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Transcriptome profiling-based 
identification of prognostic 
subtypes and multi-omics 
signatures of glioblastoma
Junseong park  1, Jin-Kyoung shim1, Seon-Jin Yoon1,2, se Hoon Kim  3, Jong Hee Chang  1 & 
Seok-Gu Kang  1

Glioblastoma (GBM) is a lethal tumor, but few biomarkers and molecular subtypes predicting prognosis 
are available. This study was aimed to identify prognostic subtypes and multi-omics signatures for 
GBM. Using oncopression and TCGA-GBM datasets, we identified 80 genes most associated with 
GBM prognosis using correlations between gene expression levels and overall survival of patients. 
The prognostic score of each sample was calculated using these genes, followed by assigning three 
prognostic subtypes. This classification was validated in two independent datasets (REMBRANDT 
and Severance). Functional annotation revealed that invasion- and cell cycle-related gene sets were 
enriched in poor and favorable group, respectively. The three GBM subtypes were therefore named 
invasive (poor), mitotic (favorable), and intermediate. Interestingly, invasive subtype showed 
increased invasiveness, and MGMT methylation was enriched in mitotic subtype, indicating need for 
different therapeutic strategies according to prognostic subtypes. For clinical convenience, we also 
identified genes that best distinguished the invasive and mitotic subtypes. Immunohistochemical 
staining showed that markedly higher expression of PDPN in invasive subtype and of TMEM100 in 
mitotic subtype (P < 0.001). We expect that this transcriptome-based classification, with multi-omics 
signatures and biomarkers, can improve molecular understanding of GBM, ultimately leading to precise 
stratification of patients for therapeutic interventions.

Glioblastoma (GBM) is one of the most feared human diseases due to high mortality rate and accompanying loss 
of cognitive function during the disease process. At present, however, there are few prognostic biomarkers and 
predictors of therapeutic response, as well as few therapeutic interventions strongly affecting disease outcome1–3. 
Although patients with IDH1 pathogenic variants have a significantly better prognosis than those with wild-type 
IDH1, these pathogenic variants are observed in only 4–7% of primary GBM patients, restricting their use as a 
biomarker4. Similarly, DNA methylation status in MGMT promoter region is a predictive biomarker for response 
to temozolomide treatment5, but it is applicable only to the non-recurrent classical subtype GBM6.

Cancers are being increasingly classified based on their histopathological and molecular characteristics, lead-
ing to the trend of precision cancer medicine7–9. GBM has been classified into several molecular subtypes based 
on their gene expression profiles: classical, mesenchymal, (neural), and proneural1,10. Although these subtypes 
have distinct molecular signatures and etiologic factors, their relationship with overall survival (OS) is ambiguous 
except for patients with IDH1 pathogenic variant1,10,11. The inability to determine patient outcomes based on his-
topathological features and current molecular subtypes inhibits the ability to effectively manage GBM. Thus, clin-
ically relevant GBM subtypes, with sufficient information on prognosis and biological phenotype, are required 
to optimize treatment. In this regard, this study assessed the ability of novel transcriptome-based prognostic 
subtypes and their molecular multi-omics signatures for new taxonomy of GBM patients: invasive, mitotic, and 
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intermediate. We expect that our prognostic stratification of GBM has important clinical implications for diagno-
sis and treatment of patients, providing a framework that unifies transcriptomic, genomic, and clinical signatures.

Results
Overview of the approach. Figure 1a shows a graphic flow chart of this study: (1) The correlation between 
expression level of each gene and patient OS was calculated using oncopression and the cancer genome atlas 
(TCGA)-GBM databases. (2) Forty genes correlating with poor prognosis and 40 correlating with favorable prog-
nosis (PGs) were selected. (3–4) GBM samples were subjected to single sample gene set enrichment analysis 
(ssGSEA) using these PGs, and prognostic subtypes were assigned. In addition to oncopression and TCGA-GBM, 
repository for molecular brain neoplasia data (REMBRANDT) and Severance datasets were used for validation. 
(5) Prognostic subtypes were functionally annotated using over-representation analysis (ORA); thereby, subtypes 
with poor and favorable prognosis were named “invasive” and “mitotic”, respectively.

Identification of PGs in GBM using transcriptome analysis. GBM samples were classified according 
to Verhaak’s subtypes, the most widely used gene expression-based classification of GBM1,10, and OS was com-
pared in these subtypes by the Kaplan-Meier method. Although several distinct molecular features were reported, 
there was no relationship between these subtypes and OS (Fig. 1b). To identify PGs, Pearson’s correlation coef-
ficients (PCCs) were calculated between the expression level of each gene and patient OS. Among them, genes 
having the highest PCCs in both oncopression and TCGA-GBM were classified as PGs (Fig. 1c and Table 1). 
Supplementary Fig. S1 shows functional interactions among these PG sets. As expected, the 40 poor PGs showed 
higher expression levels in patients with shorter OS, whereas the 40 favorable PGs showed higher expression 
levels in patients with longer OS (Fig. 1d). Notably, most poor PGs showed higher expression in GBM than in 
normal samples (Fig. 1e).

Assignment of prognostic subtypes for GBM. Using these PGs, GBM samples were subjected to ssG-
SEA to evaluate their prognosis scores, the criterion for subtype assignment; patients with prognosis scores 
<−1, >1, and between −1 and 1 were classified into the poor (invasive), favorable (mitotic), and intermedi-
ate subtypes, respectively (Supplementary Fig. S2). Linear regression analyses of four independent datasets – 
oncopression, TCGA-GBM, REMBRANDT, and Severance datasets – revealed that prognosis score correlated 
significantly with OS of GBM patients (Fig. 2a). Cox regression using prognosis score as univariate provides 
hazard ratios (HRs) with 95% confidence intervals (CIs): oncopression, HR = 0.837 (0.770–0.910); TCGA-GBM, 
HR = 0.804 (0.736–0.878); REMBRANDT, HR = 0.818 (0.738–0.907); Severance, HR = 0.780 (0.650–0.934). Each 
of the GBM datasets was divided into three groups according to their prognosis scores, and OS was compared in 
these groups using the Kaplan-Meier method. In all datasets, OS was significantly longer in the favorable than in 
the poor group, confirming that this transcriptome-based GBM classification into prognostic subtypes reflects 
patient OS (Fig. 2b and Supplementary Table S1). Notably, TCGA-GBM samples including only IDH1-wild-type 
patients – distinguished with IDH1-mutant GBM in WHO classification of tumors 2016 – also showed simi-
lar patterns, suggesting that longer OS of favorable group did not simply arise from IDH1 pathogenic variant 
(Fig. 2a,b). In addition, similar patterns were observed in RNA-seq data (TCGA), and the prognosis scores of the 
matched patients in these two platforms showed significant correlation, suggesting that this method is applicable 
to both microarray and RNA-seq platforms (Fig. 2c). We also evaluated prognosis scores in low-grade glioma 
samples (grade 2 and 3). Prognosis scores decreased significantly with increasing tumor grade, suggesting that 
this method is applicable to datasets that include low-grade glioma samples (Fig. 2d). When we examined the 
relationship of this classification with Verhaak’s molecular subtypes, we found that the mesenchymal subtype was 
more enriched in the poor than in the favorable group, whereas the proneural subtype was more enriched in the 
favorable than in the poor group (Fig. 2e).

Functional annotation of GBM prognostic subtypes. To determine the biological characteristics of 
each prognostic subtype, we first identified differentially expressed genes (DEGs) between poor and favorable 
groups in oncopression and TCGA-GBM datasets (Fig. 3a and Supplementary Data S1). These DEGs were then 
subjected to ORA for functional annotation. ORA using four gene set databases revealed that invasion- and 
immune-related gene sets were significantly enriched in the poor group, whereas cell cycle-related gene sets were 
significantly enriched in the favorable group (Fig. 3b). Similar results were reproduced in enrichment maps using 
gene ontology (GO) hierarchy, in that many enriched GO terms in the poor group were in cell migration and 
invasion modules, whereas cell cycle-related GO terms were enriched in the favorable group (Supplementary 
Fig. S3). Because signal transduction- and immune-related gene sets are frequently enriched in non-tumor 
samples, we focused on invasion-related gene sets in the poor group. The poor group was therefore named the 
“invasive” subtype, and the favorable group was named the “mitotic” subtype. Interestingly, prognosis scores 
significantly correlated with the invasive property of GBM samples, as illustrated in both MR images of GBM 
patients (Fig. 3c) and collagen-based in vitro 3D invasion assays of patient-derived GBM tumorspheres (TSs; 
Fig. 3d). Representative images of both subtypes are presented in Fig. 3e. In addition, MGMT methylation was 
significantly enriched in the mitotic subtype, indicating that different therapeutic strategies are required in treat-
ing patients with these two prognostic subtypes (Fig. 3f). Ki-67 expression did not differ significantly in the two 
subtypes, probably because proliferation is a universal hallmark of cancer. The clinical characteristics of patients, 
including age and sex, did not affect subtype classification (Supplementary Fig. S4). HRs with 95% CIs obtained 
by Cox regression model were provided in Supplementary Table S2. Collectively, these data suggest that prognos-
tic subtypes have distinct biological phenotypes, differing especially in invasive properties.

Genomic signatures of GBM prognostic subtypes. We next examined multi-omics signatures of each 
prognostic subtype. The distribution of genomic alterations in recurrently mutated genes (TCGA) showed that 
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pathogenic variants in several genes occurred exclusively in the invasive or mitotic subtype. Pathogenic variants 
in CDH18, WNT2, COL1A2, and TGFA, all of which are associated with invasion12–14, were observed only in the 
invasive subtype. In contrast, pathogenic variants in IDH1 and ATRX, which are associated with good progno-
sis4, were observed only in the mitotic subtype, consistent with our prognostic subtype classification. Moreover, 
glioma-CpG island methylator phenotype (G-CIMP), which is associated with good prognosis15, was exclusively 
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Figure 1. Flow chart of the study and selection of PGs. (a) Graphical flow chart describing the calculation, 
assignment, and functional annotation of GBM prognostic subtypes. (b) GBM datasets retrieved from 
oncopression and TCGA databases were assorted by Verhaak’s molecular subtypes, and OS was compared by 
the Kaplan-Meier method (not significant by log-rank test). (c) Each dot indicates PCC of each gene calculated 
by correlation with OS. In the right panel, PCCs calculated by oncopression (x-axis) and TCGA-GBM (y-axis) 
are presented as a scatter plot with a linear regression line (P < 0.001). The 40 highest (favorable) and lowest 
(poor) genes (PGs) are marked with colors. (d,e) Expression levels of these 80 PGs were compared in patients 
with low OS and high OS (d), and between normal and GBM samples (e).
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observed in the mitotic subtype (Fig. 4). DNA methylation status other than G-CIMP also showed distinct pat-
terns in the invasive and mitotic subtypes (Supplementary Fig. S5). Differences in copy number alteration (CNA) 
and corresponding gene list were also demonstrated in Supplementary Fig. S5 and Supplementary Data S2.

Markers of GBM prognostic subtypes. For clinical convenience, we also identified the genes that best dif-
ferentiated between the invasive and mitotic subtypes, based on the intersection between PGs listed in Table 1 and 
the DEGs identified in Fig. 3a. Of the 48 genes identified, PDPN and TMEM100 showed the greatest differential 
expression between these two prognostic subtypes, except for genes encoding secreted proteins (Supplementary 
Data S1). In all four independent datasets, PDPN showed significantly higher expression levels in the invasive 
subtype, whereas TMEM100 showed significantly greater expression in the mitotic subtype (Fig. 5a). Moreover, 
expression levels of PDPN were significantly correlated with increasing glioma grade, whereas TMEM100 showed 
the opposite pattern (Fig. 5b), suggesting that both of these markers are associated with prognosis, even when 
low-grade glioma samples were included. Immunohistochemistry (IHC) confirmed markedly higher PDPN lev-
els in the invasive subtype and TMEM100 levels in the mitotic subtype (Fig. 5c). These findings suggest that 
PDPN is a marker for the invasive subtype, and TMEM100 is a marker for the mitotic subtype.

Discussion
Owing to enormous heterogeneity of tumors including GBM16, histologically defined tumors should be further 
divided into subgroups using molecule-level criteria. Categorizing GBM into subtypes may result in more precise 
treatment, enabling rational therapy based on subgroup-specific targets. Here, we show prognostic subtypes of 
GBM in terms of large-scale gene expression profiles. These novel GBM subtypes had differential biological phe-
notypes and multi-omics signatures, including differences in somatic pathogenic variants, DNA methylation, and 
CNA. The reproducibility of this classification was validated in four independent datasets, including one based on 
samples from our institution (Severance).

The importance of this study lies in that these prognostic subtypes are interrelated with distinct biological phe-
notypes, such as invasiveness. Migratory and invasive capabilities of tumor, along with mesenchymal transition 
and distant metastasis, are hallmarks of cancer associated with poor prognosis17,18. Of our prognostic subtypes of 
GBM, the poor (invasive) subtype showed significantly greater invasiveness than the favorable (mitotic) subtype, 
consistent with previous findings. Moreover, a methylated MGMT promoter region correlated significantly with 
the mitotic subtype, indicating that patients with this subtype were more likely to respond to temozolomide5. 
These prognostic subtypes are clinically relevant, resulting in patient stratification and enhancing integrative 
understanding of GBM. These results also suggest that therapeutic strategies should be based on prognostic sub-
types; for example, patients with the mitotic subtype can be treated with temozolomide, whereas patients with 
the invasive subtype should receive therapeutic interventions targeting tumor invasiveness. In this regard, we will 
evaluate novel therapeutic strategy targeting invasiveness in the future study.

The prognostic subtypes identified here are in good agreement with previously reported GBM 
prognosis-associated signatures, including IDH1 pathogenic variant and G-CIMP. Although prognostic subtypes 
were based solely on transcriptome and OS, genomic signatures such as somatic pathogenic variants in IDH1 and 

Poor (Invasive) Favorable (Mitotic)

Entrez Symbol Entrez Symbol Entrez Symbol Entrez Symbol

4478 MSN 5269 SERPINB6 10202 DHRS2 338645 LUZP2

6990 DYNLT3 1819 DRG2 3929 LBP 4093 SMAD9

3964 LGALS8 873 CBR1 3250 HPR 10566 AKAP3

6281 S100A10 9737 GPRASP1 55273 TMEM100 3484 IGFBP1

3958 LGALS3 10630 PDPN 55506 H2AFY2 5994 RFXAP

9208 LRRFIP1 51150 SDF4 79097 TRIM48 5449 POU1F1

1635 DCTD 23150 FRMD4B 9934 P2RY14 9472 AKAP6

64114 TMBIM1 2934 GSN 55176 SEC. 61A2 92211 CDHR1

2014 EMP3 19 ABCA1 1602 DACH1 5978 REST

9516 LITAF 9948 WDR1 2660 MSTN 6898 TAT

7037 TFRC 54431 DNAJC10 8366 HIST1H4B 1656 DDX6

1534 CYB561 4016 LOXL1 1007 CDH9 10214 SSX3

30008 EFEMP2 30836 DNTTIP2 51079 NDUFA13 7783 ZP2

2152 F3 301 ANXA1 2674 GFRA1 2153 F5

57212 TP73-AS1 23351 KHNYN 10683 DLL3 6445 SGCG

10723 SLC12A7 10123 ARL4C 11077 HSF2BP 9906 SLC35E2

8996 NOL3 7110 TMF1 8854 ALDH1A2 27296 TP53TG5

5352 PLOD2 10404 CPQ 1360 CPB1 79955 PDZD7

114883 OSBPL9 9077 DIRAS3 79896 THNSL1 79727 LIN28A

9325 TRIP4 6282 S100A11 3567 IL5 266 AMELY

Table 1. Gene sets associated with prognosis of GBM patients (PGs).
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ATRX, and G-CIMP, a DNA methylation signature, were exclusively present in the mitotic subtype. Because these 
signatures have been associated with favorable outcomes4,15, our subtypes reflect not only transcriptomic factors 
but also previously reported multi-omics markers in GBM patients. Interestingly, several genes in poor PG set 
were overlapped with previously reported G-CIMP transcriptome signature genes19. Studies are needed to deter-
mine whether this sample subset can be identified using both our OS-based subtypes and somatic pathogenic 
variant- or methylation-based subtypes. Moreover, our method was validated in TCGA RNA-seq data as well as 
in various microarray chips, implying its flexibility for multi-platform analyses.

Classification based on transcriptomes and OS has a distinct advantage, as in practice it is difficult to obtain all 
available multi-omics data, including transcriptome, genome, methylome, and DNA structural variation, from 
individual patients due to cost and overtreatment problems. Because our method uses only transcriptome and OS 
information, the prognostic subtypes we identified may be applicable clinically, as well as in research. Moreover, 
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Figure 2. Assignment of prognostic subtypes. (a) Each dot indicates the prognosis score and OS of each 
GBM sample. Vertical dashed lines indicate threshold values (−1 and 1) for subtype assignment. The Pearson 
correlation was significant in all datasets; the linear regression line is shown in black. (b) Survival probability for 
each prognostic subtype was estimated based on Kaplan-Meier curves. Statistical significance was determined 
by the log-rank test (P < 0.001 for oncopression, TCGA-GBM, and REMBRANDT, P < 0.05 for Severance). 
(c) Corresponding presentation with (a) and (b) (left and center, respectively) was shown using RNA-seq data 
(TCGA). Scatter plot shows the correlation between prognosis scores of the matched patients obtained from 
microarray and RNA-seq data (TCGA; right). The Pearson correlation was significant (P < 0.001, R = 0.84); the 
linear regression line is shown in black. (d) Prognosis scores were compared among grades 2–4 glioma samples 
from oncopression and REMBRANDT. Differences among groups were compared by one-way ANOVA with 
Tukey’s post hoc test for multiple comparisons; ***P < 0.001. (e) Distribution of GBM molecular subtypes is 
presented as heat maps. Upper line: P, poor; I, intermediate; F, favorable. Middle and bottom lines: C, classical; 
M, mesenchymal; N, neural; P, proneural.
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we identified single gene markers for each prognostic subtype, diminishing costs per patient, even though these 
results may not be as robust as those obtained from genome-wide expression levels. Future biomarker assays for 
GBM may include molecular tests for these prognostic subtypes.

Future studies are also required to assess the list of poor PGs (Table 1). In addition to determining prognostic 
subtypes, this list contains genes not previously recognized as GBM-associated genes. Because their expression 
levels are indicative of GBM prognosis, inhibition of subsets of these genes may prolong OS. Although a mecha-
nistic explanation of all these genes in relevance to GBM progression is beyond the scope of this study, they may 
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Figure 3. Functional annotation to prognostic subtypes. (a) Expression levels of DEGs were displayed as a heat 
map. DEGs were defined as genes with P < 0.001 (FDR correction for multiple comparisons) between poor 
and favorable groups. (b) Functional annotation of DEGs was performed by ORA. Statistical significance was 
determined using Fisher’s exact test, and enrichment scores are presented as a heat map. P, poor; F, favorable. 
(c–e) Using Severance dataset, invasiveness was evaluated in MR images of GBM patients (c) and GBM TSs 
(d). Scatter plots show correlation between invasiveness and prognosis or poor score. Representative figures 
are presented in (e). (f) DNA methylation status in MGMT promoter region was compared between prognostic 
subtypes (Severance; OR = odds ratio). Differences in subtypes were compared by two-tailed Student’s t-test in 
(a,c,d) and by Fisher’s exact test in (f).
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have clinical use as prognostic biomarkers and novel drug targets, as well as suggesting new insights into GBM 
pathology and etiologies.

Methods
Public datasets. The primary sources of samples were the oncopression20, TCGA, and REMBRANDT21 
databases. From oncopression (http://oncopression.com), preprocessed gene expression data using microar-
ray were retrieved (normal brain, n = 723; grade 2 astrocytoma, n = 133; grade 3 astrocytoma, n = 132; GBM, 
n = 865) and survival information was obtained for 174 GBM patients. From TCGA, preprocessed multi-om-
ics GBM datasets were obtained through cBioPortal22,23 (U133 microarray, n = 495; RNA-seq, n = 166; somatic 
pathogenic variant data from whole exome sequencing, n = 491; methylation, n = 254 for HM27 and n = 84 for 
HM450; CNA from GISTIC 2.0, n = 478) with survival information of 496 GBM patients. Secondary or recurrent 
GBM samples were excluded, and G-CIMP status was determined as described6. The REMBRANDT gene expres-
sion dataset (E-MTAB-3073) was obtained from ArrayExpress (grade 2 astrocytoma, n = 65; grade 3 astrocytoma, 
n = 58; GBM, n = 228) with survival information of 187 GBM patients.

Patient information (severance). Samples were obtained from 52 non-recurrent GBM patients treated at 
Severance Hospital (Table 2). To obtain gene expression profiles using microarrays, total RNA was extracted from 
each tissue sample using Qiagen RNeasy Plus Mini kits, and loaded onto Illumina HumanHT-12 v4 Expression 
BeadChip (Illumina, San Diego, CA, USA). The data were variance stabilizing transformed and quantile nor-
malized using the R/Bioconductor lumi package24. MR images of patients were taken using Achieva 3.0T system 
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Figure 4. Genomic signatures of prognostic subtypes (TCGA-GBM). Distribution of somatic pathogenic 
variants of recurrently altered genes in GBM. Samples were separately clustered according to prognostic 
subtypes, and heat maps indicate prognosis score or G-CIMP status of each sample. Invasive or mitotic subtype 
samples with at least one pathogenic variant were included. Genes mentioned in the text are highlighted.
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Figure 5. Expression of markers for prognostic subtypes. (a,b) Expression levels of PDPN and TMEM100 in 
each prognostic subtype (a) and in grades 2–4 glioma (b). Differences among groups were compared by one-
way ANOVA with Tukey’s post hoc test for multiple comparisons; *P < 0.05, **P < 0.01, ***P < 0.001 in (a) 
denote significant differences compared with the invasive group. (c) Expression levels of PDPN and TMEM100 
were measured by IHC (brown). In all images, hematoxylin (blue) was used to counterstain nuclei (red scale 
bar = 20 μm).

Feature
Invasive 
(n = 14)

Mitotic 
(n = 14)

Intermediate 
(n = 24)

Age: Median 
(LQ-HQ)

56.5 
(52–59.5)

60.5 
(50.8–65.3) 60.5 (51.5–67)

Survival: Median 
(CI)

12.8 
(10.2–15.4)

20.9 
(16.8–24.9) 11.4 (9.2–13.7)

Sex: M/F 10/4 7/7 17/7

IDH1:
Wild/Mut/
Unknown

12/0/2 11/2/1 22/0/2

MGMT promoter:
Met/Unmet/
Unknown

2/11/1 8/5/1 7/17/0

Table 2. Clinical characteristics of the samples in Severance dataset.
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(Philips Medical Systems, Best, Netherlands) within 7 days before the respective brain tumor removal. Axial 
images were planned parallel to the anterior and posterior limb of the corpus callosum. Because T1 contrast 
enhanced (CE) and T2 fluid-attenuated inversion recovery (FLAIR) images nearly indicate primary tumor core 
region and invasive front region, respectively, we quantified invasiveness according to the equation – the area 
occupied by (T2 FLAIR - T1 CE)/T1 CE, as previously suggested25. Among whole axial-axis MR images, sections 
having the largest tumor area were selected for quantification of invasiveness, and two authors (J.P. and S.-J.Y.) 
independently measured tumor area to minimize rater bias. Experiments in this study were approved by the 
institutional review board of Severance Hospital, Yonsei University College of Medicine (4-2012-0212, 4-2014-
0649), and all participants provided written informed consent. All experiments were performed in accordance 
with relevant guidelines and regulations.

Isolation of GBM TSs and 3D invasion assay. TS-forming GBM cells were established from fresh GBM 
tissue specimens as previously described26. For TS culture27, cells were cultured in TS complete media, composed 
of DMEM/F-12 (Mediatech, Manassas, VA, USA), 1× B27 (Invitrogen, San Diego, CA, USA), 20 ng/mL bFGF, 
and 20 ng/mL EGF (Sigma-Aldrich, St. Louis, MO, USA). For 3D invasion assays27, each well of a 96-well plate 
was filled with mixed matrix composed of Matrigel, collagen type I (Corning Incorporated, Corning, NY, USA), 
and TS complete media. Single spheroids were seeded inside the matrix prior to gelation, followed by the addition 
of TS complete media over the gelled matrix to prevent drying. Invaded area was quantified as occupied area at 
(72 h–0 h)/0 h.

Selection of prognosis-associated genes (PGs) and calculation of prognosis score. PGs were 
defined as genes highly correlated with OS of GBM patients in both oncopression and TCGA datasets. Genes 
whose PCCs were negative in both datasets were considered poor genes; genes whose PCCs were positive in both 
datasets were considered as favorable genes; and genes whose PCCs had different signs in these two datasets were 
excluded because they were associated with poor prognosis in one dataset and favorable prognosis in the other 
dataset. The product of PCCs with sign from these two datasets (PCC score) was regarded as a quantification 
of robust correlation (Supplementary Table S3). Because rare genes are significantly correlated with favorable 
prognosis, it is impractical to define PG sets larger than 40 genes for each prognostic subtype. After sorting 
according to this metric, therefore, 40 poor PGs and 40 favorable PGs were selected (Table 1). Using these PGs, 
GBM expression profiles were applied to ssGSEA, and enrichment scores were standardized across all samples. 
Poor and favorable scores of each GBM sample were defined as this standardized score, and prognosis score is 
defined as (favorable score - poor score). To confirm that the number of genes in each PG set is appropriate, we 
also calculated prognosis scores using top 20 × 2 genes rather than using 40 × 2 genes. Correlation between prog-
nosis scores obtained using these two gene sets were statistically significant (P < 0.001 for all datasets), suggesting 
that the results were very similar (Supplementary Fig. S2). If the outcomes are similar, larger gene sets can gen-
erate robust result across independent cohorts. Based on these results, we finally defined two PG sets including 
40 genes each. Functional interactions among PGs were constructed as network maps using Cytoscape28 and 
Reactome FI29 plug-in.

Cutoff values of prognostic score and assignment of prognostic subtypes. Because TCGA-GBM 
dataset is not a validation set and has sufficient number of samples over various prognosis scores, we performed 
sensitivity analysis regarding several cutoff values for subtype assignment ranging from −2.0 to 2.0 using 
TCGA-GBM dataset. After dividing whole cohort into poor and favorable subgroups using specific cutoff value 
of prognosis score, we calculated P-values of log-rank test. This data shows that −1.0 indicate distinct local min-
imum P-value, suggesting −1.0 as one of good cutoff value (Supplementary Fig. S2). To preclude samples with 
moderate prognosis scores from being assigned into poor or favorable subtypes, we introduced intermediate 
subtype between poor and favorable subtypes, indicating necessity of one more cutoff value. Cutoff value of 1.0 
generated very low P-value, shaping plateau pattern at cutoff values larger than 1.0. Because too inclined cutoff 
values cause large difference in subtype size (Supplementary Fig. S2), we finally selected −1.0 and 1.0 as cutoff 
values for assignment of prognostic subtypes.

Functional annotation of prognostic subtypes. Functional annotation to DEGs between invasive 
and mitotic subtypes was performed by ORA using gene sets obtained from MSigDB (KEGG and hallmark), 
QuickGO, and GO slim databases. Gene sets were manually categorized according to the functional similarity of 
terms. Statistical significance was determined using Fisher’s exact test, and enrichment scores were depicted as a 
heat map (GENE-E software). Additionally, ORA results with GO terms were visualized as an enrichment map 
using Cytoscape and ClueGO30 plug-in. Enriched GO terms were functionally categorized based on their kappa 
scores (>0.4). Statistical significance was determined using two-sided hypergeometric test, and only nodes with 
Bonferroni-adjusted P-value < 0.001 were displayed.

IHC of marker proteins. Brain tissues from GBM patients were sliced into 5-μm-thick sections using a 
microtome, and then transferred onto adhesive slides. Antigen retrieval and antibody attachment were performed 
using an automated instrument (Discovery XT, Ventana Medical Systems, Tucson, AZ, USA). PDPN (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA) and TMEM100 (OriGene, Rockville, MD, USA) were detected using a 
peroxidase/DAB staining system. All images were counterstained with hematoxylin.

Data Availability
The dataset (Severance) analysed during the current study is available in the GEO repository with accession 
number of GSE131837.
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