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preoperative ct texture features 
predict prognosis after curative 
resection in pancreatic cancer
Hyung Sun Kim1, Young Jae Kim2, Kwang Gi Kim2* & Joon Seong park1*

Pancreatic cancer is a lethal disease, and resistance to chemotherapy is a critical factor influencing 
the postoperative prognosis. tumour heterogeneity is an important indicator of chemoresistance. 
therefore, we analysed tumour heterogeneity in preoperative computed tomography scans by 
performing texture analysis using the grey-level run-length matrix and analysed the correlation 
of survival with the value obtained in these analyses. We analysed 116 consecutive patients who 
underwent curative resection and had preoperative contrast-enhanced computed tomography 
data available for analysis. A region of interest was drawn on all slices with a visible tumour and 
normal pancreas on the arterial phase computed tomography scans; the correlation of pathological 
characteristics with grey-level run-length matrix features was analysed. We then performed Kaplan–
Meier survival curve analysis among pancreatic cancer patients. the grey-level non-uniformity values 
in grey-level run-length matrix features for tumours were higher than those for normal pancreas. High 
grey-level non-uniformity values represent a non-uniform texture, i.e., heterogeneity. Grey-level 
run-length matrix features showed that recurrence-free survival was shorter in the group with high 
grey-level non-uniformity 135 values (p = 0.025). Our analyses of the correlation between pathological 
outcomes and grey-level run-length matrix features in pancreatic cancer patients showed that grey-
level non-uniformity values were powerful prognostic indicators.

Pancreatic cancer is a lethal disease with 2-year metastasis and recurrence rates of 80% even in patients who 
undergo curative resection because of resistance to chemotherapy1,2. Chemoresistance is an important factor 
influencing the prognosis after curative resection, and tumour heterogeneity is an important indicator of the 
chemoresistance. Although other studies are underway to predict the prognosis or to characterise cancer pheno-
types3,4, image texture analysis is currently used to predict tumour heterogeneity. In this regard, several studies 
have reported the correlation between tumour heterogeneity and the prognosis in oesophageal cancer, lung can-
cer, and cervical cancer5–8. However, only a few studies have reported texture analyses of tumour heterogeneity 
in pancreatic cancer9.

Texture analyses employ several methods, such as grey-level co-occurrence matrix (GLCM) and histogram 
analyses, to calculate or classify objects based on their texture. By assessing the distribution of grey levels, coarse-
ness, and regularity within a lesion, computed image analysis algorithms can provide additional morphologi-
cal information related to tumour heterogeneity. These texture analyses also offer the advantage of quantifying 
tumour heterogeneity, which cannot be reliably achieved by simple visual analysis. Therefore, in this study, we 
analysed tumour heterogeneity using preoperative computed tomography (CT) by performing texture analysis 
with the grey-level run-length matrix (GLRLM) approach. We then used these data to analyse the correlation 
between survival and the obtained tumour heterogeneity values in a large sample of curative-intent resected 
pancreatic cancers.

Results
clinical characteristics of the patients with pancreatic cancer. Table 1 shows the patient charac-
teristics in this study. The median age of the patients was 65.0 years, and the study population included 56 men 
(48.3%). In the T stage classification (American Joint Committee on Cancer (AJCC) 8th edition10), 21 (18.1%) 
patients had T1 stage disease; 77 patients (66.4%), T2 stage disease; and 18 (15.5%) patients, T3 stage disease. In 
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the N stage classification (AJCC 8th edition), 42 (36.2%) patients had N0 stage disease; 55 (47.4%) patients, N1 
stage disease; and 19 (16.4%) patients, N2 stage disease. Perineural invasion was observed in 98 patients (84.5%), 
while lymphovascular invasion was observed in about half of the patients (n = 57, 49.1%). Most patients showed 
moderate differentiation (n = 92, 79.3%)

GLRLM features and their correlation with pathological characteristics. Texture analysis was 
performed using ROIs (region of interests) of the same size in the arterial phase images of preoperative CT 
scans. The GLN(Grey-level non-uniformity) values for GLRLM features in the tumour were higher than those 
for the normal pancreas (median value of GLN0, GLN45, and GLN90 in normal tissues = 0.0543; GLN135 in 
normal tissues = 0.055; median value of GLN0, GLN45, and GLN90 in the tumour = 0.0553; GLN135 in the 
tumour = 0.0563).

Tables 2 and 3 show the results for the GLN features. Table 2 shows the results for GLN0, GLN45, and GLN90, 
indicating significant differences in the T stage. The proportion of cases with stage T3 disease was higher in the 
group with values higher than the median than in the group with values lower than the median (p = 0.046). 
The proportion of poorly differentiated tumours was higher in the group with values higher than the median 
(p = 0.054). For GLN135, there were no significant factors except the T stage and differentiation (Table 3). The 
proportion of cases with stage T3 disease and poorly differentiated tumours was higher in the group with values 
higher than median.

Survival analysis. The GLN values were used to create a Kaplan–Meier survival curve. Recurrence-free sur-
vival was shorter in the group with high GLN135 values (p = 0.025) (median recurrence-free survival: group with 
values higher than the median = 6.72 months, group with values lower than the median = 10.52 months). As 
described above, GLN indicates heterogeneity. This result showed that a high GLN135 value was associated with 
a poor prognosis (Fig. 1).

prognostic impact of clinicopathologic features in pancreatic cancer. On multivariate anal-
yses, node stage, tumour differentiation, and GLN135 value were identified as independent factors for poor 
recurrence-free survival (Table 4).

prognostic impact of clinicopathologic features in pancreatic cancer. On multivariate analyses, 
tumour stage, tumour differentiation, and perineural invasion were identified as independent factors for poor 
overall survival (Table 5).

Age

Median [Q1–Q3] or N (%)

65.0 [55.75–70.25]

Sex
Men 56 (48.3%)

Women 60 (51.7%)

T stage (8th)

T1 21(18.1%)

T2 77 (66.4%)

T3 18 (15.5%)

N stage (8th)

N0 42 (36.2%)

N1 55 (47.4%)

N2 19 (16.4%)

Stage (8th)

IA 12 (10.3%)

IB 22 (18.9%)

IIA 8 (7%)

IIB 55 (47.4%)

III 19 (16.4%)

PNI

Positive 98 (84.5%)

Negative 17 (14.6%)

Unknown 1 (0.9%)

LVI

Positive 57 (49.1%)

Negative 58 (50%)

Unknown 1 (0.9%)

Differentiation

WD 10 (8.6%)

MD 92 (79.3%)

PD 13 (11.2%)

Unknown 1 (0.9%)

Table 1. Pathological characteristics in pancreatic cancer patients. PNI; Perineural invasion, LVI; 
Lymphovascular invasion, WD; Well differentiated, MD; Moderate differentiated, PD; Poorly differentiated.
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Discussion
Quantitative imaging techniques based on radiomics have recently gained prominence as potential methods to 
provide mineable data from imaging analysis using automatically extracted data-characterisation processes11–14. 
CT is a good technique for assessment of the structural aspects of tumours and the normal adjacent organs. It 
remains the initial imaging method used for clinical staging of pancreatic cancer and for evaluating local spread 
into adjacent structures.

Tumour heterogeneity is a significant prognostic factor because it reflects the subclonal populations of the 
tumour. Tumours show temporally and spatially heterogeneous features in imaging studies (CT, MRI, and 
PET-CT). Since CT reflects the characteristics of these features of tumours, studies on the evaluation of tumour 
heterogeneity using preoperative CT scans are underway for various tumours15–22. Therefore, we used CT texture 
analysis to determine the predictive value of preoperative CT scans in pancreatic cancer.

In this study, we analysed the differences in GLRLM values between normal pancreatic tissue and the 
tumours in pancreatic cancer. The GLN values were higher than normal in tumours. High GLN values represent 
a non-uniform texture, i.e., heterogeneity. The group with higher GLN values also showed poorer results for 
prognostic factors such as T stage and differentiation type. In this study, tumour heterogeneity was reflected by 
a high GLN value in the image and was associated with increased biological aggressiveness (higher T stage and 
poor differentiation of the tumour).

The biological rationale for radiologic features of heterogeneity is to determine potential histopathologic 
correlates (tumour grade, hypoxia, and angiogenesis-specific genetic and molecular features). Higher tumour 
heterogeneity, as reflected by lower uniformity of positive pixel values and greater variability in texture analysis, 
correlates with elevated markers of hypoxia23,24.

GLN values in GLRLM features were also correlated with recurrence-free survival. GLN measures the simi-
larity of grey level intensity values in the image, where a lower GLN value correlates with a greater similarity in 
intensity values. Therefore, we conclude that heterogeneity is higher in the group with GLN values greater than 
the median value, and that recurrence-free survival is worse than expected in this group. The GLCM value is 
determined only on the basis of the relationships among pixel values. Regardless of the position, heterogeneity 
increases as the number of pixels showing a large difference from adjacent pixels increases. However, in com-
parison with the GLCM, the GLRLM value is less dependent on the distribution range of pixel values in the 
image because the pixel values as well as the lengths of the same pixel values are considered together for GLRLM 
assessments25.

GLN 0,45,90

p-valueValue < Median (n = 48)
Value > Median 
(n = 68)

Age
≤65 28 (58.3%) 31 (45.6%)

0.176
>65 20 (41.7%) 37 (54.4%)

Sex
Men 26 (54.2%) 30 (44.1%)

0.286
Women 22 (45.8%) 38 (55.9%)

T stage (8th)

T1 6 (12.5%) 15 (22.1%)

0.046T2 38 (79.2%) 39 (57.4%)

T3 4 (8.3%) 14 (20.6%)

N stage (8th)

N0 16 (33.3%) 26 (38.2%)

0.543N1 22 (45.8%) 33 (48.5%)

N2 10 (20.8%) 9 (13.2%)

Stage (8th)

IA 4 (8.3%) 8 (11.8%)

0.664

IB 10 (20.8%) 12 (17.6%)

IIA 2 (4.2%) 6 (8.8%)

IIB 22 (45.8%) 33 (48.5%)

III 10 (20.8%) 9 (13.2%)

PNI

Positive 42 (87.5%) 56 (82.4%)

0.590Negative 6 (12.5%) 11 (16.2%)

Unknown 0 (0%) 1 (1.5%)

LVI

Positive 21 (43.8%) 36 (52.9%)

0.401Negative 27 (56.3%) 31 (45.6%)

Unknown 0 (0%) 1 (1.5%)

Differentiation

WD 8 (16.7%) 2 (2.9%)

0.054
MD 36 (75%) 56 (82.4%)

PD 4 (8.3%) 9 (13.2%)

Unknown 0 (0%) 1 (1.5%)

Table 2. Pathological characteristics and the value of GLN 0,45,90 in pancreatic cancer patients. PNI; 
Perineural invasion, LVI; Lymphovascular invasion, WD; Well differentiated, MD; Moderate differentiated, PD; 
Poorly differentiated.
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Most studies reporting texture analysis of tumour heterogeneity used histogram analysis and GLCM to obtain 
results. Although GLCM features demonstrate better performance than other texture types, the GLRLM features per-
formed better in the optimal subset. GLCM is suitable for analysing changes in local heterogeneity because it analyses 

GLN 135

p-valueValue < Median (n = 50)
Value > Median 
(n = 66)

Age
≤65 28 (56%) 31 (47%)

0.335
>65 22 (44%) 35 (53%)

Sex
Men 27 (54%) 29 (43.9%)

0.283
Women 23 (46%) 37 (56.1%)

T stage (8th)

T1 7 (14%) 14 (21.2%)

0.055T2 39 (78%) 38 (57.6%)

T3 4 (8%) 14(21.2%)

N stage (8th)

N0 17 (34%) 25 (37.9%)

0.363N1 22 (44%) 33 (50%)

N2 11 (22%) 8 (12.1%)

Stage (8th)

IA 5 (10%) 7 (10.6%)

0.551

IB 10 (20%) 12 (18.2%)

IIA 2 (4%) 6 (9.1%)

IIB 22 (44%) 33 (50%)

III 11 (22%) 8 (12.1%)

PNI

Positive 44 (88%) 54 (81.8%)

0.520Negative 6 (12%) 11 (16.7%)

Unknown 0 (0%) 1 (1.5%)

LVI

Positive 22 (44%) 35 (53%)

0.394Negative 28 (56%) 30 (45.5%)

Unknown 0 (0%) 1 (1.5%)

Differentiation

WD 8 (16%) 2 (3%)

0.081
MD 37 (74%) 55 (83.3%)

PD 5 (10%) 8 (12.1%)

Unknown 0 (0%) 1 (1.5%)

Table 3. Pathological characteristics and the value of GLN 135 in pancreatic cancer patients. PNI; Perineural 
invasion, LVI; Lymphovascular invasion, WD; Well differentiated, MD; Moderate differentiated, PD; Poorly 
differentiated.

Figure 1. Kaplan Meier survival curve for recurrence-free survival according to the GLN feature (GLN135).
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texture changes through the relationship between neighbouring pixels. In contrast, GLRLM is more sensitive for analys-
ing changes in regional heterogeneity because it analyses texture changes through the entire length of the run.

Several studies have reported assessments of tumour heterogeneity by GLRLM texture analysis26. For example, 
Ho et al. used GLRLM textural analysis and reported that the heterogeneity of intratumoural FDG distribu-
tion and the early temporal changes in total lesion glycolysis may be important predictors for overall survival in 
patients with bulky cervical cancer27.

One limitation of the present study was the use of ROIs covering only the lesion core in pancreatic tumours rather 
than the entire tumour area or the largest cross-sectional area. In contrast, other studies performed texture analysis 
of the entire area28. Typically, whole-tumour analysis appears to yield results that are more representative of tumour 
heterogeneity. However, because of the nature of tumours, proliferation usually occurs in the central part of the lesion. 
It is true that proliferation also occurs at the border of the tumour; however, the development of a necrotic core in can-
cer patients is correlated with increased tumour size, high-grade disease, and poor prognosis due to the emergence of 
chemoresistance and metastases29. This suggests that the core of the tumour is adequate for predicting heterogeneity.

The second limitation is that this analysis did not reflect genetic heterogeneity. Biologically, to confirm tumour 
heterogeneity, it is essential to identify genetic heterogeneity. Without also performing genetic analysis, it is difficult to 
confirm that texture analysis has completely deduced the histological heterogeneity. Previous studies did not correlate 
pancreatic cancers with molecular markers or investigate subtypes of pancreatic cancers. However, we plan to correlate 
this texture analysis with genetic heterogeneity and perform genetic analysis using a prospective study design.

Factors

Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

Age

≤65 1 1

>65 1.453 0.955–2.211 0.081 1.548 0.996–2.405 0.052

Sex

Men 1

Women 0.920 0.607–1.392 0.692

T stage (8th)

T1 1

T2 1.316 0.723–2.398 0.369

T3 1.891 0.864–4.139 0.111

N stage (8th)

N0 1 1

N1 1.529 0.972–2.405 0.066 1.623 1.014–2.598 0.043

N2 1.574 0.784–3.158 0.202 2.804 1.319–5.957 0.007

Stage (8th)

IA 1

IB 0.987 0.443–2.199 0.974

IIA 1.641 0.538–5.007 0.384

IIB 1.619 0.781–3.354 0.195

III 1.676 0.678–4.146 0.264

PNI

Positive 1

Negative 0.851 0.470–1.541 0.594

LVI

Positive 1

Negative 0.736 0.484–1.120 0.153

Differentiation

WD 1 1

MD 2.238 1.071–4.676 0.032 2.309 1.072–4.976 0.033

PD 2.906 1.160–7.282 0.023 3.290 1.207–8.969 0.020

GLN0, 45, 90

Value < median 1 1

Value > median 1.476 0.967–2.254 0.071 0.254 0.056–1.150 0.075

GLN135

Value < median 1 1

Value > median 1.696 1.102–2.610 0.016 6.030 1.317–27.596 0.021

Table 4. Univariate and multivariate analyses of the relationship between RFS and clinicopathologic variables 
by Cox regression hazard model. PNI; Perineural invasion, LVI; Lymphovascular invasion, WD; Well 
differentiated, MD; Moderate differentiated, PD; Poorly differentiated, RFS; Recurrence free survival.
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Inferring tumour heterogeneity through texture analysis, a radiomics approach, has several advantages and 
disadvantages. We have identified a tool for prediction of the postoperative oncologic outcome and prognosis 
through preoperative abdominal CT scans in aggressive cancers such as pancreatic cancer.

No previous studies have reported resectable pancreatic cancers with the same adjuvant treatments, and the 
present study had a larger sample size than previous studies. Our study has great significance as we performed the 
same texture analysis with a different method30,31.

Despite the fact that this study used retrospective data, our result may indicate an important predictor of prog-
nosis, since we used the preoperative CT scan of resectable pancreatic cancer patients.

In conclusion, the findings obtained with texture analysis show clinical significance in predicting the survival 
and prognosis of pancreatic cancer patients.

Methods
patients. We included 230 consecutive patients who underwent curative-intent surgical resection for pan-
creatic cancer at Gangnam Severance Hospital between 2001–2017. Preoperative contrast-enhanced CT data of 
116 patients were available for texture analysis. Patients who had undergone neoadjuvant concurrent chemo-
radiotherapy were excluded from this analysis. The study protocol was approved by the institutional review 
board at Gangnam Severance Hospital, Yonsei University of Korea (3-2016-0338). The study complied with the 
Declaration of Helsinki. Informed consent was obtained from all participants.

Factors

Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

Age

≤65 1

>65 1.402 0.931–2.112 0.106

Sex

Men 1

Women 0.741 0.493–1.115 0.151

T stage (8th)

T1 1

T2 1.321 0.748–2.332 0.337

T3 2.195 1.086–4.435 0.028

N stage (8th)

N0 1

N1 1.561 0.983–2.477 0.059

N2 2.011 1.086–3.726 0.026

Stage (8th)

IA 1 1

IB 1.094 0.457–2.619 0.840 1.133 0.472–2.720 0.780

IIA 2.169 0.776–6.064 0.140 2.397 0.832–6.909 0.105

IIB 1.888 0.890–4.006 0.098 2.346 1.094–5.029 0.028

III 2.449 1.035–5.794 0.041 3.098 1.298–7.390 0.011

PNI

Positive 1 1

Negative 0.542 0.279–1.052 0.070 0.450 0.221–0.916 0.028

LVI

Positive 1

Negative 0.714 0.474–1.075 0.107

Differentiation

WD 1 1

MD 1.493 0.744–2.996 0.259 1.686 0.834–3.407 0.146

PD 1.830 0.741–4.520 0.190 3.943 1.523–10.207 0.005

GLN0, 45, 90

Value < median 1

Value > median 1.129 0.747–1.705 0.565

GLN135

Value < median 1

Value > median 1.135 0.753–1.711 0.546

Table 5. Univariate and multivariate analyses of the relationship between OS and clinicopathologic variables 
by Cox regression hazard model. PNI; Perineural invasion, LVI; Lymphovascular invasion, WD; Well 
differentiated, MD; Moderate differentiated, PD; Poorly differentiated, OS; Overall survival.
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ct protocol. For the 116 patients, preoperative dynamic CT was performed using one of two scanners: a 
16-slice multidetector CT (MDCT) scanner (Somatom Sensation 16; Siemens Medical Solutions, Erlangen, 
Germany) or a 64-slice MDCT scanner (Somatom Sensation 64; Siemens Medical Solutions, Erlangen, Germany). 
All patients were instructed to fast for at least 5 hours before undergoing CT examinations. Each patient was 
administered 150 mL of a nonionic contrast material (Ultravist 300; Schering AG, Berlin, Germany) intrave-
nously by means of a power injector (EnVision CT; Medrad, Pittsburgh, Pa) at a rate of 3 mL/second.

The CT images were acquired in the craniocaudal direction with the following parameters: detector collima-
tion, 16 × 0.75 mm; table feed, 12 mm per rotation; section width, 3 mm; reconstruction increment, 3 mm with 
3-mm-thick sections; pitch, 1.2; tube voltage, 120 kVp; and tube current, 160 mAs. Precontrast scanning (i.e., the 
first pass) was performed first, followed by contrast-enhanced CT. In order to determine the time of peak aortic 
enhancement, a bolus injection of 20 mL of contrast material was administered, and sequential dynamic sections 
were acquired every 2 seconds, starting from the hepatic hilum. Based on the findings of a previous study on 
multidetector row helical CT, we calculated the start time for the arterial phase by adding 15 seconds to the time 
of peak aortic enhancement calculated at the hepatic hilum. The resultant average start time for the arterial phase 
was 34 seconds (range, 30 ± 38 seconds). The equilibrium phase scan was acquired at 3 minutes after the start of 
the contrast material injection32.

Data analysis. For each primary cancer site, a region of interest (ROI) was drawn on all slices with a visible 
tumour on the AP CT scans using the GCUBME-ROI Tool. This tool is a program created independently for this 
study. The ROIs were reviewed by a radiologist blinded to the patient outcomes. The circular ROI was placed 
within the central region of the tumour and the normal parenchyma in the pancreas without including the pan-
creatic and bile ducts and vessels. All ROIs had the same diameter (4 mm) (Fig. 2).

texture analysis. For texture analysis, pixel values in the ROIs were transformed into the GLRLM matrix for 
each CT image. GLRLM provides the size of homogeneous runs for each grey level along a specific linear direc-
tion, which is defined by four different directions in the 2D GLRLM, i.e., 0°, 45°, 90°, and 135°. In the GLRLM 
matrix, the rows are represented by grey values, and the columns are represented by the number of same adjacent 
pixels. The grey-level non-uniformity (GLN) features were calculated from the GLRLM matrix for the four direc-
tions using Eq. (1):
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GLN measures the distribution of runs along the grey levels. The GLN feature value is low when the runs are 
equally distributed along grey levels. Therefore, a low GLN feature value indicates high similarity of intensity 
values. In the GLRLM matrix, the rows are represented by grey values, and the columns are expressed by the same 
number of adjacent pixels25,33. The number of occurrences wherein the grey value of each of the pixels is the same 
as the grey value of the neighbouring pixels in a given direction and distance is represented by a matrix.

Statistical analysis. All statistical analyses were performed using SPSS software, version 20.0 (SPSS Inc., 
Chicago, IL). Categorical variables were evaluated using chi-square or Fisher’s exact tests. Survival curves were 
plotted using the Kaplan–Meier method, and intergroup differences in survival time were assessed with the 
log-rank test. Recurrence-free survival was defined as the interval between the date of surgery and the date of 
recurrence. The Cox proportional hazards regression method was used to determine independent prognostic 
factors. A p-value lower than 0.05 was considered statistically significant.
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Published: xx xx xxxx

Figure 2. ROI processing in preoperative CT scan.
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