# 다형성교모세포종 세포주와 종양조직에서 Midkine 발현 

연세대학교 의과대학 ${ }^{1}$ 신경외과학교실, ${ }^{2}$ 내과학교실, ${ }^{3}$ 연세 암쎈터,
${ }^{4}$ Lombardi Cancer Center, Georgetown University School of Medicine, Washington, D.C., U.S.A.

장진우 ${ }^{1}$ 라선영 ${ }^{2,3} \cdot$ 정상섭 ${ }^{1} \cdot$ Frank Czubayko ${ }^{4}$ • 정현첨 ${ }^{2,3}$

# Midkine Expression in Cell Lines and Tumor Tissues of Glioblastoma Multiforme 

Jin Woo Chang, M.D. ${ }^{1}$, Sun Young Rha, M.D. ${ }^{2,3}$, Sang Sup Chung, M.D. ${ }^{1}$ Frank Czubayko ${ }^{4}$ and Hyun Cheol Chung, M.D. ${ }^{2,3}$<br>Departments of ${ }^{1}$ Neurosurgery and ${ }^{2}$ Internal Medicine, ${ }^{3}$ Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea; ${ }^{4}$ Lombardi Cancer Center, Georgetown University School of Medicine, Washington, D.C., U.S.A.

Purpose: We measured the expression of midkine (MK) gene and biophenotypes in brain tumor cell lines and tumor tissues.
Materials and Methods: We used the cell lines purchased from ATCC: two glioblastoma cell lines (T98G, U87MG), rat bladder tumor cell line (NBT-II), NIH/3T3, and two endothelial cell lines [(human umbilical vein endothelial cell (HUVEC) and fetal bovine heart endothelial cell (FBHE)]. RNA was taken from 4 cancer tissues of glioblastoma multiforme. Tissue cytosol was obtained from 5 cancer patients and 2 tissues of epilepsy patients. Pentosanpolysulfate(PPS) was used as a competitive inhibitor of heparin-binding growth factor (HBGF). MK and pleiotrophin (PTN) mRNA expression was tested by Northern hybridization. uPA and PAI-1 levels were measured by ELISA (Monozyme, Netherlands). Cross-feeding assay was done to measure the activity of endothelial cell growth stimulation induced by cancer cell lines.
Results: T98G cell line expressed both MK and PTN while U87MG expressed only PTN. In cross-feeding assay, endothelial cell growth increased in proportion to the number of administered feeding tumor cells, T98G and U87MG. This phenomenon was found in HUVEC, but not in FBHE. Conditioned media of T98G and U87MG showed similar stimulatory effect on the growth of $\mathrm{NIH} / 3 \mathrm{~T} 3$ cells. T98G cell showed higher excretion rate of UPA into conditioned media while U87MG showed higher excretion rate of PAI-1

[^0]into conditioned media. $20 \%$ of growth inhibition was induced on T98G cell with 100 $\mu \mathrm{g} / \mathrm{ml}$ PPS, while $40 \%$ of growth inhibition was induced with $10 \mu \mathrm{~g} / \mathrm{ml}$ PPS on U87MG cell. In four cancer tissues, three expressed MK. In cancer tissue cytosol, uPA and PAI-1 expressions varied in individuals. No PAI-1 was found in non-tumor tissues.
Conclusion: MK expression was found in brain tumor cell lines and tumor tissues. Modulation of biophenotypes (angiogenic activity and growth) by PPS in tumor cells with MK expression suggested a possible biotherapy in brain tumor targeting growth factor.

Key Words: Brain tumor, Midkine, Pentosanpolysulfate, Angiogenic activity

## 서 룬

성장인자는 신체의 모든 조직에 존재하며, 아직 밝혀지지 않은 어면 유전자에 의해 그 발현이 조 절되어 각 장기의 성장과 분화률 유도한다. 이러 한 개념은 배양 암 세포주에서 표피성장인자와 그 수용체가 동시에 관찰됨에 따라(1), autocrine growth regulation이라는 개념으로 발전하였다(2). 즉 세포중식에 필수적인 성장인자를 다량 생성시 에는 세포막에 존재하는 수용체가 과자극되어 정 상적인 세포증식 조절기전이 억제된다. 그 결과 비정상적인 세포중식이 발생하고(autocrine pathway), 아울러 그 수용체를 발현하는 주위 정상 섬 유세포나 내펴세포를 자극하여 암세포의 침윤 및 전이를 촉진시키거나, 종양 혈간형성율 증가시킨 다는 것이다(paracrine pathway)(3,4).

종양성장인자들은 대부분이 heparin에 결합하여 활성화되는 섬유아세포 성장인자군의 superfamily 에 속한다( 5,6 ). 염기의 아미노산 서열에 cystein이 풍부하고 분자량이 13,000 인 새로운 성장인자가 발견되었고, 이 성장인자는 태아기의 mid-term에 서 주로 발현되고 분만 후에는 주로 신장에서 관 찰되어서 Midkine (MK)이라 명명되었다(7). 이 MK 역시 heparine과 결합한 후 활성화되며 세포 의 분화와 성장에 관여한다. 또한 MK의 중요한 역할 중 한 가지로 태아 뇌세포의 신경돌기 성장

을 축진시키는 기능이 관찰되었다(8). MK는 태아 발육의 일정시기에서만 많은 양이 나타남이 관찰 되었으며, 성인에서는 극히 일부 장기에서만 그 존재가 관찰되어 이 성장인자의 발현은 고도의 조절작용에 의함이라고 생각되었다. 따라서 이와 같이 고도로 그 생성과 분비가 조절되는 성장인 자의 조절 기전에 발생학적 이상이 발현시는 뇌의 성장과 분화에 이상이 발생할 것으로 예상된다.

종양성장인자의 과생성에 의한 암유발 기전이 제시되고 또한 신경교종, 뇌수막종, 유방암 및 위 암세포주둥에서 여러 가지 종양성장인자의 과표 현이 관찰되었다(5,9). 실제로 폐암, 대장암에서 MK의 발현됨이 보고되었고, 간암세포주와 위암 세포주에서도 발현이 관찰되었다(7,8,10). 특히 MK 는 태아의 발생시기에 뇌조직에서 발현이 중가되 므로 뇌종양의 유발 훅은 진행과정에 이 성장인 자가 참여할 가능성이 있기 때문에, 뇌종양에서 MK 의 발현율 관찰하는 것온 이 성장인자와 암생 성과의 관계률 이해하는 하나의 방편이 될 수 있 율 것으로 사료된다. 본 연구에서는 장차 뇌종양 의 치료 혹은 뇌의 각종 퇴행성 병변에 응용할 수 있는 성장인자에 대한 일차 기초실험으로 뇌종양 세포주에서 MK를 발현하는 경우의 생물학적 톡 성율 조사하였으며, 일부 뇌종양 조직에서 MK의 발현율 조사하였다.

## 재료 및 방법

## 1) 대상세포주

대상세포주는 ATCC (Rockville, USA)에서 구입 한 human glioblastoma 세포주 T98G (CRL 1690), U87MG (HTB14), 쥐의 방광암 세포주 NBT-II (CRL 1655), 섬유아세포주 NIH/3T3 (CRL 1658)와 내펴세포주로서 human umbilical vein endothelial cell (HUVEC;CRL 1730), fetal bovine heart endothelial cell (FBHE;CRL 1395)을 사용하였다. 암세 포주와 섬유아세포주는 $56^{\circ} \mathrm{C}$ 에서 30 분간 불활성 화시킨 $10 \%$ 우태아혈청(GIBCO-BRL, Grand Island, NY, U.S.A.)과 penicillin 100 unit/ml과 streptomycin $0.1 \mathrm{mg} / \mathrm{ml}$ (GIBCO-BRL, Grand Island, NY, U.S.A.) 이 함유된 세포배양용배지(MEM, GIBCO-BRL, Grand Island, NY, U.S.A.)로 $37^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$ 의 항온 항늡배양기에서 배양하였다. 내펴세포주는 endothelial basal growth media (GIBCO-BRL, Grand Island, NY, U.S.A)에 $4 \mathrm{ng} / \mathrm{ml}$ basic fibroblast growth factor (Farmitalia Carlo Erba, Italy)와 20 mM Lglutamine (Bio-Whittaker, Walkersville, MD, U.S.A.) 를 첨가하여. 암세포주와 동일한 조전의 항온 항 습배양기에서 배양하였다.

## 2) 대상활자

Glioblastoma multiforme로 진단받고 수술이 진 행되었던 4예에서 암 조직을 채취하여 RNA률 획 득하였다. 5예의 압조직에서는 세포질(cytosol)올 구하였으며, 간질로 수술을 시행한 2예의 비종양 조직으로부터 세포질올 구하였다.

## 3) Northern Hybridization

(1) 배양셰포주로부터 RNA 분리: 단충세포 배 양율 하면서 세포롤 회수하기 $3 \sim 4$ 시간 전에 새 배지로 배양한 후, phosphate-buffered saline(PBS) 으로 세 번 씻은 다음, 세포를 모아 원심분리하여 세포롤 회수하였다. 침전된 세포 4배 부피의 lysis buffer로 세포를 용해시켜 얻은 세포추출물을 원

심분리하여 상충액을 취하였다. 상층액을 SW41 시험관(polyallomer)내의 sucrose cushion 위에 조심 스럽게 올린 후 $36,000 \mathrm{rpm}$ 에서 160 분간 원심분리 하였다. 원심분리후 상충액과 cushion을 버리고 polysome pellet을 1 ml sodiumdodesylsulfate (SDS) 용액에서 $37^{\circ} \mathrm{C}$ 로 30 분간 반응시켰다. 3 M sodium acetate ( pH 5.2 ) 용액을 최종농도가 50 mM 되도 록 첨가한 후 phenol/chloroform으로 한번, chloroform으로 두 번 RNA를 추출하였다. Sodium acetate $(\mathrm{pH} 5.2)$ 를 최종농도가 0.3 M 되도록 첨가한 다음 2.5 배 부피의 에탄올올 가하여 $-20^{\circ} \mathrm{C}$ 에서 밥새 방치하였다. 다음날 $10,000 \mathrm{~g} 4^{\circ} \mathrm{C}$ 에서 15 분 간 원심분리하여 RNA를 회수하였다. RNA 침전 물을 $75 \%$ 에탄을로 두 번 씻어준 후 말리고서, $70 \%$ 에탄올 존재하에 $-70^{\circ} \mathrm{C}$ 에 저장하여 사용하 였다.
(2) 조직에서 RNA 분리: 균질화기(homogenizer) 로 조직율 분쇄시킨 다음 6 M guanidinium 용액으 로 조직을 용해시켰다. 세포외 불용성 물질올 제 거하기 위하여 상온에서 $10,000 \mathrm{rpm}$ 으로 10 분간 원심분리하여 상층액욜 취한다음 상층액 1.0 ml 당 0.15 g 의 CsCl 율 가하였다. 이 용액율 SW 41 시 험관에 있는 CsCl cushion위에 조심스럽게 을린 후, $18^{\circ} \mathrm{C}$ 에서 $32,000 \mathrm{mpm}$ 으로 24 시간 원심분리하 였다. Pellet올 1 X SST 에 녹인 다음 같은 부피의 chloroform/butanol (4:1)과 혼합하여 원심 분리하 였다. 유기 용매충올 $1 X$ SST로 다시 추출하여 수 용액충을 합한 다음, 수용액충에 sodium acetate ( pH 5.2 )롤 0.3 M 되도록 가하고, 2.5 배 부피의 에 탄을을 첨가하여 $-20^{\circ} \mathrm{C}$ 에 밤새 방치하였다. RNA 를 $10,000 \mathrm{~g} 4^{\circ} \mathrm{C}$ 에서 15 분간 원심분리하여 회수한 다음 세포주와 동일한 방볍으로 $-70^{\circ} \mathrm{C}$ 에 보관하 며 사용하였다.
(3) Hybridization: Formaldehyde 방법에 의해 실 헙율 진행하였다(11). 간략하면, agarose gel를 제 조하여 10 mM sodium phosphate buffer ( pH 6.7 )에 서 전기 영동하였다. Probe는 인체 MK cDNA 및 pleiotrophin (PTN) cDNA (Dr. Anton Wellstein 제 공, Lombardi Cancer Center, Washington D.C.)로

하였다. Filter를 $50 \%$ formamide가 포함된 hybridization용액 10 mL 에 넣고 $42^{\circ} \mathrm{C}$ 에서 $15 \sim 20$ 시간 반 응시켰다. $2 \mathrm{X} \mathrm{SSC}-0.1 \%$ SDS 용액으로 실온에서 4~5회 세척하고, $0.1 \mathrm{X} \mathrm{SSC}-0.1 \%$ SDS 용액으로 $50^{\circ} \mathrm{C}$ 에서 15 분간 세척한 다음 공기 중에서 건조 시킨 후, autoradiography를 하였다.

## 4) Cross-feeding assay

6-well plate에 semi-permeable membrane으로 분 리된 세포배양 chamber (Falcon, Franklin Lakes, NJ, U.S.A.)를 이용하여 위쪽에는 암세포주를, 아 래쪽에는 내피세포주를 배양하여 암세포주에서 내픠세포주로의 paracrine activity를 측정하였다. 이때 사용하는 배지에는 우태아혈청을 첨가하지 않음으로써 암세포주에서 분비되는 성장인자에 의한 내피세포 증식 유도능을 비교하였다. 음성 대조군은 암세포주와 co-culture를 하지 않고 내피 세포만 우태아 혈청이 없는 배지에서 배양한 군 으로 하였다. 양성 대조군은 내피세포의 증식을 유도함으로 알려진 NBT-II 세포주와 co-culture한 내피세포군으로 하였다. 투여한 암세포주는 각 chamber당 150,000 개 및 400,000 개의 세포를 투여 한 두 군으로 비교하였으며, 내피세포주는 각 chamber당 50,000 개의 세포를 주입하였다. 세포를 주입한 후 $37^{\circ} \mathrm{C}, 0.5 \% \mathrm{CO}_{2}$ 세포배양기에서 하룻 밤 배양하였다. 다음날 우태아혈청이 없는 배지로 3 회 세척한 다음 3 일간 배양하였다. 3 일후 내퍼세 포를 trypsin 처리하여 단세포로 만든후 세포수를 측정하였다. 각 군은 3 개의 well로 실험올 진행하 였다.

## 5) Proliferation assay

(1) Conditioned media에 의한 NIH/3T3 세포주 배양: NBT-II, T98G, U87MG 세포주를 $75 \mathrm{~mm}^{2}$ flask (Costar, MA, U.S.A.)에 각각 $2 \times 10^{6}$ 개씩의 세 포를 주입하고 $10 \%$ 우태아 혈청이 있는 배지에서 2 시간 배양하였다. 세포가 부착뒴을 확인하고서 ( $80 \%$ 군집도) 우태아혈첨이 함유된 배지를 제거 한 다음 우태아 혈청이 없는 배지로 flask를 3회

세척하였다. 다음 24 시간 동안 우태아 혈청이 없 는 배지에서 배양한 다음 배지률 제거하고 다시 우태아 혈청이 없는 상태에서 24시간 배양한 후 배지를 채취하여(각 flask당 10 ml ) conditioned media로 사용하였다. NIH/3T3 세포주를 24-well plate에 10,000 개를 분주한 다음 우태아 혈청이 없 는 배지에 conditioned media를 투여하고 3일간 배 양후 trypsin 처리하여 세포수를 측정하였다. 이때 음성 대조군은 conditioned media를 투여하지 않은 군으로, 양성 대조군으로는 NBT-II 세포주의 conditioned media를 투여한 군으로 하였다. 각 군은 3 개의 wel1로 실험을 진행하였다. ELISA 검색을 위 한 conditioned media의 농축은 다음과 같이 하였 다. 먼저 conditioned media를 채취한 다음 $1200 \times$ g 에서 10 분간 원심분리하여 좌멸조직편(debris)을 제거한 다음 Centriprep filter (Amicon, MA, U.S.A.) 를 사용하여 $4^{\circ} \mathrm{C}$ 에서 초여과(ultrafiltration)함으로 써 conditioned media를 100 배로 농축하였다.
(2) Pentosanpolysulfte (PPS) 뿌여에 의한 암세 포주 중식억제: T98G, U87MG 세포주를 각각 24-well plate에 10,000 개씩 분주한후 $10 \%$ 우태아 혈청이 포함된 배지로 하룻밤 배양하였다. 다음날 PPS를 4단계의 각 농도별로 투여하고 4일간 배양 후 trypsin 처리하여 세포수를 측정하였다. 각 군 은 3 개의 well로 실험을 진행하였다.

## 6) ELISA assay

(1) 조직 세포질 준비: 조직 250 mg 을 분쇄시킨 후, ultracentrifuge 시험관에서 균질화 용액올 시용 하여 10 배 회석시켰다. 다음 $4^{\circ} \mathrm{C}$ 에서 1 시간 동안 $100,000 \times \mathrm{g}$ 로 원심분리하였다. 세포질의 상층액 을 얼음위에 설치한 시험관으로 옮기고 단백질양 을 Lowry 방법으로 정량하였다.
(2) urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor-1 (PAI-1) ELISA assay: 96 well에 희석된 uPA 및 PAI-1 detecting 항체를 주입한 후 $4^{\circ} \mathrm{C}$ 에서 하룻밤 방치시켰다. 다 음날 세척한 후 bovine serum albumin으로 $20^{\circ} \mathrm{C}$ 에 서 30 분간 반응시켰다. 다시 세척후 조직 및 세포

주의 세포질 추출물 혹은 conditoned media 및 $u \mathrm{PA}, \mathrm{PAI}-1$ 표준검체를 주입하고 실온에서 한시 간 반응시켰다. 세척후 uPA 및 PAI-1 항체를 첨가 하고 실온에서 1 시간 반응하였다. 다시 세척후 horse raddish peroxidase (HRP)-conjugate를 첨가하 고 실온에서 한 시간 반응시켰다. 세척후 OPD 기 질을 첨가하고 빛을 차단한 상태에서 30 분간 반 응시킨 다음 $\mathrm{H}_{2} \mathrm{SO}_{4}$ 를 첨가하여 반응을 정지시키 고 490 nm 에서 흡광도를 측정하였다.

## 결 과

## 1) 암 세포주에서 MK mRNA 발현

T98G, U87MG 세포주의 RNA를 이용하여 MK mRNA 발현을 조사하였다. 각각의 세포는 우태아 혈청이 함유된 배지와 함유되지 않은 배지에서 배양한 다음 RNA를 추출하였다. T98G 세포주는 우태아 혈청을 포함하거나 포함하지 않는 배지를 사용한 경우 모두에서 MK mRNA의 발현이 관찰 되었으며, U87MG 세포주는 두 경우 모두에서 MK mRNA의 발현은 관찰되지 않았다. 반면 MK 와 같은 family로서 뇌조직에서 발현이 관찰된 PTN mRNA발현은 T98G, U87MG 두 세포주 모두 에서 관찰되었다(Fig. 1).


Fig. 1. Expression of midkine and pleiotrophin mRNA in brain tumor cell lines by Northern hybridization. - : culture without serum, + : culture with serum.

## 2) T98G, U87MG 세포주의 내피세포 중식유 도능 비교

Cross-feeding assay에 의한 내펴세포 증식 유도 능을 비교하였다. 암세포주를 투여하지 않고 내피 세포만 배양한 경우를 음성대조군, 내피세포증식 유도능이 있음으로 알려진 NBT-II 세포주와 co-culture 한 군을 양성대조군으로 하여 비교하였 다. HUVEC를 사용하였을 경우 feeder 로서 T98G, U87MG 세포주를 150,000 개 투여한 경우는 내피 세포중식이 음성대조군에 비해 각각 $87 \%, 69 \%$ 로 감소하였다. 그러나 feeder 세포수를 400,000 로 증 가시킨 경우 음성대조군에 비해 각각 $129 \%, 126 \%$ 로 증가시켰다. 내피세포주를 FBHE 세포주를 사 용하여 feeder 세포주수를 400,000 개 투여하고 동 일한 실험를 시행한 바, 음성대조군에 비교하여 T98G 세포주는 $126 \%$, U87MG 세포주는 $96 \%$ 를 유도하였다(Fig. 2).

## 3) T98G, U87GM 세포주의 conditioned media 에 의한 NIH/3T3 세포주 즁식유도늉 비교

NBT-II 세포주와 T98G, U87MG 세포주의 conditioned media를 NIH/3T3 세포주에 투여하고 증


Fig. 2. Cross-feeding assay: HUVEC: human umbilical vein endothelial cell, FBHE: fetal bovine heart endothelial cell. *: 150,000 feeder cell, ${ }^{* *: ~ 400,000}$ feeder cell.

식유도를 비교한 바, NBT-II 세포주는 대조군에 비해 NIH/3T3 세포주의 증식올 $205 \%$ 증가시켰으 며, T98G, U87MG 세포주는 각각 $126 \%, 122 \%$ 증 가시켰다(Fig. 3).

## 4) T98G, U87GM 세포주의 conditioned media와 세포질에서 uPA와 PAI-1의 발현 비교

각 세포주의 세포질에서 uPA와 PAI-1의 발현을 비교시에, T98G 세포주는 각각 $0 \mathrm{ng} / \mathrm{mg}$ protein, $4.6 \mathrm{ng} / \mathrm{mg}$ protein이었으며, U87MG 세포주는 각각 $0.3 \mathrm{ng} / \mathrm{mg}$ protein, $1.1 \mathrm{ng} / \mathrm{mg}$ protein을 발현하였다.

100 배로 농축된 각 세포주의 conditioned media에 서 uPA와 PAI-1 의 발현올 조사한 바, T98G 세포 주는 각각 $3.8 \mathrm{ng} / \mathrm{mg}$ protein, $8.3 \mathrm{ng} / \mathrm{mg}$ protein 이 었으며, U87MG 세포주는 각각 $4.9 \mathrm{ng} / \mathrm{mg}$ protein, $8.2 \mathrm{ng} / \mathrm{mg}$ protein으로 관찰되었다(Fig. 4).

## 5) Heparin-analogue인 pentosanpolysulfate에 의한 세포주 즁식 억제

두 세포주에서 pentosanpolysulfate의 투여량을 증가할 수록 증식이 억제되는 경향을 관찰하였으 나, 고농도인 $100 \mu \mathrm{~g} / \mathrm{ml}$ 과 $300 \mu \mathrm{~g} / \mathrm{ml}$ 사이에는 차이가 없었고, 투여농도 $300 \mu \mathrm{~g} / \mathrm{ml}$ 까지도 $\mathrm{IC}_{50}$


Fig. 4. Expression of uPA and PAI-1 in cell cytosol and concentrated conditioned media: CM: conditioned media.

Fig. 5. Effect of pentosanpolysulfate on the proliferation of T98G and U87MG cells

는 관찰되지않았다. 약제투여 5 일째에 T98G 세포 주는 $100 \mu \mathrm{~g} / \mathrm{ml}$ 의 PPS 투여시 성장이 $20 \%$ 억제 된 반면, U87MG 세포주는 $10 \mu \mathrm{~g} / \mathrm{ml}$ 의 농도에서 도 증식이 $40 \%$ 억제되었다(Fig. 5).

## 6) 인채 Glioblastoma multiforme 중양 조직 에서 MK mRNA 발현

4예의 종양조직에서 Northern blot hybridization 방법에 의해 MK mRNA의 발현을 조사한 바, 3 예 에서 mRNA의 발현이 관찰되었다(Fig. 6).

## 7) 인쳬 Glioblastoma multiforme 종양 조직 에서 uPA, PAI-1의 발현

간질 환자에서 추출된 비종양 조직에서 uPA 는 $86 \pm 23 \mathrm{pg} / \mathrm{mg}$ protein이 관찰된 반면 PAI-1의 발현 은 관찰되지 않았다. 암 조직에서 UPA는 $124 \pm 61$ $\mathrm{pg} / \mathrm{mg}$ protein, PAI-1은 $479 \pm 703 \mathrm{pg} / \mathrm{mg}$ protein으


Fig. 6. Expression of midkine mRNA in four tumor tissues of Glioblastoma multiforme


Fig. 7. Comparison of uPA and PAI-1 expression between non-tumor and cancer tissue of brain

로 발현되었으며, 발현시에도 개인차가 많았다 (Fig. 7).


종양성장인자와 신샘혈관 생성과의 관계는 Folkman둥(12)에 의해 tumor angiogenesis factor (TAF) 가 발견된 이후 연구가 활발히 진행되었다. 신생 혈관 생성은 내피세포의 증식, 이동, 분화, 맥관형 성 등에 필요한 여러 가지 유전자가 적절하게 작 용하여 이루어지는 매우 복잡한 과정으로, 암세포 와 내피세포 사이의 상관관계를 형성하는 paracrine factor가 계속 발견되었으며 가장 대표적인 예가 acidic fibroblast growth (aFGF), basic fibroblast growth factor (bFGF), transforming growth factor (TGF) family, vascular endothelial growth factor (VEGF), PTN/MK family 등이다(11~17). 종양에 서 신생혈관 생성은 종양의 성장 및 전이의 중요 한 통로로서 작용하므로 혈관생성 정도가 암 진 행의 지표로 이용될 수 있음이 여러 종양에서 확 인되었다(18~22). 뿐만 아니라 신생혈간 생성의 억제가 새로운 암 치료법으로 제시되어 임상 실 험이 진행중이다. 신생혈관의 생성을 억제하기 위 해서는 paracrine growth factor 자체의 생성 및 분 비를 억제시키는 개념과 내피세포의 반응을 억제 시키는 두 가지 개념으로 연구가 진행 중이다. 종 양성장 인자들은 각기 서로 다른 종양에서 관찰 되거나 혹은 같은 종양에서 몇가지 성장인자가 동시에 발현되기도 하므로(23), 가장 critical role을 나타내는 종양 성장인자의 paracrine activity를 역 제시켜야 신생혈관 생성이 억제되고, 그 결과 항 중양효과를 기대할 수가 있다. 위암의 경우 신생 혈관의 생성이 예후인자로 작용할 수 있음은 보 고되었으나(18), 아직까지 paracrine activity를 나타 내는 대표적 종양성장 인자가 확인되지 않고 있 다. 최근 여러 가지 암 세포주에서 내피세포 증식 능이 있는 MK 유전자가 관찰된 바(17,24~26), 본 연구에서는 뇌암세포주에서 MK의 발현과 그에 따른 생물학적 특성율 조사하였으며, 아울러 실제

뇌암조직에서 MK의 발현을 조사하였다.
MK 유전자는 신경아세포 혹은 섬유아세포의 증식을 유도하며 특히 내피세포에서 plasminogen activator의 생성을 유도하여 신생혈관 생성을 중 가시킨다( $27 \sim 29$ ). 이와 같은 특성은 MK 유전자 가 종양의 증식에 중요한 역할을 담당할 것으로 생각된다. 실제로 유방암, 폐암, 방광암 둥에서 정 상 조직에 비해 MK 유전자 발현이 증가되어 있 으며, 이 유전자 발현은 환자의 예후와 관련이 있 음으로 보고되었다(30). 본 연구에서는 인체의 glioblastoma에서 유래한 세포주를 이용하여 MK 의 발현여부를 조사한 바, T98G 세포주는 MK을 발현하였으나 U87MG 세포주는 발현하지 않았다. 특히 세포의 증식이 억제된 상황에서 MK의 발현 변화를 조사하기 위해 T98G 세포주를 우태아혈 청이 없는 배지에서 배양한 세포에서 추출한 동 량의 총RNA들을 투여한 경우에서도 MK는 발현 되어, T98G 세포주는 MK 유전자를 지속적으로 발현함을 확인할 수 있었다. 아울러 폐암, 유방암, neuroblastoma의 경우 PTN과 MK가 서로 reciprocal expression을 함이 보고되어(24~26), 이 두 세포주에서 동량의 총RNA를 투여하고 PTN의 발 현올 동시에 조사한 바, 두 세포주 모두 PTN올 지속적으로 발현하고 있음을 확인할 수 있었다.

MK와 PTN을 모두 발현하는 T98G 세포주와 PTN만을 발현하는 U87MG 세포주를 이용하여 이 들의 생물학적 활성의 차이를 조사하였다. PTN과 MK 모두 내피세포의 증식을 유도하므로 $(11,30)$, 먼저 내피세포 증식유도능을 비교하기 위해 crossfeeding assay를 시행하였다. T98G와 U98MG세포 주를 150,000 개 투여할 경우 음성 대조군에 비해 오히려 내피세포의 중식이 감소하였다. 그러나 세 포수를 400,000 으로 증가할 경우 내피세포의 중식 이 $120 \%$ 로 증가하였다. 이는 feeder 암세포 수가 적은 경우는 분비되는 MK나 PTN의 양이 적어 충분한 내피세포의 중식이 유도되지 못한 반면, feeder 세포수를 중가시킨 경우에는 영양분이 있 는 배지의 양은 동일함에도 불구하고 춤분한 MK 및 PTN에 의해 내피세포의 증식이 유도됨으로 판

단하였다. 이러한 내피세포 증식유도는 대상 내피 세포가 HUVEC인 경우에는 두 가지 암세포주 사 이에 차이가 없던 반면, FBHE 의 경우는 T98G 세 포주에서 보다 증가함을 확인할 수 있었다. 즉 내 피세포의 증식은 성장인자를 분비하는 암세포수 에 비례하며, 암세포가 발현하는 성장인자의 종류 에 따라 부가적으로 내피세포의 증식을 유도할 수 있으나, 이는 대상 내피세포의 종류에 따라 차 이가 있을 수 있음을 확인하였다. 또한 PTN과 MK 는 내피세포 뿐만 아니라 섬유아세포의 성장 도 촉진시키므로( $11,27,28$ ), 798 G 세포주와 U87MG 세포의 conditioned media로 NIH/3T3 세포주의 중 식유도능을 비교하였다. 이 경우 두 세포주 모두 PTN을 발현하고 있으므로 NIH3T3 세포주의 증식 을 유도하였으나 T98G 세포주는 MK률 발현함에도 이에 따른 부가적 중식유도는 관찰할 수 없었다.
MK의 발현시에는 plasmin activator의 활성이 중 가하고(29), 암세포의 침윤능이 증가하므로(30), 두 세포주의 세포질과 conditioned media에서 uPA 와 PAI-1의 발현을 비교하였다. 세포질내에서는 T98G의 경우 uPA는 관찰되지 않은 반면 PAI-1은 U87GM 세포주보다 높게 관찰되었다. 반면 conditioned media에서는 uPA와 PAI-1 모두 U87GM 세 포주에서 높게 관찰되었다. 즉 conditioned media 로 분비하는 정도는 uPA 는 $\mathrm{T98G}$ 세포주에서, PAI-1은 U87GM 세포주에서 보다 증가되어 있음 을 확인할 수 있었다. 이 경우 증가된 PAI-1이 uPA의 natural inhibitor로 착용하는지 아니면 독립 적인 angiogenic factor로 작용하는지는 추후 연구 가 필요한 사항으로 판단되었다.
Heparine-binding growth factor (HBGF)로부터 autocrine pathway가 자극되어 세포증식이 유도되 는 경우 heparin-analogue로 세포중식의 억제가 가 능하므로, heparine-analogue인 pentosanpolysulfate (PPS)를 이용하며 세포중식 유도에 대한 PPS와 이들 성장인자 사이의 competitive inhibition 정도 를 조사하였다. 그 결과 두 세포주 모두 투여한 PPS의 용량에 비례하여 세포증식이 억제됨을 확 인할 수 있었으며, 특히 예상한대로 MK와 PTN울

모두 발현하는 T98G 세포주에 비해 PTN만올 발 현하는 U87GM 세포주가 보다 PPS에 대한 감수 성이 있음을 확인할 수 있었다. 이와같은 현상은 PPS가 HBGF를 발현하는 위암세포주에서 발현하 지 않는 세포주보다 효과적으로 증식억제를 유도 한 연구결과(32)와 동일하였다. 그리고 PPS의 증 식억제 효과는 생물학적 치료제의 톡성에서 예상 한 바와 같이 단지 증식억제효과(cytostatic effect) 만을 나타내었다. 이같은 결과로 뇌암세포주에서 HBGF를 발현하는 경우, PPS에 의해 증식억제를 유도할 수 있으나 그 억제 정도는 암세포가 발현 하는 HBGF의 종류와 양에 의해 영향을 받을 것 으로 판단하였다.

실제 암환자의 뇌종양 조직에서 $\mathbf{M K}$ 의 발현올 조사한 바, 4 예중 3예에서 MK의 발현을 확인함으 로써 뇌종양에서 MK의 발현이 높을 가능성을 확 인할 수 있어, 추후 보다 많은 환자를 대상으로 이에 대한 확인이 필요하겠다. 1 예의 환자에서는 MK의 발현이 관찰되지 않았는데, 이 경우는 PTN 이나 기타 fibroblast growth factor와 같은 다른 성 장인자의 발현(9) 가능성이 높다고 판단된다. 그 리고 정상 뇌조직은 아니나 간질환자의 뇌조직과 뇌암조직에서 UPA와 PAI-1의 발현올 조사한 바, 암조직에서 uPA의 발현이 높은 경향만 관찰할 수 있었던 반면 PAI-1은 암 조직에서만 관찰할 수 있 었다. 그러나 uPA와 PAI-1의 발현은 개인에 따라 차이가 심하여 추후 뇌 조직에서 이들의 고발현 을 정의할 수 있는 기준을 선정하는 연구가 필요 하다고 생각된다.

## 결 폰

뇌종양세포주와 암조직에서 MK의 발현올 확인 하였으며, 대상내피세포에 따라 차이가 있으나 다 른 성장인자와 동시 발현시 내피세포 증식유도 효과가 보다 증가됨을 관찰하였다. 또한 성장인자 롤 적게 발현할 경우 성장인자 억제제에 의한 세 포증식 억제효과가 보다 증가하였다. 따라서 추후 뇌암에서도 종양성장인자의 발현 여부에 따라 이

를 억제하는 생물학적 치료에 대한 연구가 필요 할 것으로 생각된다.

## 참 고 문 헌

1. De Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci USA 1978; 75: 4001-4005.
2. Sporn MD, Todaro GJ. Autocrine growth factors and cancer. Nature 1985; 313: 747-751.
3. Jessek TM, Elton DA. Diffusible factors in vertebrate embroynic induction. Cell 1992; 68: 257-270.
4. Kitamura M, Takuji S, Mirarai T. A retinoic responsive cytokine gene, MK is preferentially expressed in the proximal tubules of the kidney and human tumor cell lines. Am J Pathol 1993; 142: 425-431.
5. Kuo MD, Oda Y, Huang JS. Amino acid sequence and characterization of a heparin-binding neurite-promoting factor (p18) from bovine brain. J Biol Chem 1990; 265: 18749-18752.
6. Li YS, Milner PG, Chauhan Ak. Cloning and expression of a developmentally regulated protein that induces mitogenic and neurite outgrowth activity. Science 1990; 250: 1690-1694.
7. Slack JMW, Darlington BG, Heath JK. Induction in early Xenopus embryos by heparin-binding growth factors. Nature 1987; 326: 197-200.
8. Tickle C: Retionoic acid and chick limb bud development. Development (suppl) 1991; 1: 113-121.
9. Ueba T, Takahashi JA, Fukumoto M. Expression of fibroblastic growth factor receptor-1 in human glioma and meningioma tissue. Neurosurgery 1994; 34: 221-226.
10. Kwak HJ, Kim YB, Min BS, Maeng HY, Song SH, Chung HW, Kim TS, Chung HC, Rha SY, Chung HC, Noh SH, Kim JH, Roh JK, Min JS, Kim BS: Midkine gene expression in gastric cancer tissues. J Korean Cancer Assoc. 1997; 29: 204-212.
11. Fang W, Hartman N, Chow DT, Riegel AT, Wellstein A. Pleiotrophin stimulates fibroblasts and endothelial and epithelial cells is expressed in human cancer. $J$ Biol Chem 1992; 267: 25889-25897.
12. Folkman J, Merler E, Abernathy C, Williams G. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971; 133: 275-288.
13. Baird $A$, Klagsburn $M$. The fibroblast growth factor family. Cancer Cells 1991; 3: 239-243.
14. Schreiber AB, Winkler ME, Derynck R. Transforming
growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science 1986; 232 : 1250-1252.
15. Weidner KM, Hartmann G, Sachs M, Birchmeier W. Properties and functions of scatter factor/hepatocyte growth factor and its receptor c-Met. Am J Respir Cell Mol Biol 1993; 8: 229-237.
16. Kim $\mathrm{KJ}, \mathrm{Li} \mathrm{B}$, Winer J. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 1993; 362: 841-844.
17. Tsutsui J, Kadomatsu K, Matsubara S, Nakagawara A, Hamanoue M, Takao S, Shimata N, Ohi Y, Muramatsu T. A new family of heparin-binding growth/ differentiation factors: increased midkine expression in Wilms' tumor and other human carcinomas. Cancer Res 1993; 53: 1281-1285.
18. Maeda K, Chung YS, Takatsuka S, Ogawa Y, Sawada T, Yamashita Y, Onoda N, Kato Y, Nitta A, Arimoto Y, Kondo Y, Sowa M. Tumor angiogenesis as a predictor of recurrence in gastric carcinoma. J Clin Oncol 1995; 13: 477-481.
19. Vermuulen PB, Verhoeven D, Hubens G, Van Marck E, Goovaerts G, Huyghe M, De Bruijn EA, Van Oosterom AT, Dirix LY. Microvessel density, endothelial cell proliferation and tumor cell proliferation in human colorectal adenocarcinomas. Ann Oncol 1995; 6: 59-64.
20. Engel CJ, Bennett St, Chambers AF, Doig GS, Kerkvliet N, OMalley FP. Tumor angiogenesis predicts recurrence in invasive colorectal cancer when controlled for Duke staging. Am J Surg Pathol 1996; 20: 1260-1265.
21. Bosari S, Lee AKC, DeLellis RA, Wiley BD, Heatley GJ, Silverman ML. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 1992; 23: 755-761.
22. Toi M, Kashitani J, Tominaga T. Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma. Int J Cancer 1993; 55: 371-374.
23. Fox SB, Gatter KC, Harris AL. Tumor angiogenesis.

J Pathol 1996; 179: 232-237.
24. Garver RI, Chan CS, Milner PG. Reciprocal expression of pleiotrophin and midkine in normal versus malignant lung tissues. Am J Respir Cell Mol Biol 1993; 9: 463-466.
25. Nakagawara A, Milbrandt J, Muramatsu T, Deuel TP, Zhao H, Canaan A, Brodeur GM. Differential expression of pleiotrophin and midkine in advanced neuroblastomas. Cancer Res 1995; 55: 1792-1797.
26. Garver RI, Radford DM, Donis-Zkeller H, Wick MR, Milner PG. Midkine and pleiotrophin expression in normal and malignant breast tissue. Cancer 1994; 74: 1584-1590.
27. Kojima S, Muramatsu H, Amanuma H, Muramatsu T. Midkine enhances fibrinolytic activity of bovine endothelial cells. J Biol Chem 1995; 270: 9590-9596.
28. Kojima S, Inui T, Kimura T, Sakakibara S, Muramatsu H, Amanuma H, Maruta H, Muramatsu T. Synthetic peptide derived from midkine enhance plasminogen activator in bovine aortic endothelial cells. Biochem Biophy Res Commun 1995; 206: 468-473.
29. Kojima S, Inui T, Muramatsu H, Kimura T, Sakakibara S, Muramatsu T. Midkine is heat and acid stable polypeptide capable of enhancing plasminogen activator activity and neurite outgrwoth extension. Biochem Biophys Res Commun 1995; 216: 574-581.
30. O'Brien T, Cranston D, Fuggle S, Bicknell R, Harris AL . The angiogenic factor midkine is expressed in bladder cancer, and overexpression correlates with a poor outcome in patients with invasive cancers. Cancer Res 1996; 56: 2515-2518.
31. Wellstein A, Lupu R, Zugmaier G, Flamm SL, Cheville AL, Delli BP, Basilico C, Lippman ME, Kern FG. Autocrine growth stimulation by secreted Kaposi fibroblast growth factor but not by endogenous basic fibroblast growth factor. Growth Diff 1990; 1: 63-71.
32. Chung HC, Rha SY, Chung HC, Kwak HJ, Gong SJ, Noh SH, Kim JH, Roh JK, Min JS, Kim BS. Evaluation of biologic phenotype by midkine gene expression in gastric cancer as a target for biotherapy. J Korean Cancer Assoc 1997; 29: 69-80.


[^0]:    책임저자 : 정현철, 서대문구 신촌동 134, CPO Box 8044, 연세대학교 의과대학 연세 압쎈터, 120-752
    Tel: 82-2-361-7652, Fax: 82-2-393-3652, E-mail: rha7655@yumc.yonsei.ac.kr
    본 연구는 1994년도 연세대학교 일반과제(교수) 학술연구비에 의하여 이루어 졌음.
    접수일 : 1999년 1월 19일, 게재숭인일 : 1999년 4월 1일

