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INTRODUCTION

Diffuse lower-grade gliomas (LGGs), which are analogous 
to World Health Organization (WHO) grade II and grade III 
gliomas (1), are infiltrative neoplasms that most often arise 
in the cerebral hemispheres of adults. Although the 2016 
update to the WHO classification reflects a combination of 
phenotypic and genotypic information (2), the therapeutic 
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strategy is still heavily reliant on the WHO grade and 
patients’ prognosis differs significantly according to tumor 
grade (3, 4). Although some recent studies have suggested 
that the prognostic differences between grade II and III 
are not as marked (5, 6), this has not been observed in all 
studies and grading is still important (7).

Biopsy results are the gold standard for glioma grading. 
However, the accuracy of biopsy may be limited by tumor 
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heterogeneity and sampling errors, which may result 
in tumor undergrading (8-10). Moreover, biopsy itself 
is an invasive technique with reported morbidity and 
mortality rates of up to 3.6% and 1.7%, respectively (11, 
12). Therefore, if grade III LGGs are suspected, a more 
aggressive surgical resection should be considered to avoid 
unnecessary biopsy (13). In preoperative grading of LGGs, 
the presence and degree of contrast enhancement have 
been traditionally used as a hallmark of grade III gliomas 
(14-16). However, several studies have demonstrated that 
the absence of enhancement does not necessarily imply 
WHO grade II glioma (17-19), and grade III gliomas have 
been reported to comprise 34.3–42.3% of nonenhancing 
LGGs (13, 18-21), making preoperative grading of 
nonenhancing LGGs difficult. 

Radiomics features show tumor characteristics 
noninvasively by extracting the high-dimensional 
quantitative features that reflect tumor morphology and 
heterogeneity (22). Several studies have reported that 
radiomics features can be used to predict the genetic 
subtypes and prognosis of gliomas (23, 24). However, the 
role of these features in the prediction of LGG grade has 
not yet been established. We hypothesized that radiomics 
features can extract invisible information regarding glioma 
grade. 

The aim of this study was to assess whether radiomics 
features from multiparametric MRI can predict tumor grade 
in LGGs by using machine learning. The assessments also 
focused on the nonenhancing LGG subgroup, which is often 
classified as WHO grade II glioma on preoperative MRI. 

MATERIALS AND METHODS

Patient Population
The Institutional Review Board waived the need for 

obtaining informed patient consent for this retrospective 
study. Between September 2007 and January 2017, 231 
patients with pathologically diagnosed WHO grade II and 
III gliomas from our institution were included in this study. 
Inclusion criteria were as follows: 1) WHO grade II or III 
gliomas confirmed by histopathology, 2) patients who 
underwent preoperative MRI, and 3) patients aged ≥ 18 
years. The exclusion criteria were as follows: 1) absence 
of T2-weighted or fluid-attenuated inversion recovery 
(FLAIR) images (n = 19); 2) a previous history of biopsy or 
operation for brain tumors (n = 3); and 3) errors in image 
processing (n = 5). The mean interval between the MRI 

examination and operation was 13.4 ± 14.1 days. A total 
of 204 patients were finally enrolled in the institutional 
cohort. The institutional cohort was semirandomly 
allocated to training (n = 136) and test (n = 68) sets, with 
stratification for glioma grade. 

The external validation set was collected from the LGG 
dataset from The Cancer Genome Atlas (TCGA), which is 
publicly available in The Cancer Imaging Archive (TCIA). For 
the 199 patients with publicly available magnetic resonance 
(MR) images from the TCGA cohort, the exclusion criteria 
were as follows: 1) absence of T2-weighted, FLAIR, or 
contrast-enhanced T1-weighted (T1C) images (n = 80); 2) 
previous history of biopsy or resection of tumor (n = 17); 
3) severe motion artifact (n = 1); and 4) errors in image 
processing (n = 2). Finally, 99 patients were enrolled in the 
TCGA cohort. 

For nonenhancing LGG subgroup analysis, 110 of the 204 
patients from the institutional cohort were enrolled and 
semirandomly allocated to training (n = 73) and test (n = 
37) sets, with stratification for glioma grade. Similarly, 37 
out of the 99 patients from the TCGA cohort were enrolled 
in the nonenhancing LGG subgroup and used for external 
validation. The patient enrollment process for the entire 
LGG group and the nonenhancing LGG subgroup is shown in 
Figure 1.

Pathological Diagnosis
For pathological diagnosis of glioma grade in the 

institutional cohort, surgical specimens were fixed in 10% 
buffered formaldehyde in preparation for light microscopy 
and stained with hematoxylin-eosin. Histologic grading 
was performed according to the WHO classification by a 
neuropathologist (16 years of experience) who was blinded 
to the clinical information (2). For the TCGA cohort, the 
histological characteristics and grading of tissues submitted 
to TCGA were confirmed by a neuropathology review, as 
previously described (1, 25).

MRI Protocol
Preoperative MRI examinations for the institutional 

cohort were performed using a 3T MRI scanner (Achieva, 
Philips Healthcare, Best, The Netherlands) with an eight-
channel sensitivity-encoding head coil. The preoperative 
MRI protocol included T1-weighted (repetition time [TR]/
echo time [TE], 1800–2000/10–15 ms; field of view [FOV], 
240 mm; section thickness, 5 mm; matrix, 256 x 256), T2-
weighted (TR/TE, 2800–3000/80–100 ms; FOV, 240 mm; 
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section thickness, 5 mm; matrix, 256 x 256), and FLAIR 
(TR/TE, 9000–10000/110–125 ms; FOV, 240 mm; section 
thickness, 5 mm; matrix, 256 x 256) sequences. Three-
dimensional T1C images (TR/TE, 6.3–8.3/3.1–4 ms; FOV, 
240 mm; section thickness, 1 mm; and matrix, 192 x 192) 
were acquired after administering 0.1 mL/kg of gadolinium-
based contrast material (gadobutrol [Gadovist], Bayer AG, 
Toronto, Canada). 

The different MRI scanners for the TCGA cohort acquired 
from five institutions is listed on Supplementary Table 
1. Further detailed information on the diverse imaging 
protocols for this study in available online (https://www.
nature.com/articles/sdata2017117/tables/3) (26).

Image Processing and Radiomics Feature Extraction 
To overcome the heterogeneity in the different MRI 

protocols, the T2-weighted images from the institutional 
and TCGA/TCIA cohorts were resampled to 0.5 x 0.5 mm 
spatial resolution and 5-mm slice thickness and used as a 
registration template for FLAIR and T1C images. After skull 
stripping, the T1C and FLAIR images were registered to the 
T2-weighted image template by using FMRIB software library 
(FSL, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). Image signal 

intensities were normalized using the WhiteStripe R package 
(27). Region-of-interests (ROIs) covering the entire tumor 
including edema (defined as hyperintense areas on FLAIR), 
were drawn semiautomatically by using thresholds of 
signal intensity and by consensus of two neuroradiologists 
(with 10 years and 7 years of experience, respectively). 
In total, 250 radiomics features were extracted from the 
ROIs on T1C, T2-weighted, and FLAIR images, which were 
related to shape (n = 16), first-order statistics (n = 19), 
gray level co-occurrence matrix (n = 27), gray level run-
length matrix (n = 16), and gray level size zone matrix (n 
= 16) (Supplementary Table 2). The feature extraction was 
performed with Pyradiomics 1.2.0 (http://www.radiomics.
io/pyradiomics.html) (28). 

Statistical Analysis and Machine Learning
The workflow for machine learning after image 

processing and feature extraction is shown in Figure 
2. Various machine learning classifiers were trained to 
predict the glioma grade in the entire LGG group and the 
nonenhancing subgroup. For feature selection, Student’s 
t test according to glioma grade was performed for each 
radiomics feature to filter the features with p < 0.2. In 

Fig. 1. Patient enrollment process for entire LGG group and nonenhancing LGG subgroup in (A) institutional cohort and (B) TCGA 
cohort. FLAIR = fluid-attenuated inversion recovery, LGG = lower-grade glioma, TCGA = The Cancer Genome Atlas, TCIA = The Cancer Imaging 
Archive, T1C = contrast-enhanced T1-weighted
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some classifiers, recursive feature elimination (RFE) was 
additionally performed for those features filtered from the 
t test. These feature selection methods were combined 
with the elastic net, random forest (RF), gradient boosting 
machine (GBM), and linear discriminant analysis (LDA) 
algorithms, resulting in five combinations: 1) t test, RFE, 
and RF, 2) t test, RFE, and GBM, 3) t test, RFE, and LDA, 
4) t test and elastic net, and 5) t test and RF. Therefore, 
five radiomics classifiers were trained to classify tumor 
grade in the entire LGG group. In the nonenhancing LGG 
subgroup, to overcome data imbalance, subsampling with 
the random over-sampling examples (ROSE) and synthetic 
minority over-sampling technique (SMOTE) methods or no 
subsampling were additionally performed after univariate 
filtering by the t test and combined with the previously 
mentioned five radiomics classifiers. Therefore, a total of 15 
radiomics classifiers were trained for the nonenhancing LGG 
subgroup (29). During classifier training, hyperparameters 
of classification algorithms were optimized by grid search.

The radiomics classifiers were validated internally on the 
institutional test set and externally on the TCGA cohort. 
In the entire LGG group, for internal validation, radiomics 

classifiers were trained on the institutional training set (n = 
136) and validated on the institutional test set (n = 68). For 
external validation, the classifiers were trained on the entire 
institutional cohort (n = 204) and validated on the TCGA 
cohort (n = 99). The radiomics classifier performance was 
measured by performing receiver operating characteristics 
analysis and calculating the area under the curve (AUC). 
The accuracy, sensitivity, specificity, and no-information 
rate (percentage of the majority class, i.e., the accuracy 
determined by assuming that all samples belong to majority 
class) were also calculated for the best classifiers with the 
highest AUC values. In addition, an one-sided hypothesis 
test was performed using the “binom.test” function to 
evaluate whether the radiomics classifier accuracy is 
significantly higher than the no-information rate.

An identical process of training and validation was 
performed for 15 machine learning classifiers in the 
nonenhancing LGG subgroup. For internal validation, machine 
learning classifiers were trained on the institutional training 
set (n = 73) and validated on the institutional test set (n = 
37). For external validation, the classifiers were trained on 
the entire nonenhancing institutional cohort (n = 110) and 
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validated on the nonenhancing TCGA cohort (n = 37). 
Statistical analysis was performed using the statistical 

software R (version 3.3.1; R Foundation for Statistical 
Computing, Vienna, Austria). The RFE feature selection 
and classification algorithms were implemented using 
the “caret” R package (30). ROSE and SMOTE subsampling 
was performed using the “ROSE” and “DMwR” R packages. 
Statistical significance was set at p < 0.05.

RESULTS

The patient characteristics in the institutional training (n 
= 136 and 73 for the entire group and nonenhancing LGG 
subgroup, respectively) and test sets (n = 68 and 37 for the 
entire group and nonenhancing LGG subgroup, respectively) 
and the TCGA validation set (n = 99 and 37 for the entire 
group and nonenhancing LGG subgroup, respectively) 
are summarized in Tables 1 and 2. The proportion of 
nonenhancing LGGs differed in the institutional and TCGA 
cohorts (76% in the institutional cohort and 56.3% in 
the TCGA cohort for grade II gliomas and 22.4% in the 
institutional cohort and 19.6% in the TCGA cohort for grade 

III gliomas).
The AUC values for predicting glioma grade by various 

machine learning classifiers are shown in Figure 3. 
Summaries of the performance of the best machine 
learning classifiers in the internal and external validation 
of the entire LGG group and nonenhancing LGG subgroup 
are presented in Table 3. In internal validation with 
the entire LGG group, the best performance was shown 
by a combination of feature selection by the t test and 
elastic net without subsampling, with an AUC, accuracy, 
sensitivity, and specificity of 0.85, 79.4%, 92.9%, and 
70.0%, respectively. In external validation with the entire 
LGG subgroup, the best performance was achieved by a 
combination of feature selection using the t test and RFE 
and the GBM algorithm, with an AUC, accuracy, sensitivity, 
and specificity of 0.72, 66.7%, 72.6%, and 60.4%, 
respectively. The accuracy of the radiomics classifier was 
significantly higher than the no-information rate in both 
internal (79.4% vs. 58.8%, p < 0.001) and external (66.7% 
vs. 51.5%, p = 0.002) validations. 

In internal validation with the nonenhancing LGG 
subgroup, the best classifier was the combination of t test 

Table 1. Patient Characteristics in Entire LGG Group

Variables
Institutional Cohort (n = 204)

TCGA Validation Set (n = 99) P*
Training Set (n = 136) Test Set (n = 68) Total (n = 204)

Age (mean ± SD) 44.99 ± 12.94 44.00 ± 12.33 44.66 ± 12.74 46.96 ± 13.95 0.154
Sex 0.222

Male 65 (47.8) 43 (63.2) 108 (52.9) 55 (55.6)
Female 71 (52.2) 25 (36.8) 96 (47.1) 54 (44.4)

Grade 0.075
II 81 (59.6) 40 (58.8) 121 (59.3) 48 (48.5)
III 55 (40.4) 28 (41.2) 83 (40.7) 51 (51.5)

Data are number of patients. Numbers in parentheses are percentage. *p values were calculated using Student’s t test for continuous 
variables and chi-square test for categorical variables, to compare patient characteristics of institutional cohort (n = 204) and TCGA 
validation set (n = 99). LGG = lower-grade glioma, SD = standard deviation, TCGA = The Cancer Genome Atlas

Table 2. Patient Characteristics in Nonenhancing LGG Subgroup

Variables
Institutional Cohort (n = 110)

TCGA Validation Set (n = 37) P*
Training Set (n = 73) Test Set (n = 37) Total (n = 110)

Age (mean ± SD) 43.18 ± 11.76 43.32 ± 10.28 44.24 ± 11.34 43.56 ± 15.13 0.805
Sex 0.152

Male 39 (53.4) 14 (37.8) 53 (48.2) 17 (45.9)
Female 34 (46.6) 23 (62.2) 57 (51.8) 20 (54.1)

Grade 0.247
II 61 (83.6) 31 (83.8) 92 (83.6) 27 (73.0)
III 12 (16.4) 6 (16.2) 18 (16.4) 10 (27.0)

Data are number of patients. Numbers in parentheses are percentage. *p values were calculated using Student’s t test for continuous 
variables and chi-square test for categorical variables, to compare patient characteristics of institutional cohort (n = 110) and TCGA 
validation set (n = 37).
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feature selection, RF algorithm, and ROSE subsampling, 
with AUC, accuracy, sensitivity, and specificity of 0.82, 
78.4%, 83.3%, and 77.4%, respectively. In external 
validation with the nonenhancing LGG subgroup, however, 
all 15 machine learning classifiers failed to show good 
performance (AUC, 0.48–0.68) regardless of subsampling. 
The best classifier was the combination of t test feature 
selection and elastic net without subsampling, with an AUC, 
accuracy, sensitivity, and specificity of 0.68, 72.2%, 55.6%, 
and 77.8%, respectively.

DISCUSSION

In this study, we aimed to differentiate the LGG grades 
using radiomics features from routinely obtained MRI 
sequences. Our results showed that radiomics classifiers 
are useful to predict the tumor grade of LGGs, although 
radiomics classifiers may have a limited value for 
grading the nonenhancing LGG subgroup, especially in a 
heterogeneous external cohort. 

Previous studies have attempted to differentiate 
the grades of LGG by using various advanced imaging 

Table 3. Performance of Best Machine Learning Classifiers in Grade Prediction for Entire LGG Group and Nonenhancing LGG 
Subgroup in Internal and External Validations

Cohort Validation Subsampling AUC (95% CI) Accuracy Sensitivity Specificity NIR P
Entire LGG Internal t test + elastic net 0.85 (0.76–0.94) 79.4% 92.9% 70.0% 58.8% < 0.001
Entire LGG TCGA t test + RFE + GBM 0.72 (0.62–0.82) 66.7% 72.6% 60.4% 51.5% 0.002 
Nonenhancing LGG Internal t test + ROSE + RF 0.82 (0.66–0.97) 78.4% 83.3% 77.4% 83.8% 0.866 
Nonenhancing LGG TCGA t test + elastic net 0.68 (0.49–0.87) 72.2% 55.6% 77.8% 75.0% 0.725 

AUC = area under curve, CI = confidence interval, GBM = gradient boosting machine, NIR = no-information rate, RF = random forest, RFE = 
recursive feature elimination, ROSE = random over-sampling examples
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techniques, such as diffusion tensor imaging, perfusion-
weighted imaging, MR spectroscopy, and C-methionine 
positron emission tomography (13, 18-21, 31, 32). However, 
most studies recruited smaller sample sizes and included 
the entire LGG group regardless of enhancement. Only a 
few studies analyzed the nonenhancing LGG subgroup and 
reported a limited performance of the imaging biomarkers 
in grading nonenhancing LGG (13, 18). Moreover, many 
of these studies used advanced imaging techniques that 
might not be routinely performed and therefore had limited 
feasibility. In our study, however, routine conventional 
MR sequences were analyzed using a pipeline that was 
built completely upon open-source packages. The use of 
common MR sequences and easily accessible tools may yield 
a more feasible methodology and reproducible results that 
can be shared with other institutions. High-throughput 
quantitative radiomics features are prone to yield 
information imperceptible to the human eye, reflecting the 
disruption or compression of normal anatomy by tumors, 
vasogenic edema, and tumor cellularity. Recent studies 
have reported that texture analysis is a potentially useful 
approach for estimating the molecular status in LGGs (33, 
34), and we hypothesized that multiparametric MR features 
may be also useful in LGG grading. 

In this study, we used the institutional training set and 
the TCGA test set. This allowed us indirectly to assess 
how the differences in MR protocols can affect the model 
performance and whether radiomics phenotyping can 
still provide useful information regarding the LGG grade 
across the different MR protocols. The accuracy of grading 
for the entire LGG group was significantly greater than 
the no-information rate in both internal and external 
validations. This result implies that radiomics is useful for 
LGG grading, despite the heterogeneity in the TCGA cohort 
with the different imaging protocols. Nonetheless, as the 
AUC in the external validation was lower than that in the 
internal validation for both the entire LGG group and the 
nonenhancing LGG subgroup, our results also imply that 
standardization of MRI protocols is mandatory to achieve 
optimized performance of radiomics classifiers. In addition, 
it should be emphasized that although the best radiomics 
classifier is useful for differentiating LGG grades, a diverse 
range of performance levels was noted according to the 
machine learning algorithms and resampling methods used. 
Therefore, for application in a clinical workflow, preliminary 
analysis of the data subset may be necessary to identify 
the most reliable machine learning classifier before training 

of the entire cohort using a specific machine learning 
classifier. 

As seen in Supplementary Table 1 and the aforementioned 
online link, the TCGA cohort consisted of heterogeneous 
imaging protocols from different MRI vendors with different 
field strengths, which may have contributed to the poor 
performance in the prediction of nonenhancing LGG grade. 
Apart from the heterogeneity of the MRI protocols, there 
are several possible explanations for the poor performance 
in the prediction of nonenhancing LGG grade in external 
validation in our study. First, although the absence of 
enhancement does not always indicate grade II glioma, 
enhancement is still an important indicator of a higher-
grade glioma, given that 52–85% of grade III gliomas 
show enhancement whereas only 47.9–56% of grade 
II gliomas show enhancement (14, 17, 19, 35). In the 
nonenhancing LGG subgroup, the radiomics classifiers were 
trained without this information on contrast enhancement. 
Moreover, the proportion of nonenhancing LGGs differed 
in the institutional and TCGA cohorts. The absence of 
crucial information regarding contrast enhancement as 
well as the discrepant proportion of nonenhancing LGG 
subgroups between cohorts may have resulted in the lower 
performance of the radiomics classifier. Second, in the 
external cohort, glioma grading was performed by various 
pathologists, which may have resulted in interobserver 
variability (36). One study has reported that 20–30% 
of gliomas are reclassified when the tumor material is 
independently reviewed (36). Histopathologic undergrading 
of LGGs may have also resulted in poor performance of the 
machine learning classifiers, especially in the heterogeneous 
TCGA cohort. 

Our study has several limitations. First, it was based on 
a retrospectively collected dataset without an analysis 
of prognostic markers. Further studies are necessary to 
correlate grade and prognostic markers such as overall 
survival and progression-free survival with radiomics 
features. Second, although several studies have 
demonstrated the utility of incorporating advanced imaging 
techniques such as diffusion-weighted image or perfusion 
studies in radiomics (24, 37), such advanced imaging 
techniques were not included in our analyses. As these 
imaging techniques are routinely performed in tertiary 
centers, further studies including these advanced sequences 
should be performed. Third, the classifier performance 
in grading the nonenhancing LGG subgroup may have a 
limited reliability due to the small subgroup size with data 
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imbalance between grade II and III tumors. Even though 
subsampling was performed to resolve the disparity in 
the frequencies of non-enhancement, there were variable 
performance levels according to the subsampling methods 
and machine learning algorithms, which may limit the 
reliability of the results. Further studies with a larger 
number of nonenhancing LGG cases are warranted for better 
assessment. Fourth, tumor segmentation was performed 
only at the hyperintense areas on FLAIR in our study. 
Segmentation for the contrast-enhancing portion of the 
tumor was not performed because the enhancing area was 
already included in the aforementioned ROI and its inclusion 
may lead to feature redundancy that may not be useful for 
the radiomics classifiers (38). Finally, interpolation was not 
used to create isotropic voxel spacing, and thus may not 
gain rotational invariability. 

In conclusion, radiomics feature-based classifiers may 
be useful to predict the grade of LGGs. However, radiomics 
classifiers may have a limited value in the TCGA external 
validation cohort of the nonenhancing LGG subgroup. 
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