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Abstract: The aim of this study was to examine the relationship between main air pollutants and
all cancer mortality by performing a meta-analysis. We searched PubMed, EMBASE (a biomedical
and pharmacological bibliographic database of published literature produced by Elsevier), and the
reference lists of other reviews until April 2018. A random-effects model was employed to analyze
the meta-estimates of each pollutant. A total of 30 cohort studies were included in the final analysis.
Overall risk estimates of cancer mortality for 10 µg/m3 per increase of particulate matter (PM)2.5,
PM10, and NO2 were 1.17 (95% confidence interval (CI): 1.11–1.24), 1.09 (95% CI: 1.04–1.14), and 1.06
(95% CI: 1.02–1.10), respectively. With respect to the type of cancer, significant hazardous influences
of PM2.5 were noticed for lung cancer mortality and non-lung cancer mortality including liver cancer,
colorectal cancer, bladder cancer, and kidney cancer, respectively, while PM10 had harmful effects
on mortality from lung cancer, pancreas cancer, and larynx cancer. Our meta-analysis of cohort
studies indicates that exposure to the main air pollutants is associated with increased mortality from
all cancers.

Keywords: air pollutants; cancer mortality; cohort study; meta-analysis

1. Introduction

The global level of particulate matter <2.5 µm in size (PM2.5) rose by 11.2% from 1990 (39.7 µg/m3)
to 2015 (44.2 µg/m3), and exposure to PM2.5 was the fifth most common cause of death in 2015 globally,
resulting in the deaths of 4.2 million people [1]. Ambient air pollutants were recently classified as lung
carcinogens by the International Agency for Research on Cancer of the World Health Organization
(WHO) and are considered as “the most extensive environmental carcinogens” [2].

To date, three meta-analyses [3–5] have examined the association between air pollution and lung
cancer mortality; in them, a 10 µg/m3 increase in PM2.5 levels increased the risk of and mortality from
cancer by 9%, 9%, and 7%, respectively. However, these three meta-analyses used both incidence and
mortality data of lung cancer. Importantly, there is a difference between cancer incidence and mortality,
because not all patients suffering from cancer will die from the disease [6]. Recent prospective cohort
data collected from 623,048 participants over 22 years showed that a 4.4 µg/m3 increase in PM2.5

levels increased kidney and bladder cancer mortality rates by 14% and 13%, respectively [7]. Nitrogen
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dioxide (NO2) was also positively linked to increased mortality from colorectal cancer in this study
(hazard ratio (HR) per 6.5 parts per billion (ppb): 1.06; 95% confidence interval (CI): 1.02–1.10).

At present, there are no reported quantitative meta-analyses on the association between ambient
air pollution and mortality from all types of cancers. The current study addressed this gap by
performing a meta-analysis of 30 cohort studies, as well as various subgroup analyses of the factors
that might influence the results.

2. Materials and Methods

2.1. Data Sources and Searches

We searched PubMed and EMBASE (a biomedical and pharmacological bibliographic database of
published literature produced by Elsevier) from October 1958 to April 2018 using common keywords
related to air pollutants and cancer mortality. The keywords were “air pollution”, “air pollutants”,
“particulate matter”, “nitrogen dioxide”, “sulfur dioxide”, and “ozone” for exposure factors and
“cancer”, “malignancy”, and “carcinoma” for outcome factors. Additionally, we inspected the
bibliographies of related articles and reviews to identify additional pertinent data.

2.2. Study Selection and Eligibility

We included observational articles that met the following criteria: (1) a prospective or retrospective
cohort study; (2) examined the association between air pollution and mortality from any type of cancer;
and (3) reported outcome measures with adjusted relative risk (RR) and 95% CI. When two or more
analyses contained duplicated data or used the same participants, we included the more comprehensive
analysis. We excluded the following: (1) in vivo and in vitro studies; (2) case reports, review articles,
and letters; (3) studies on cancer incidence but not mortality; (4) studies with inconvertible data;
and (5) studies assessing indoor, occupational, or accidental exposures to pollutants.

Using the selection criteria, three authors (H.B.K., J.Y.S., and B.P.) independently assessed the
eligibility of the retrieved articles. Any disagreements among the evaluators were resolved by
discussion with the help of a fourth author (Y.J.L.).

2.3. Data Extraction

Two authors (H.B.K. and B.P.) independently extracted the study characteristics from the eligible
articles, which were then reviewed by a third author (Y.J.L). The extracted data included the name of
the first author, publication year, type of cohort study, year in which the participants were enrolled,
location of the study, means of quantifying exposure (e.g., degree of exposure, mean concentration of
pollutants), number of cases, type and stage of cancer, adjusted confounding variables, and adjusted
RR ratios and 95% CI.

2.4. Assessment of Methodological Quality

We used the Newcastle–Ottawa Scale (NOS) [8] to estimate the methodological quality of the
studies included in our meta-analysis. The NOS is comprised of three subscales (selection of studies,
comparability, and exposure), and its scores range from 0–9. There is no established cut-off point for
high versus low quality; hence, we rated studies with higher than average scores as high-quality and
analyzed all studies despite their score.

2.5. Main and Subgroup Analyses

The main analysis examined the association between long-term exposure to air pollutants
and cancer mortality. Subgroup analyses assessed the effect of the following factors on cancer
mortality: type of air pollutant, gender, geographical region, duration of cohort study, mean pollutant
concentration according to WHO guidelines, type of cancer, stage of cancer, number of participants,
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methodological quality, and smoking status. Subgroup analyses were conducted separately for the
two pollutants that most significantly impacted cancer mortality.

2.6. Statistical Analyses

Because most exposure-response meta-analyses consider the relationship between air pollution
and disease mortality to be linear [9,10], our protocol also included standardized increments:
a 10 µg/m3 increase in exposure to PM2.5; particulate matter <10 µm in size (PM10); NO2, nitrogen
oxides (NOx), and sulfur dioxide (SO2); and a 10 ppb increase in exposure to ozone (O3). We
recalculated the RR for the standardized increment for each pollutant by applying the following
formula [11]:

RRStandardized = e

(
ln (RROrigin)

IncrementOrigin
× IncrementStandardized

)
where RR is the relative risk and ln is the log to the base e. If the RR was presented on a continuous scale
as an interquartile range (IQR), we used the increment in IQR instead of the increments noted above.

To evaluate the association between air pollutants and cancer mortality, a pooled RR ratio and
95% CI was calculated from the adjusted RR ratio and 95% CI in each study. To test heterogeneity
across studies, we used the Higgins I2 test to determine the percentage of total variation [12]. I2 was
computed as follows:

I2 = 100% × (Q − df )/Q

where Q is Cochran’s heterogeneity statistic and df indicates the degrees of freedom. I2 values ranged
from 0% (no observed heterogeneity) to 100% (maximal heterogeneity), with values >50% indicating
substantial heterogeneity [12]. A random-effects model based on the DerSimonian and Laird method
was used for calculating the overall RR and 95% CI values, because populations and methodologies
differed among the studies [13].

We assessed publication bias using Begg’s funnel plot and Egger’s test [14]. When bias was
present, the funnel plot showed asymmetry or Egger’s test had a p-value <0.05. We used Stata SE
software, version 13.1 (StataCorp, College Station, TX, USA) for the statistical analyses.

3. Results

3.1. Eligible Studies

The abstracts of a total of 1302 articles were identified in the initial investigation of two databases
and by hand-searching relevant bibliographies. After excluding 485 duplicated articles, two of the
authors independently surveyed the eligibility of all studies and excluded an additional 712 articles
that did not meet the predetermined inclusion criteria (Figure 1). Finally, the full texts of the remaining
105 articles were inspected, of which 75 articles were excluded for the following reasons: no RR
data (n = 31), air pollution not quantified (n = 14), insufficient exposure and outcome data (n = 8),
a categorical range of air pollutants was used (n = 8), population sharing (n = 7), no mortality rates
for cancer (n = 5), cancer incidence was used as an outcome measurement (n = 1), and smoking
status was used as a co-exposure factor (n = 1). The remaining 30 cohort studies were included in the
meta-analysis [7,15–43]. All cohort studies were prospective except the study by Ancona et al. [35],
which was retrospective.
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Figure 1. Flow diagram for identification of relevant studies.

3.2. Characteristics of Studies Included in the Final Analysis

Table 1 shows the general characteristics of the 30 cohort studies included in our meta-analysis.
All studies were published between 1999 and 2017 and together comprised >36,077,332 participants.
In studies reporting age, the mean age of the participants was 57.3 years (range: 0–120 years). Regarding
the type of cancer, most of them concerned lung cancer, while some of them involved all types. Mostly,
the selected studies were conducted in the United States (n = 10), the Netherlands (n = 3), and China
(n = 3). Adjusted variables of each study were presented in Table A1.
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Table 1. General characteristics of the cohort studies included in the final analysis (n = 30).

References
(Publication Year)

Type of Cohort
Study Country Years

Enrolled
Number of
Cases Cancer Site Definition of Pollutant Exposure

(Incremental Increase) RR (95% CI) Quality Assessment
(Newcastle–Ottawa Stars)

Abbey et al. (1999) [15] Prospective USA 1977–1992 29 cases Lung PM10 24.08 µg/m3 increase 3.36 (1.57–7.19) 8
Hoek et al. (2002) [16] Prospective Netherlands 1986–1994 244 cases Non-lung NO2 30 µg/m3 increase 1.08 (0.63–1.85) 9
Nafstad et al. (2004) [17] Prospective Norway 1972–1998 382 cases Lung NOx 10 µg/m3 increase 1.11 (1.03–1.19) 8
Filleul et al. (2005) [18] Prospective France 1974–2000 178 cases Lung NO2 10 µg/m3 increase 1.48 (1.05–2.06) 9
Boldo et al. (2006) [19] Prospective Spain 1999–2003 1901 cases Lung PM2.5 15 µg/m3 increase 1.14 (1.04–1.23) 5
Brunekreef et al.
(2009) [20] Prospective Netherlands 1987–1996 1935 cases Lung PM2.5 10 µg/m3 increase 1.06 (0.82–1.38) 8

McKean-Cowdin et al.
(2009) [21] Prospective USA 1982–1988 1284 cases Brain PM2.5 10 µg/m3 increase 0.91 (0.74–1.11) 8

Cao et al. (2010) [22] Prospective China 1991–2000 624 cases Lung SO2 10 µg/m3 increase 1.04 (1.02–1.06) 8
Poppe CA et al.
(2011) [23] Prospective USA 1983–1988 3194 cases Lung PM2.5 10 µg/m3 increase 1.14 (1.04–1.23) 8

Hart et al. (2011) [24] Prospective USA 1985–2000 800 cases Lung PM2.5 4 µg/m3 increase 1.02 (0.95–1.10) 6
Katanoda et al.
(2011) [25] Prospective Japan 1983–1992 518 cases Lung PM2.5 10 µg/m3 increase 1.24(1.12–1.37) 8

Lipsett et al. (2011) [26] Prospective USA 1996–2005 234 cases Lung PM2.5 10 µg/m3 increase 0.95 (0.70–1.28) 8
Lepeule et al. (2012) [27] Prospective USA 1974–2009 350 cases Lung PM2.5 10 µg/m3 increase 1.37 (1.07–1.75) 9
Hales et al. (2013) [28] Prospective New Zealand 1996–1998 1686 cases Lung PM10 1 µg/m3 increase 1.02 (1.00–1.03) 8
Hu et al. (2013) [29] Prospective USA 1999–2009 255,128 women Breast PM10 10 µg/m3 increase 1.13 (1.02–1.25) 6
Carey et al. (2013) [30] Prospective United Kingdom 2003–2007 5273 cases Lung PM2.5 1.9 µg/m3 increase 1.04 (0.99–1.09) 6
Cesaroni et al. (2013) [31] Prospective Italy 2001–2010 12,208 cases Lung PM2.5 10 µg/m3 increase 1.05 (1.01–1.10) 8
Heinrich et al. (2013) [32] Prospective Germany 1990-2008 41 cases Lung PM10 7 µg/m3 increase 1.84 (1.23–2.74) 8
Yorifuji et al. (2013) [33] Prospective Japan 1999–2009 116 cases Lung NO2 10 µg/m3 increase 1.20(1.03–1.40) 8
Fischer et al. (2015) [34] Prospective Netherlands 2004–2011 53,735 cases Lung PM10 10 µg/m3 increase 1.26 (1.21–1.30) 8
Ancona et al. (2015) [35] Retrospective Italy 2001–2010 2196 cases All PM10 27 µg/m3 increase 1.04 (0.92–1.17) 8
Chen et al. (2016) [36] Prospective China 1998–2009 140 cases Lung PM10 10 µg/m3 increase 1.05 (1.03–1.06) 9

Eckel et al. (2016) [37] Prospective USA 1988–2009 352,053 cases Lung PM2.5 5.3 µg/m3 increase 1.15 (1.14–1.16) 7
Weichenthal et al.
(2016) [38] Prospective Canada 1991–2009 3200 cases Lung PM2.5 10 µg/m3 increase 1.05 (1.00–1.10) 7

Wong et al. (2016) [39] Prospective Hong Kong 1998–2011 4531 cases All PM2.5 10 µg/m3 increase 1.22 (1.11–1.34) 8
Cohen et al. (2016) [40] Prospective Israel 1992–2013 105 cases All NOx 10 ppb increase 1.08 (0.93–1.26) 9
Guo et al. (2017) [41] Prospective China 1990–2009 315,530 cases Lung PM2.5 10 µg/m3 increase 1.08 (1.07–1.09) 5
Pun et al. (2017) [42] Prospective USA 2000–2008 255,544 cases All PM2.5 10 µg/m3 increase 1.11 (1.09–1.12) 7
Deng et al. (2017) [43] Prospective USA 2000–2009 20,221 cases Liver PM2.5 10 µg/m3 increase 1.18 (1.16–1.20) 8
Turner et al. (2017) [7] Prospective Canada 1982–2004 43,320 cases Non-lung NO2 6.5 ppb increase 1.06 (1.02–1.10) 8

Abbreviations: CI, confidence interval; NO, nitrogen oxides; PM, particulate matter; ppb, parts per billion; RR, relative risk.
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Ten studies used fixed-site monitor measurements for the exposure assessment method, while
17 studies used modeling-based assessment methods such as land-use regression or air dispersion
models. All studies except three [29,31,35] were funded by public/governmental organizations or
independent scientific foundations. The NOS scores of the studies ranged from 5 to 9; the average score
was 7.7. The number of high-quality studies (NOS score ≥ 8) was 21. Data were extracted from the
general population in all studies except four, which were conducted on breast cancer patients [29], lung
cancer patients [37], patients with myocardial infarction [40], and liver cancer patients [43], respectively.

3.3. Overall Meta-Estimates and Publication Bias

All-cancer mortality significantly correlated with long-term exposure to PM2.5 (RR: 1.17; 95%
CI: 1.11–1.24; I2: 97.4%), PM10 (RR: 1.09; 95% CI: 1.04–1.14; I2: 45.7%) (Figure 2), and NO2 (RR: 1.06;
95% CI: 1.02–1.10; I2: 95.5%) (Figure 3). Significant, although less strong, mortality associations were
also observed for NOx (RR: 1.03; 95% CI: 1.00–1.07; I2: 0.0%) and SO2 (RR: 1.03; 95% CI: 1.00–1.05;
I2: 56.6%). Pooled data for NO2 and NOx indicated that air pollutants composed of nitrogen compounds
significantly increased the risk of cancer mortality (RR: 1.05; 95% CI: 1.02–1.09; I2: 95.0%). Exposure to
O3 reduced the risk estimate, albeit not to a significant extent (RR: 0.98; 95% CI: 0.90–1.07; I2: 74.5%;
not shown in figure). In Table A2, a stratified analysis showed no publication bias in terms of the
results for PM2.5, PM10, and NO2 (Egger’s test for asymmetry: p = 0.40, 0.68, and 0.41, respectively;
Begg’s funnel plots were all symmetrical).

Figure 2. Mortality from cancer according to long-term exposure to particulate matter (PM) in a
random-effects meta-analysis of observational studies. RR, relative risk; CI, confidence interval
(RR and 95% CI are for a 10 µg/m3 increase in PM2.5 and PM10).
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Figure 3. Mortality from cancer according to long-term exposure to nitrogen dioxide (NO2) and
nitrogen oxides (NOx) in a random-effects meta-analysis of observational studies. RR, relative risk; CI,
confidence interval (RR and 95% CI are for a 10 µg/m3 increase in NO2 and NOx).

3.4. Subgroup Analyses of the Association between PM2.5 and Cancer Mortality

The significant relationship between PM2.5 and cancer mortality was very similar in the subgroup
analyses stratified by gender, geographical region, follow-up period, mean levels of pollutant
concentration, stage of cancer, number of participants, methodological quality, and smoking status.

As shown in Table 2, long-term exposure to PM2.5 increased mortality from liver cancer, colorectal
cancer, bladder cancer, and kidney cancer, as well as mortality from lung cancer. There was a similar
association between PM2.5 and mortality from non-lung cancer (RR: 1.16, 95% CI: 1.04–1.30) when
compared with mortality from lung cancer (RR: 1.14, 95% CI: 1.07–1.21). In addition, early stage cancer
was more prominent in relation to air pollution and cancer mortality (RR: 1.81, 95% CI: 1.63–2.01
for localized state; RR: 1.47, 95% CI: 1.36–1.59 for regional state; and RR: 1.17, 95% CI: 1.05–1.30, for
metastatic state, respectively).

3.5. Subgroup Analyses of the Association between PM10 and Cancer Mortality

Long-term exposure to PM10 significantly correlated with cancer mortality in subgroup analyses
stratified by mean pollutant concentration, cancer stage, methodological quality, and smoking status.
As shown in Table 2, it increased the mortality rate in pancreas cancer, larynx cancer, and lung cancer.
However, PM10 was not related to mortality from cancers other than lung cancer, in contrast to PM2.5.
Similar to PM2.5, PM10 best correlated with mortality in early-stage cancer.

PM10, unlike PM2.5, did not adversely affect mortality rates in men, women, patients in Europe,
patients with follow-up periods <10 years, and a small study size.
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Table 2. Particulate matter and cancer mortality in the subgroup meta-analysis of cohort studies by various factors. WHO, World Health Organization.

Subgroups PM2.5 PM10

No. of Studies Summary RR (95% CI) I2 (%) No. of Studies Summary RR (95% CI) I2 (%)

Gender
Male only 5 1.14 (1.00, 1.29) 80.5 4 1.06 (0.93, 1.22) 69.1

Female only 6 1.13 (1.05, 1.21) 32.0 6 1.03 (0.92, 1.15) 72.3
Male and Female 16 1.18 (1.11, 1.25) 97.8 6 1.10 (1.05, 1.16) 94.9

Region
America 11 1.18 (1.08, 1.29) 97.2 6 1.05 (1.05. 1.23) 76.5
Europe 5 1.16 (1.00, 1.35) 94.9 4 1.18 (0.99, 1.41) 95.3

Asia 3 1.17 (1.05, 1.30) 85.1 1 1.05 (1.03, 1.06) NA
Follow-up period

<10 years 10 1.17 (1.07, 1.27) 96.3 4 1.11 (0.96, 1.29) 89.6
≥10 years 9 1.19 (1.07, 1.32) 98.1 9 1.06 (1.03, 1.09) 82.1

Mean levels of pollutant concentration according to the
WHO guideline

Below the standard 4 1.20 (1.04, 1.39) 98.3 1 1.16 (1.04, 1.29) NA
Above the standard 12 1.18 (1.09, 1.28) 91.1 9 1.09 (1.04, 1.15) 93.1

Types of cancer
Lung cancer 14 1.14 (1.07, 1.21) 97.1 9 1.07 (1.03, 1.11) 83.3

Cancers other than lung cancer 5 1.16 (1.04, 1.30) 90.9 3 1.05 (0.99, 1.11) 44.1
Brain cancer 2 1.00 (0.84, 1.19) 36.1 2 0.93 (0.83, 1.03) 0.0

Lymphatic & hematopoietic cancer 2 1.06 (0.90, 1.25) 10.6 1 1.04 (0.93, 1.16) NA
Breast cancer 3 1.60 (0.94, 2.72) 83.4 2 1.06 (0.93, 1.21) 64.6
Liver cancer 2 1.29 (1.06, 1.58) 67.8 1 1.11 (0.84, 1.46) NA

Pancreas cancer 1 0.96 (0.91, 1.02) NA 1 1.05 (1.04, 1.28) NA
Larynx cancer 1 1.09 (0.66, 1.79) NA 1 1.27 (1.06, 1.54) NA

Stomach cancer 2 1.17 (0.83, 1.65) 73.4 1 0.99 (0.84, 1.16) NA
Colorectal cancer 2 1.08 (1.00, 1.17) 0.0 1 0.87 (0.71, 1.07) NA

Bladder cancer 1 1.32 (1.07, 1.60) NA 1 1.17 (0.88, 1.57) NA
Kidney cancer 1 1.35 (1.07, 1.72) NA 1 1.03 (0.84, 1.26) NA
Stage of cancer

Localized 3 1.81 (1.63, 2.01) 74.0 2 1.20 (1.12, 1.28) 45.1
Regional 3 1.47 (1.36, 1.59) 55.2 2 1.12 (1.11, 1.13) 0.0

Metastasis 3 1.17 (1.05, 1.30) 71.2 2 1.08 (1.02, 1.14) 49.3
No. of participants

Small (<100,000) [15–18,22,24,25,27,32,33,35,36,39,40] 5 1.22 (1.15, 1.30) 0.0 6 1.05 (0.97, 1.13) 77.0
Large (>100,000) [7,19–21,23,28–31,34,37,38,41–43] 14 1.17 (1.10, 1.24) 98.1 6 1.11 (1.02, 1.21) 92.8

Methodological quality
Low quality (<8) 9 1.14 (1.06, 1.22) 98.1 4 1.09 (1.08, 1.10) 0.0
High quality (≥8) 10 1.20 (1.08, 1.33) 93.5 8 1.10 (1.01, 1.21) 94.2

Smoking status
Non-smokers 3 1.14 (1.01, 1.28) 0.0 1 1.66 (1.22, 2.28) NA
Ex-smokers 3 1.47 (1.17, 1.84) 51.4

Current smokers 2 1.33 (1.20, 1.49) 0.0

NA, not applicable; PM, particulate matter; RR, relative risk; WHO, world health organization.
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4. Discussion

Our meta-analysis of 30 cohort studies involved >1.0 million cases in 14 countries and hence
provided sufficient statistical power. It showed that ambient air pollution significantly correlated with
cancer mortality in analyses including all participants, as well as those stratified for various factors.
Among the pollutants examined, PM2.5, PM10, or NO2 were most strongly associated with cancer
mortality, whereas O3 was not significantly associated.

The deleterious effects of air pollution on survival were not limited to the lungs, but also included
non-lung organs, especially in cancer patients exposed to PM2.5. Evidence from several in vivo studies
suggests that particulate pollutants can travel to the liver, kidneys, and brain [44–46]. Our study
indicates that air pollution is more strongly linked to cancer mortality in early-stage patients than
those in later stages. Although many clinicians presume that the opposite is true, current research
shows that patients in earlier stages of cancer may require more education regarding air pollution
exposure prevention.

How air pollution increases cancer mortality rates is unclear, but two mechanisms have been
proposed. The first mechanism involves DNA damage due to oxidative stress. Reactive oxygen species
cause oxidative stress and are generated in response to PM [47]. Nitrogen pollutants can exacerbate
the effects of oxidative stress on the progression of breast, prostate, colorectal, cervical, and other
cancers [48]. Exposure to SO2 is extremely harmful, as it induces oxidative stress in many organs [49].
Undue oxidative stress in cancer cells may seriously affect survival outcomes by promoting cell
proliferation, genetic instability, and mutations [50]. In a prospective cohort study from the United
States that included 30,239 Caucasian and African-American participants, there was a significant
association between an oxidative stress and cancer mortality [51].

The second mechanism involves inflammation. In an in vitro study, inhaled gaseous and
particulate pollutants increased the production of proinflammatory cytokines such as interleukin
(IL)-6 and IL-8 [52]. In a cohort panel study conducted in the United States, exposure to NOx and PM
increased plasma IL-6 levels over a 12-week period [53]. The poor prognosis of gastric cancer and
non-Hodgkin’s lymphoma has been linked to excessive amounts of the proinflammatory cytokines
tumor necrosis factor and IL-1, respectively [54,55]. Furthermore, the production of tumor-associated
macrophages, which occurs during the inflammatory reaction, is a sign of an exacerbated cancer
state [56]. Thus, inflammation caused by exposure to air pollution may result in cancer mortality.

Unlike the other pollutants in our study, O3 did not significantly impact lung cancer and brain
cancer survival. Similarly, in the meta-analysis conducted by Atkinson et al. on lung cancer only [57],
there was no association between long-term exposure to O3 and lung cancer mortality (RR: 0.95; 95%
CI: 0.83–1.08; I2:: 55%). Nonetheless, evaluating this relationship is challenging. O3 is comprised of
a combination of noxious air elements termed the “photochemical cocktail”, and its mechanisms of
formation and destruction differ from those of other pollutants [58].

The key strengths of our meta-analysis are its inclusion of all cancer types, its separation of cancer
mortality from cancer incidence, and its coverage of more countries and cases than previous studies.
It also included more factors in its subgroup analyses than did the three previous meta-analyses that
assessed the association between air pollution and lung cancer risk [3–5]. Furthermore, unlike previous
studies, it examined the impact of air pollution on non-lung cancer mortality as well as lung cancer
mortality. Overall, it provided the most comprehensive information to date on the mortality risk of
cancer patients exposed to the main air pollutants.

The limitations of the current study include (1) no distinction between urban and rural areas;
(2) considerable heterogeneity as indicated by the Higgins I2 values; (3) no information about indoor air
pollution caused by heating, cooking, and passive smoking; (4) inclusion of only one or two studies in
most cancer subgroups (lung and breast cancers were the exceptions); and (5) no data on confounding
factors such as physical activity, X-ray testing, and radon exposure [59].
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5. Conclusions

Our data showing a robust association between air pollution and all-cancer mortality have
important implications for public health. This association applied to almost all of the pollutants
examined in the study and was strongest for particulate pollutants in the regions wherein their mean
concentrations were below standard levels. Similarly, a recent cohort study in the United States
with >60 million participants found that exposure to PM2.5 increased all-cause mortality rates at
concentrations below the present national limits [60]. Hence, rigorous environmental health policies
are needed to keep air pollution levels, and consequently cancer mortality rates, as low as possible.
Additionally, our results show that different types of PM increase the mortality rates for different
types of non-lung cancers (PM2.5: liver, colorectal, bladder, and kidney; PM10: pancreas and larynx);
hence, they may act via different mechanisms. Future research should focus on the association between
certain types of pollutants and mortality from organ- and type-specific cancers.
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Appendix A

Table A1. Adjusted variables of each study.

Study Adjusted Variables

Abbey et al. (1999) [15] Education, smoking status, and alcohol use

Hoek et al. (2002) [16] Age, sex, smoking status, education, occupation, SEP, BMI, alcohol consumption, total fat intake,
vegetable consumption, and fruit consumption

Nafstad et al. (2004) [17] Age, education, smoking habits, leisure-time physical activity, occupation, and risk groups for
cardiovascular diseases

Filleul et al. (2005) [18] Age; sex; smoking habits; educational level; BMI; and occupational exposure to dust, gases,
and fumes

Boldo et al. (2006) [19] Not available

Brunekreef et al. (2009) [20] Age, sex, and smoking status

McKean-Cowdin et al. (2009) [21] Age, sex, race, education level, number of colds in the past year, family history of brain cancer,
previous radium treatment, number of head/neck X-rays, and use of vitamins

Cao et al. (2010) [22] Age, sex, BMI, physical activity, education, smoking status, age at starting to smoke, years smoked,
cigarettes per day, alcohol intake, and hypertension

Poppe CA et al. (2011) [23] Age, sex, smoking status, education, marital status, BMI, alcohol consumption, occupational
exposures, and diet

Hart et al. (2011) [24] Age, calendar year, decade of hire, region of residence, race, ethnicity, census region of residence,
the healthy worker survivor effect, and years of work in each of the job groups

Katanoda et al. (2011) [25]
Age, sex, smoking status, pack-years, smoking status of family members living together, daily green
and yellow vegetable consumption, daily fruit consumption, and use of indoor charcoal or briquette
braziers for heating

Lipsett et al. (2011) [26]

Age, race, smoking status, total pack-years, BMI, marital status, alcohol consumption, second-hand
smoke exposure at home, dietary fat, dietary fiber, dietary calories, physical activity, menopausal
status, hormone therapy use, family history of MI or stroke, blood pressure medication, aspirin use,
and contextual variables (income, income inequality, education, population size, racial composition,
and unemployment)

Lepeule et al. (2012) [27] Age, sex, time in the study, BMI, education, and smoking history

Hales et al. (2013) [28] Age, sex, ethnicity, social deprivation, income, education, smoking history, and ambient temperature

Hu et al. (2013) [29] Age, race, marital status, cancer stage, year diagnosed, education, income, and accessibility to
medical resources

Carey et al. (2013) [30] Age, sex, smoking, BMI, and education
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Table A1. Cont.

Study Adjusted Variables

Cesaroni et al. (2013) [31] Sex, marital status, place of birth, education, occupation, and SEP

Heinrich et al. (2013) [32] Educational level and smoking history

Yorifuji et al. (2013) [33] Age, sex, smoking category, BMI, hypertension, diabetes, financial capability, and area mean income

Fischer et al. (2015) [34] Age, sex, marital status, region of origin, standardized household income, and neighborhood
social status

Ancona et al. (2015) [35] Age, gender, education, occupation, civil status, area-based SEP index, and outdoor nitrogen
dioxide (NO2) concentration

Chen et al. (2016) [36] Age, gender, marital status, education, BMI, smoking status, alcohol consumption, occupational
exposures, and leisure exercise

Eckel et al. (2016) [37] Age, sex, race/ethnicity, marital status, education index, SEP, rural-urban commuting area, distance
to primary interstate highway, histology at diagnosis, year of diagnosis, and initial treatment

Weichenthal et al. (2016) [38] Age, sex, aboriginal ancestry, visible minority status, immigrant status, marital status, highest level
of education, employment status, occupational classification, and household income

Wong et al. (2016) [39] Age, gender, BMI, smoking status, exercise frequency, education level, and personal
monthly expenditure

Cohen et al. (2016) [40] Age, sex, ethnicity, SEP, obesity at baseline, and smoking status

Guo et al. (2017) [41] None

Pun et al. (2017) [42] Race, smoking, diabetes, BMI, alcohol consumption, asthma, and median income

Deng et al. (2017) [43] Age, sex, race/ethnicity, marital status, SEP, RUCA, distance to primary interstate highway, month
and year of diagnosis, and initial treatments

Turner et al. (2017) [7]
Age, race/ethnicity, gender, education, marital status, BMI, smoking status, passive smoking,
vegetable/fruit/fiber consumption, fat consumption, alcohol consumption, industrial exposures,
occupation dirtiness index, and 1990 ecological covariates

Abbreviations: BMI, body mass index; MI, myocardial infarction; RUCA, rural–urban commuting area; SEP,
socio-economic position.

Table A2. Assessment of publication bias using Begg’s funnel plot and Egger’s test.

Air Pollutants p-Value from Egger’s Test Begg’s Funnel Plot

PM2.5 0.40 Symmetry
PM10 0.68 Symmetry
NO2 0.41 Symmetry

Abbreviations: NO2, nitrogen dioxide; PM, particulate matter.
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