD patients, increased levels of circu-

lating FGF-23 are independently associated with CV
events and mortality [21]. Particularly, increased FGF-23
levels in patients with CKD are clinically relevant to CV
mortality [22] by inducing left ventricular hypertrophy
[23, 24], arterial stiffness combined with endothelial dys-
function [25], and vascular calcification [26]. Owing to
these untoward effects of FGF-23 per se, potential thera-
peutic options to reduce the levels of FGF-23 in HD pa-
tients are warranted. Our study demonstrated a
tendency for greater removal of FGF-23 with MCO HD
than with HF HD, as shown by the greater RR (55.5 ±
20.3% vs. 34.6 ± 13.1%; P = 0.0509). Notably, predilution
OL-HDF failed to show significantly greater RRs for
FGF-23 in contrast to HF HD (35.7 ± 23.2% vs. 34.6 ±
13.1%). This is in contrast to previously reported results
where OL-HDF demonstrated improved removal of
FGF-23 when compared with that of HF HD [27]. Com-
pared with the other uraemic middle molecules studied
herein, FGF-23 showed a large range of removal values,
which strongly suggests an intra-individual variability be-
tween different circulating forms of FGF-23 [28] and
phosphocalcic metabolic status [27]. Different forms of
FGF-23 with different molecular weights, such as N-
terminal (18.0 kD) or C-terminal (12.0 kD) fragments, as
well as intact FGF-23, are circulating in the blood of pa-
tients [28]. The second-generation FGF-23 (C-terminal)
ELISA kit used in our study measures both human intact
FGF-23 and C-terminal fragments of FGF-23. Accord-
ingly, similar to our study findings, the comparison be-
tween HF HD and OL-HDF in the study by Patrier et al.
showed a large range of RR for FGF-23 (5.3–74.3% vs.

26.6–75.9%) [27]. Nevertheless, our finding suggests ten-
dency for more intense elimination of FGF-23 by MCO
HD compared to HF HD.
Loss of albumin through efflux via high convection

volumes is considered to be one of the disadvantages of
OL-HDF as well as MCO HD [29–31]. In our study, RR
for albumin with MCO HD was not significantly higher
compared to other two treatment modalities. However,
MCO HD showed greater loss of albumin during a sin-
gle HD treatment, which is comparable to results of
Kirsch’s study (2.9 to 3.2 g session− 1). Recent studies re-
ported no significant decrease in serum albumin levels
over 6 to 12-month period of treatment with MCO dia-
lyzer. Long-term studies on MCO HD using low BFR
are needed to assess whether there are any change in
serum albumin levels [32, 33].
There are several limitations to our study. First, only a

small number of male patients were enrolled and the RR
for the uraemic toxins were derived from a single treat-
ment. Second, RR does not accurately evaluate removal of
large uraemic toxins. Post-dialysis rebound of middle mol-
ecules such as β2M is substantial and therefore results in
RR measurement to overestimate β2M clearance when
compared to clearance determined directly across the dia-
lyzer [34]. This rebound in solutes probably result from
redistribution of large solutes from interstitium to the
plasma after dialysis treatment [35]. However, RR of FLCs
from MCO HD are in line with those of clearance FLC
measurement in our study. Therefore, RR may still func-
tion as an incomplete marker of middle molecule removal
when direct measurements are difficult. Third, we did not
elute each membrane to take into account any potential
adsorption of middle molecules to the dialyzer mem-
branes. However, other studies have demonstrated that
adsorption of middle molecules to dialyzer membranes is
not a major factor of the overall removal of large middle
molecules [12]. Lastly, we did not conduct any follow-up
and did not investigate the long-term effects on the serum
levels of the middle molecules. Recent studies with MCO
HD treatment duration of 6 to 12months reported largely
negative results on plasma levels of middle molecules. But,
both studies were limited by retrospective or observational
nature of the study and lacked control for residual renal
function. Large randomized controlled trials of longer
duration are needed to make any firm conclusions.

Conclusions
In conclusion, MCO HD at low BFR showed significantly
greater reduction of large middle molecules and clear-
ances for FLCs than did conventional HD and OL-HDF.
This was possible without the need for large convection
volumes or high BFR. This would pose as an advantage
not only for elderly HD patients with poor vascular access
but also for those without access to OL-HDF.
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