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Abstract.High ambient glucose exerts its injurious effects on
renal cells through nonenzymatic and enzymatic pathways,
including altered signal transduction and upregulation of the
transforming growth factor-b (TGF-b) system. Extracellular
signal-regulated kinase (ERK), a member of the mitogen-
activated protein kinase (MAPK) cascade, is activated in mes-
angial cells cultured in high glucose and in glomeruli of dia-
betic rats. However, the biologic consequences of ERK
activation in the kidney have not been investigated. To clarify
the role of ERK activation, mouse mesangial cells were ex-
posed to normal (5.5 mM) or high (25 mM) glucose with or
without addition of PD98059, a specific inhibitor of MAPK/
ERK kinase (MEK), an upstream kinase activator of ERK.
Cells that were exposed to high glucose exhibited significant

increases in ERK activity, TGF-b1 expression (total protein,
mRNA levels, and promoter activity), [3H]-proline uptake, and
a1(I) collagen and fibronectin mRNA levels. Treatment with
PD98059 (up to 25mM) significantly inhibited these parame-
ters. In contrast, 25mM PD98059 had no significant effect on
any of the parameters measured in cells that were exposed to
normal glucose. Overexpression of MAPK phosphatase CL100
prevented TGF-b1 promoter activation by high glucose, con-
firming the involvement of the MEK-ERK pathway in re-
sponse to high glucose. The conclusion is that activation of
ERK in mesangial cells is responsible for high-glucose–in-
duced stimulation of TGF-b1 and contributes to the increased
extracellular matrix expression.

Diabetic nephropathy is characterized by renal hypertrophy
and accumulation of extracellular matrix (1). Many studies
have demonstrated that various renal cell types cultured in
high-glucose media exhibit the typical features of cellular
hypertrophy and excessive production of extracellular matrix
that are characteristic of diabetic nephropathyin vivo (2–4). It
has been reported that high ambient glucose exerts its injurious
effects through nonenzymatic and enzymatic pathways, includ-
ing modulation of key signal transduction pathways and up-
regulation of the hypertrophic and profibrogenic cytokine
transforming growth factor-b (TGF-b) (5). Of relevance to
cellular signaling pathways, high ambient glucose increasesde
novosynthesis of diacylglycerol with subsequent activation of
protein kinase C (PKC) (6,7). The activation of PKC has been
proposed to be an important intracellular mediator of diabetic
complications; the use of nonspecific and specific inhibitors of
PKC isozymes has been shown to prevent alterations of cellu-
lar functions induced by high glucose inin vitro and in vivo
models of diabetic kidney disease (8–11).

Recently, three mitogen-activated protein kinase (MAPK)

families have been identified and characterized (12); these are
extracellular signal-regulated kinase (ERK), c-Jun NH2-termi-
nal kinase (JNK), and p38 MAP kinase. These kinases can be
activated by various extracellular stimuli, including growth
factors and environmental stresses, and they play an essential
role in the signal transduction cascades that lead to alterations
in cell growth and other key functions (12,13). With regard to
the diabetic state, it has been reported that ERK is activated in
glomeruli of diabetic rats as well as in mesangial cells cultured
under high-glucose conditions (14,15). ERK activation in these
cells is believed to occur through a PKC-dependent mechanism
(14). A recent report also demonstrated that p38 MAP kinase
was activated by relatively high concentrations of extracellular
glucose in various types of cells, including mesangial cells
(16). In contrast to these two kinases, JNK is not activated in
the glomeruli of diabetic rats or stimulated in mesangial cells
upon exposure to high glucose (17). Thus, the activation of the
ERK pathway could be involved in the intracellular signaling
cascade that leads to cellular dysfunction in diabetes mellitus.
It is likely that the activation of ERK is involved in regulating
cellular functions, including proliferation and protein synthe-
sis. For example, ERK can activate Elk-1, a member of the
ternary complex factor, resulting inc-fostranscription and the
subsequent formation of the activator protein-1 (AP-1) tran-
scription factor complex (18,19). However, the biologic con-
sequences of ERK activation in mesangial cells by high am-
bient glucose have not been explored.

We postulated that increased renal TGF-b bioactivity by
high ambient glucose is important in the pathogenesis of dia-
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betic nephropathy (4,20–22). Studies that have used neutraliz-
ing anti–TGF-b antibodies have provided convincing evidence
that the prosclerotic and hypertrophic effects of high glucose
are largely mediated by the autocrine production and activation
of TGF-b in glomerular mesangial cells, proximal tubular
cells, and interstitial fibroblasts (2,4,23,24). We recently re-
ported that high glucose or phorbol esters stimulate TGF-b1
production in mouse mesangial cells through a transcriptional
mechanism (25). The TGF-b1 promoter has multiple AP-1–
like consensus sites that respond to phorbol-ester/PKC stimu-
lation (26). From these observations, it can be hypothesized
that the activation of the PKC-ERK pathway by high glucose
could be responsible for the induction of TGF-b1 and the
production of extracellular matrix. To test this hypothesis, we
examined in the current study the effect of PD98059, a specific
inhibitor of MAPK/ERK kinase (MEK), on the expression of
TGF-b1, a1(I) collagen, and fibronectin in mesangial cells that
were cultured in high glucose. To confirm the involvement of
the MEK-ERK pathway, we also assessed TGF-b1 promoter
activity in response to high glucose after the overexpression of
CL100, a MAP kinase phosphatase.

Materials and Methods
Cell Culture

Murine mesangial cells (MMC) were isolated and transformed with
non–capsid-forming SV-40 virus to establish a permanent cell line
with a stable, differentiated phenotype (24,27). For comparative pur-
poses, untransformed mesangial cells obtained from kidneys of 10-
wk-old SJL/J(H-2 s) mice (27) were also studied to asses the effects
of high-glucose media on ERK activity. Cells were maintained in
Dulbecco’s modified Eagle’s medium (Life Technologies BRL,
Gaithersburg, MD) containing a normal D-glucose concentration of
5.5 mM, 10% fetal bovine serum, 100mg/ml streptomycin, 100 U/ml
penicillin, and 2 mM glutamine. At 70% confluence, mesangial cells
were cultured in fresh Dulbecco’s modified Eagle’s medium contain-
ing 2% fetal bovine serum with either 5.5 or 25 mM D-glucose for
different time periods. In some experiments, cells were exposed to
various concentrations of PD98059 or the general PKC inhibitor
calphostin C (Calbiochem, La Jolla, CA).

ERK In Vitro Kinase Assay
Cells were lysed in a buffer containing 25 mM Tris-HCl (pH 7.4),

25 mM NaCl, 80 mMb-glycerophosphate, 10 mM sodium pyrophos-
phate, 1 mM Na3VO4, 10 mM NaF, 4 mM ethyleneglycol-bis(b
aminoethyl ether)-N,N'-tetraacetic acid, 1 mM phenylmethylsulfonyl
fluoride, 10mg/ml leupeptin, and 1% Triton X-100. The cell lysates
were centrifuged at 14,0003 g for 20 min, and protein concentrations
were measured by a protein assay kit (Bio Rad, Richmond, CA). Cell
lysates (400mg) were incubated with 2mg anti-ERK2 antibody (Santa
Cruz Biotechnology, Santa Cruz, CA) for 2 h at4°C. The immuno-
precipitates were recovered by incubating with protein G sepharose
(Amersham Pharmacia, Piscataway, NJ) for 1 h at4°C. After centri-
fuging and washing three times with cell lysis buffer and once with
kinase buffer (20 mM Tris-HCl [pH 7.4], 10 mM MgCl2, 1 mM DTT,
1 mM ethyleneglycol-bis(b aminoethyl ether)-N,N'-tetraacetic acid,
and 1 mM protein kinase inhibitor), the immunoprecipitates were
incubated with 30ml of a kinase buffer containing 20mg of myelin
basic protein (MBP), 50mM adenosine triphosphate (ATP) and 2mCi
g-[32P]ATP for 15 min at 25°C. The mixture (15ml) was spotted onto

P-81 phosphocellulose paper (Whatman, Clifton, NJ), washed four
times in 0.5% phosphoric acid, and rinsed with 95% ethanol. Phos-
phorylation activity was determined by a liquid scintillation counter.

Enzyme-Linked Immunosorbent Assay
Cell supernatants were frozen at220°C until assayed by a TGF-b1

enzyme-linked immunosorbent assay (ELISA) kit according to the
manufacturer’s specifications (R & D systems, Minneapolis, MN). In
brief, the supernatants were activated with 1 N HCl followed by
neutralization with 1.2 N NaOH/0.5 M HEPES to measure total
TGF-b1. Samples were plated on anti–TGF-b type II receptor-coated
microtiter plates and incubated for 3 h at room temperature. After
vigorous washing, wells were incubated with anti–TGF-b1 antibody
conjugated to horseradish peroxidase for 1.5 h, and substrate solution
was added. The reaction was stopped by adding stop solution, and
absorbance at 450 nm was measured. Total TGF-b1 protein produc-
tion was reported per total cell protein content.

Immunoblot Analysis
Cell lysates were prepared in Laemmli sample buffer and boiled for

5 min. Aliquots (30mg) were subjected to sodium dodecyl sulfate
(SDS)-10% polyacrylamide gel and transferred to nitrocellulose mem-
brane (Micron Separations Inc., Westborough, MA). The membrane
was blocked with 5% nonfat dry milk in Tris-buffered saline-0.1%
Tween 20 at 4°C overnight and then probed with either anti-phospho-
p44/42 antibody (New England Biolabs, Beverly, MA) or anti-MAP
kinase phosphatase (MKP)-1 antibody (Santa Cruz Biotechnology) at
room temperature for 3 h. A horseradish peroxidase-conjugated sec-
ond antibody was used to allow the detection of immunoreactive
bands using the enhanced chemiluminescence detection system (Am-
ersham Pharmacia). For the assessment of protein amount of ERK, the
membrane was reprobed with anti-ERK2 antibody (Santa Cruz
Biotechnology).

Northern Blot Analysis
Murine TGF-b1, fibronectin, anda1(I) cDNA probes were syn-

thesized by PCR and cloned into the pCRII TA cloning vector
(Invitrogen, La Jolla, CA) as described previously (28). Total RNA
was isolated using TRIzol reagent (Life Technologies BRL). For
northern blots, 20mg total RNA was electrophoresed through a 1.2%
agarose gel with 0.67 M formaldehyde. The RNA was blotted onto
nylon membrane (NEN Research Products, Boston, MA) by the
capillary method and UV cross-linked. Membranes were prehybrid-
ized for 1 h at65°C in a Church buffer containing 500 mM NaPO4
(pH 7.0), 5% SDS, 1% bovine serum albumin, and 1 mM ethylenedia-
minetetraacetate. The cDNA was labeled with [32P]deoxycytidine
5'-triphosphate (Amersham Pharmacia) using a DNA labeling kit
(Amersham Pharmacia). The membrane was hybridized in Church
buffer for 16 h at 65°C in a rotating oven and was washed twice in 2X
SSC (20X SSC: 3 M NaCl, 0.3 M sodium citrate, pH 7.0) for 10 min
each at room temperature, then in 2X SSC with 1% SDS for 15 min
at 65°C, followed by two 15-min high-stringency washes in 0.1%
SSC, 0.1% SDS at 65°C, if necessary. The membrane was autoradio-
graphed with intensifying screens at270°C (Kodak, Wilmington,
DE). The blots were stripped and subsequently rehybridized with
probes encoding mouse ribosomal protein L32 (mrpL32) (29) to
account for small loading and transfer variations. Exposed films were
scanned and analyzed with the NIH Image 1.62 program, and RNA
levels relative to those of mrpL32 were calculated.
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Plasmids, Transfection, and Luciferase Assay
Murine TGF-b1 promoter-reporter chimeric constructs were kindly

provided by Dr. Andrew G. Geiser (30). The construct pA835 used
contains2835 bp 5' from the A transcription start site of the murine
TGF-b1 gene (30). The luciferase reporter gene used was cloned into
the HindIII-KpnI site of the pXP2 vector (31), which contains the
luciferase gene without regulatory elements. The MAP kinase phos-
phatase CL100 in the expression plasmid pSG5 (Stratagene, La Jolla,
CA) was kindly provided by Dr. Stephen M. Keyse (32,33). The
b-galactosidase-containing plasmid pCH110 (Amersham Pharmacia)
was used to control for transfection efficiency. MMC (50% confluent)
were transfected by the Fugene 6 transfection reagent (Roche Molec-
ular Biochemicals, Indianapolis, IN) following the manufacturer’s
instructions. After 16 h of transfection, cells were incubated in either
normal or high glucose for an additional 24 h. Cells were harvested in
reporter lysis buffer (Promega, Madison, WI). Luciferase andb-ga-
lactosidase assays were performed with reagents from Promega. Lu-
ciferase activity was normalized tob-galactosidase activity.

Measurement of [3H]-Proline Incorporation
MMC were plated into 24-well plates (Nunclon, Roskilde, Den-

mark), and the media were changed the next day so that cells could be
exposed for another 72 h to either 5.5 or 25 mM glucose with or
without PD98059. For the last 16 h, cells were pulsed with 1mCi
[3H]-proline (L-(2,3,4,5)-[3H]-proline, Amersham Pharmacia). Radio-
labeled MMC were washed twice in ice-cold phosphate-buffered
saline and then precipitated twice in ice-cold 10% TCA, redissolved
in 0.5 ml of 0.5 N NaOH with 0.1% Triton X-100. After neutralization
with 0.5 N HCl, the incorporated radioactivity was counted in a liquid
scintillation counter. Proline incorporation was corrected for the cel-
lular protein content.

Statistical Analyses
Data are presented as mean6 SEM. ANOVA followed by Schef-

fe’s test was used for multiple comparisons. Two groups were com-
pared by unpairedt test.P , 0.05 was considered significant.

Results
Activation of ERK by High Glucose in Mouse
Mesangial Cells

We first measured the activity of ERK in MMC. Cells were
exposed to either normal (5.5 mM) or high glucose (25 mM)
for 24 and 72 h. ERK activity was analyzed by bothin vitro
kinase assay and immunoblot analysis. As shown in Figure 1A,
the activity of ERK was significantly increased in MMC by
exposure to high glucose for 24 and 72 h. Similar results were
obtained in untransformed mouse mesangial cells: exposure of
these cells to high glucose for 72 h significantly increased ERK
activity (1.616 0.14 pmol/min per mg protein) as compared
with normal glucose (1.206 0.09, n 5 5, P , 0.05). The
immunoblot analysis using anti-phospho ERK antibody, which
recognizes phosphorylated threonine 202 and tyrosine 204 of
p44/p42 ERK, detected enhanced phosphorylation of p44/42
ERK by high glucose (Figure 1, B and C). This result suggests
that MEK, upstream of ERK, is also activated by high glucose.
The activation of ERK by high glucose was probably PKC-
dependent because the addition of calphostin C, a PKC inhib-
itor, prevented the activation of ERK (Figure 1D). Consistent
with a previous report (14), our results demonstrate that the

ERK cascade may be activated through a PKC-dependent
pathway in mouse mesangial cells cultured under high-glucose
conditions. We also confirmed the ability of PD98059, a
known specific inhibitor of MEK (34), to inhibit the activation
of ERK in mesangial cells. Addition of 25mM PD98059 to
MMC completely inhibited the activation of ERK by high
glucose (Figure 1, B and C).

Effect of PD98059 on High-Glucose–Induced TGF-b1
Protein Production

To assess the biologic significance of ERK activation, we
first examined whether PD98059 could inhibit TGF-b1 pro-
duction by high glucose. MMC were cultured in media con-
taining normal and high glucose with various concentrations of
PD98059 for 72 h. TGF-b1 protein in the supernatant was
measured by ELISA. As we reported previously (25), total
TGF-b1 production was significantly increased in supernatants
of cells cultured in high glucose compared with cells cultured
in normal glucose. TGF-b1 protein production was inhibited
by exposure to PD98059 in a dose-dependent manner. Twenty-
five mM PD98059 completely prevented the increase in
TGF-b1 by high glucose without changing TGF-b1 production
in cells cultured in normal glucose (Figure 2).

Effect of PD98059 on High-Glucose–Induced TGF-b1
Gene Expression

To confirm the inhibitory effect of PD98059 on TGF-b1
production, we examined the high-glucose–induced TGF-b1
gene expression by Northern blot analysis and promoter assay.
TGF-b1 mRNA was significantly increased in cells cultured in
high glucose, and PD98059 was able to inhibit completely the
increase in TGF-b1 mRNA (Figure 3). We next evaluated the
effect of PD98059 on TGF-b1 promoter activity. Because we
recently demonstrated that only the pA835 promoter construct,
which contains 835 bp upstream from the transcription start
site of the murine TGF-b1, exhibited significant activation by
high glucose (25), we used in this experiment the pLA835
plasmid, which contains the same region of TGF-b1 promoter
fused to the luciferase gene. MMC were transiently cotrans-
fected with pLA835 and theb-galactosidase-containing plas-
mid pCH110, to control for transfection efficiency. Cells were
then cultured in high-glucose media with or without PD98059
for an additional 24 h. Relative luciferase activity tob-galac-
tosidase was calculated. As shown in Figure 4, high glucose
significantly stimulated promoter activity of TGF-b1, whereas
PD98059 inhibited the induction of TGF-b1 promoter activity.
Treatment of mesangial cells cultured in normal glucose media
with 25 mM PD98059 affected neither baseline mRNA expres-
sion nor promoter activity.

Effect of Overexpression of MAP Kinase Phosphatase
CL100 on TGF-b1 Promoter Activity

To confirm further the involvement of ERK in TGF-b1
induction under high-glucose conditions, we cotransfected
cells with a plasmid expressing MAP kinase phosphatase
CL100, which inactivates ERK (32,33). Cotransfection of
MMC with pSG5-CL100 prevented the induction of TGF-b1
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promoter by high glucose; however, expression of the empty,
control vector produced the expected increment in TGF-b1
promoter activity in high-glucose media (Figure 5A). The
protein content of MAP kinase phosphatase and ERK were not
changed in cells transfected with CL100 (Figure 5B). We also
confirmed that the overexpression of CL100 in the cells pre-
vented the activation of ERK by high glucose (Figure 5C).

Effect of PD98059 on High-Glucose–Induced
Matrix Production

We next assessed whether PD98059 could inhibit extracel-
lular matrix production induced by high glucose. We examined
[3H]-proline incorporation and performed Northern blot anal-
ysis for the expression ofa1(I) collagen and fibronectin. Fig-
ure 6 shows that [3H]-proline incorporation into MMC was
significantly increased in cells grown in high-glucose media, as
was expected (24). The incubation with PD98059 significantly
inhibited the increment in [3H]-proline incorporation into
MMC. Northern blot analyses (Figure 7) demonstrated that the
mRNA for a1(I) collagen and fibronectin were increased by

approximately 50% in high-glucose media and that PD98059
abolished these increases without effecting mRNA expression
in cells cultured in normal glucose.

Discussion
Many studies have demonstrated that various metabolic me-

diators and signaling pathways are activated when kidney cells
are exposed to high ambient glucose. These include the polyol
pathway (35),de novosynthesis of diacylglycerol with stimu-
lation of PKC (6), and activation of the hexosamine pathway
(36). Although the involvement of PKC activation in the patho-
genesis of diabetic complications has been well documented
(37), the role of other protein kinases in the functional abnor-
malities of the diabetic state has not been fully established.
Recently, Hanedaet al. (14) reported that MEK and ERK are
activated in glomeruli of streptozotocin-induced diabetic rats
and in rat mesangial cells cultured in high-glucose media and
that the activation of this cascade in mesangial cells can be
attenuated by the PKC inhibitor calphostin C. In accord with
these findings, we show in this study that the ERK cascade is

Figure 1.Activation of extracellular signal-regulated kinase (ERK) in mouse mesangial cells (MMC) cultured in high glucose. (A) MMC were
cultured in normal (5.5 mM) or high glucose (25 mM) media for 24 or 72 h. The activity of ERK was measured byin vitro kinase assay. Results
are mean6 SEM, n 5 4 or 5. *, P , 0.05versusnormal glucose. (B) Cells were cultured in normal or high glucose media for 72 h with or
without PD98059 (25mM). ERK activity (phosphorylation) and ERK protein content were analyzed by immunoblotting using anti-phospho-
ERK antibody (upper band) and anti-ERK2 antibody (lower band), respectively. (C) Quantitative results of phosphorylation of ERK; mean6
SEM,n 5 5. *, P , 0.05versusother groups. (D) Cells were cultured in normal or high glucose for 72 h with or without calphostin C (1mM)
for the last 4 h. The phosphorylation of ERK and ERK protein content were analyzed by immunoblotting, as above.

J Am Soc Nephrol 11: 2222–2230, 2000 ERK Regulates TGF-b1 and Mesangial Matrix 2225



activated in mouse mesangial cells grown in high-glucose
media. Immunoblot analysis using anti-phospho-ERK antibody
andin vitro kinase assay using MBP as substrate demonstrated
increased phosphorylation of ERK and MBP, respectively.
With the use of PD98059, a specific inhibitor of the ERK
kinase MEK (34), we extended these studies by showing that
ERK activation in mesangial cells is required for the induction
of TGF-b1 and the stimulation of fibronectin and type I col-
lagen by high ambient glucose.

We previously reported that high glucose stimulates TGF-b1
production in mouse mesangial cells through a transcriptional
mechanism that involves a specific glucose-responsive DNA-
binding element (25). We also recently reported that high
glucose stimulates the TGF-b type II receptor in mouse mes-
angial cells (22). In this study, we show that treatment of
mesangial cells with PD98059 significantly inhibits the high-
glucose–induced TGF-b1 protein production, mRNA level,
and promoter activity. Furthermore, and consistent with the
requirement for ERK phosphorylation in the stimulation of
TGF-b1 by high glucose, we show that the overexpression of
CL100, a MAPK phosphatase, prevents the activation of the
TGF-b1 promoter by high glucose.

ERK activation is able to activate Elk-1, a member of the
ternary complex factors that enhance the expression ofc-fos
(18) and the subsequent DNA binding of the transcription
factor AP-1 (19). The TGF-b1 promoter has multiple AP-1–
like consensus sites that respond to phorbol-ester/PKC stimu-

lation (26). An increase in AP-1 binding has been reported to
mediate the regulation of the TGF-b1 gene (38). Thus, it is
likely that the stimulation of ERK by high glucose transduces
a signal to the nucleus, where it regulates the expression of
certain target genes through AP-1 transactivation (18,19). In
fact, it has been reported that high glucose stimulates the
expression ofc-fos and c-jun, components of the AP-1 com-
plex (39), and the binding of AP-1 to DNA in cultured mes-
angial cells (40). Together, these observations suggest that the
ERK pathway plays an important role in the transcriptional
activation of TGF-b1 in mesangial cells cultured under high-
glucose conditions. Other studies have suggested that the ERK
pathway is itself also involved in the signaling events down-
stream of the TGF-b stimulus (41,42).

We also provide evidence that the activation of ERK by high
glucose is required for the production of extracellular matrix
proteins, includinga1(I) collagen and fibronectin. Treatment
with PD98059 prevents the high-glucose–induced uptake of
proline, a major constituent of collagen proteins, and the in-
creased mRNA levels ofa1(I) collagen and fibronectin. There
are two possible mechanisms for these inhibitory effects of

Figure 2.The effect of PD98059 on high-glucose–induced transform-
ing growth factor-b1 (TGF-b1) protein production. MMC were cul-
tured in normal- and high-glucose media with different concentrations
of PD98059 for 72 h. The supernatants were activated with 1 N HCl
and neutralized, and total TGF-b1 protein was measured by enzyme-
linked immunosorbent assay. Results are mean6 SEM, n 5 4. *, P
, 0.05 versusnormal glucose; #,P , 0.05 versushigh glucose
without PD98059. Figure 3.The effect of PD98059 on high-glucose–increased TGF-b1

mRNA. MMC were cultured in normal- and high-glucose media with
PD98059 (25mM) for 48 h. (A) Representative Northern blot hybrid-
ized with TGF-b1 followed by mouse ribosomal protein L32
(mrpL32) to control for RNA loading and transfer. (B) Quantitative
results of TGF-b1/mrpL32 mRNA ratios; mean6 SEM, n 5 5. *, P
, 0.05versusother groups; #,P , 0.05versushigh glucose without
PD98059.
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PD98059 on matrix expression. First, PD98059 may directly
inhibit the production of extracellular matrix components. Al-
though several reports incriminate PKC activation in renal
matrix production in diabetes (8,9,11), little is known about the
direct contribution of ERK activation on matrix protein syn-
thesis. Fibronectin gene expression can be regulated through
the binding of AP-1 to a cAMP response element in the
promoter region (43). A recent report has demonstrated that
PD98059 inhibits the mechanical stretch-induced fibronectin
production through the inhibition of the ERK–AP-1 pathway
(44). Furthermore, expression of TGF-b–induced type I colla-
gen is mediated via the ERK pathway in certain cell types,
including mesangial cells (41,42). Together, these observations
strongly suggest that ERK activation may be directly involved
in the regulation of extracellular matrix protein gene expres-
sion, at least for type I collagen and fibronectin.

The second possibility is that the high-glucose–induced ma-
trix production is inhibited by PD98059 through the inhibition
of the profibrotic cytokine TGF-b1. This possibility is sup-
ported by our previous report demonstrating that treatment of
mesangial cells with neutralizing anti–TGF-b antibodies atten-
uates high-glucose–induced proline uptake and the synthesis of
types I and IV collagen (24). Furthermore, inhibition of TGF-b
bioactivity in diabetic mice using either neutralizing anti–
TGF-b antibodies (28,45) or antisense TGF-b1 oligode-
oxynucleotides (46,47) is capable of reversing the renal hyper-
trophy and upregulation of extracellular matrix expression.

Together, these results suggest that inhibition of TGF-b1 is one
of the important approaches that can be considered for the
prevention of the functional and structural consequences of
diabetic renal disease.

In addition to hyperglycemia, many factors in the diabetic
state, such as glomerular hypertension, oxidative stress, non-
enzymatic glycation adducts, and growth factors, have been
proposed to mediate diabetic nephropathy (5). Some of these
factors, such as mechanical stretch (44), angiotensin II (48),
endothelin (49), and advanced glycation end products (50), are

Figure 4.The effect of PD98059 on high-glucose–stimulated TGF-b1
promoter activity. MMC were transiently cotransfected with 1mg of
pLA835, the TGF-b1 promoter-luciferase construct, and 1mg of
pCH110, theb-galactosidase-containing construct. Cells were then
incubated in normal- or high-glucose media with or without PD98059
(25 mM) for 24 h. Luciferase andb-galactosidase assays were per-
formed. Results are mean6 SEM, n 5 4. *, P , 0.01 versusother
groups; #,P , 0.01versushigh glucose without PD98059.

Figure 5. The effect of overexpression of MAP kinase phosphatase
(MKP-1) on TGF-b1 promoter activity and ERK activity. MMC were
transiently cotransfected with 1mg of pLA835, 1mg of pCH110, and
2 mg of either pSG5-CL100 (CL100), the MKP-1 expression vector,
or the pSG5 empty vector (empty). Cells were then incubated in
normal- or high-glucose media for 24 h. (A) Luciferase andb-galac-
tosidase assays were performed. Results are mean6 SEM, n 5 4. *,
P , 0.01versusother groups. (B) The expression of CL100 and ERK
were analyzed by immunoblotting using anti–MKP-1 and anti-ERK2
antibodies, respectively. (C) The activity of ERK was measured byin
vitro kinase assay. Results are mean6 SEM, n 5 6. *, P , 0.05
versusother groups.
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able to activate ERK in cultured renal cells. These same factors
are also activators of the TGF-b system in the kidney (5). From
all of these observations, we can conclude that the activation of
ERK by high ambient glucose and other factors leads to in-
creased TGF-b1 production as well as extracellular matrix
proteins. Renal overproduction of TGF-b1, in turn, can further
exaggerate the excess synthesis and accumulation of extracel-
lular matrix proteins in the diabetic milieu (Figure 8). Thus,
interventions at the level of ERK to intercept this intracellular
signaling pathway may be a useful approach for inhibiting not
only the TGF-b system but also other pertinent downstream
events that are characteristic of diabetic renal disease, such as
increased matrix expression.
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