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ABSTRACT 

 

Application of metabolomics in prediction of lymph node metastasis in papillary 

thyroid carcinoma 

 

Ji Won Seo 

 

Department of Medicine 

The Graduate School, Yonsei University 

 

(Directed by Professor Jin Young Kwak) 

 

 

Purpose: The aim of this study was to find useful metabolites to predict lymph node 

(LN) metastasis in patients with papillary thyroid cancer (PTC) through a 

metabolomics approach and investigate the potential role of metabolites as a novel 

prognostic marker. 

 

Materials and methods: Fifty-two consecutive patients (median age: 41.5 years, range 

15-74 years) were enrolled who underwent total thyroidectomy and central LN 
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dissection with or without lateral LN dissection in Severance Hospital between 

October 2013 and July 2015. The study specimens were provided by the Severance 

Hospital Gene Bank, and consisted of PTC from each patient. The specimens were 

prepared for proton nuclear magnetic resonance (1H-NMR) spectroscopy. Spectral 

data by 1H-NMR spectroscopy were acquired, processed, and analyzed. Patients were 

grouped in three ways, according to the presence of LN metastasis, central LN 

metastasis and lateral LN metastasis. Chi-square test and the student t-test were used 

to analyze categorical variables and continuous variables, respectively. The Mann-

Whitney U test was used for univariate analysis of metabolites. Orthogonal 

projections to latent structure discriminant analysis (OPLS-DA) was used for 

multivariate analysis to discriminate metabolic differences between the two groups. 

 

Results: Among 52 patients, 32 had central LN metastasis and 19 had lateral LN 

metastasis. No clinical or histopathological characteristic was significantly different 

for all comparisons. On univariate analysis, no metabolite showed significant 

difference for all comparisons. On multivariate analysis, OPLS-DA did not 

discriminate the presence and absence of LN metastasis. Lactate was found to be the 

most promising metabolite. 
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Conclusion: No metabolite could discriminate the presence of LN metastasis. 

However, lactate was found to be the most promising metabolite for discrimination. 

Further studies with larger sample sizes are needed to elucidate significant 

metabolites which can indicate the presence of LN metastasis in patients with PTC. 

 

 

 

 

 

 

 

 

 

 

----------------------------------------------------------------------------------------------- 

Key words : Papillary thyroid cancer, lymph node metastasis, metabolomics, 

proton nuclear magnetic resonance spectroscopy  
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Application of metabolomics in prediction of lymph node metastasis in papillary 
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Ji Won Seo 

 

Department of Medicine 

The Graduate School, Yonsei University 

 

(Directed by Professor Jin Young Kwak) 

 

 

 

I. INTRODUCTION 

 The incidence of thyroid cancer has increased worldwide during the last few 

decades and it is now the most common endocrine malignancy 1,2. Papillary thyroid 

cancer (PTC) is the most common histologic type, accounting for 85% to 90% of 

thyroid malignancies 3. Most patients with PTC have excellent prognosis, with the 10-

year survival rate being about 90% 3,4. However, some patient subsets suffer from 

more aggressive PTC characterized by recurrent disease, lymph node (LN) or distant 

metastasis 5. These patients may need more extensive surgery including total 

thyroidectomy with therapeutic or prophylactic LN dissection and postoperative 

radioactive iodine (RAI) ablation 6. Therefore, being able to predict risk is important 
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and would help stratify patients for proper treatment 7.  

Several prognostic factors have been discovered including patient age at 

diagnosis, size and extent of the primary tumor, cervical LN metastasis, and 

occurrence of distant metastasis 8,9. Of these prognostic factors, it is LN metastasis 

that is associated with an increased incidence of recurrence 10. The incidence of 

central and lateral LN metastasis has been reported about 50-60% and 4.1-42.6%, 

respectively depending on the study 11-13. Ultrasound plays main role in detection and 

characterization of cervical LN and ultrasound-guided fine-needle aspiration biopsy 

(FNAB) is the main diagnostic tool for the diagnosis of metastatic cervical LN in 

patient with PTC 14. However even under ultrasound guidance, approximately 5-10% 

of the FNAB results of cervical LN might be nondiagnostic and 6-8% might be false 

negative 15.  

Advances in genetic research and molecular biology have discovered several 

genetic changes behind thyroid cancer 16. The RAS mutation, RET/PTC 

rearrangement, and PAX8-peroxiome proliferator-activated receptor γ1 fusion are 

important oncogenic genetic alterations in thyroid cancer 17-19. Also, the BRAFV600E 

mutation results from a single thymine-to-adenosine transversion which is a high 

specific marker for PTC 7,20. The BRAFV600E mutation is useful when diagnosing PTC, 

especially in cases in which the cytologic results only provide suspicious results for 

PTC 21. However, the association between the BRAFV600E mutation and LN metastasis 

remains under question 22-24.  
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Metabolomics is a new field in biological science, which uses analytic tools 

in conjunction with pattern recognition approaches and bioinformatics 25. The 

metabolome is the final downstream product of gene expression; thus, it reflects 

changes in the transcriptome and the proteome 26. Alterations in metabolic processes 

occur during carcinoma development and progression, along with  histologic and 

cytologic changes 27. Understanding the  biochemistry of cancer may enable the 

development of powerful diagnostic tools and the identification of new biomarkers 28. 

Several studies have proven that the metabolomics approach allows the 

characterization of different types of malignancies in other organs 29-31.  For example, 

the presence of 2-hydroxyglutarate which is a metabolite detected by magnetic 

resonance spectroscopy (MRS) correlated with mutations in isocitrate dehydrogenase 

1 or 2 (IDH1, 2) in the patients with gliomas of brain 32. IDH1 or IDH2 mutation is a 

significant marker of positive prognosis and chemosensitivity 33. In the patients with 

breast cancer, the combined magnetic resonance (MR) protocol of dynamic contrast-

enhanced MR imaging and proton nuclear magnetic resonance (1H-NMR) 

spectroscopy improved sensitivity and specificity in the diagnosis of breast cancer 30. 

Several studies have applied metabolomics to PTC 34,35. To our knowledge, 

little is known about the association between metabolomics and the presence of LN 

metastasis in PTC. The aim of our study was to investigate metabolic differences 

according to the presence or absence of LN metastasis in patients with PTC in the 

search for a potential novel prognostic marker. 
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II. MATERIALS AND METHODS 

 This study was approved by the Institutional Review Board of Severance 

Hospital, Yonsei University College of Medicine in Seoul, Korea.  

 

1. Patients and sample collection 

 Patients who underwent total thyroidectomy and central LN dissection with 

or without lateral LN dissection in Severance Hospital between October 2013 and 

July 2015 were enrolled in this study. The specimens for this study were provided by 

the Severance Hospital Gene Bank, and consisted of conventional PTC from each 

patient. All samples were obtained with informed consent under institutional review 

board-approved protocols. Samples were snap-frozen in liquid nitrogen immediately 

after surgery and then stored at −70°C. All of the data were securely protected while 

being made available only to investigators and analyzed anonymously. 

 

2. Preparation of tissue extracts 

 Frozen thyroid samples were finely ground in a mortar under liquid nitrogen. 

Percholoric acid (4%; 1:4, w/v) was added to each sample, followed by centrifugation 

at 20,000 ɡ for 15 min. The supernatant was transferred to a new tube where 

chloroform/tri-n-octylamine (78%/22%; v/v) was added in a 1:2 volumetric ratio to 

increase the pH to ~6. The samples were centrifuged at 20,000 ɡ for 15 min. The 

aqueous phase was removed and transferred to a microfuge tube, and then lyophilized. 
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200L of deuterium oxide (99.96%; Cambridge Isotope Laboratories) was added to 

each sample and the pH was adjusted to 7.0 with 0.2-1L of 1M sodium deuteroxide 

(99.5%; Cambridge Isotope Laboratories). The pH-neutral samples were then 

centrifuged at 15,000 ɡ for 1 min., and the supernatant was then removed and placed 

in a 3-mm NMR tube for subsequent NMR analysis.  

 

3. Proton NMR spectroscopy 

 1H-NMR spectroscopy was performed on a Bruker Advanc spectrometer 

(Bruker Instruments, Billerica, MA) operating at a proton NMR frequency of 700.40 

MHz (16.45 Tesla). A one-dimensional CPMG (Carr-Purcell-Meiboom-Gill) pulse 

sequence was used to obtain thyroid metabolite profiles with a 90 degree pulse length 

of about 7 µs. The water signal was suppressed using a selective excitation pulse 

followed by a pulsed field gradient in the z-axis. The spectral acquisition parameters 

were as follows: 16K complex data points, 8417 Hz sweep width, 2.0 s acquisition 

time, 2.0 s relaxation delay, 1.5 s presaturation time (5.5 s total time of repetition 

(TR)), 1.0 ms interpulse delay (2 ms time of echo (TE)), 32 number of transients, 20.2 

receiver gain and total acquisition time of 5 min. An experimental line broadening 

function of 0.2 Hz and automatic zero-filing of a factor of 2 was applied to each FID 

prior to Fourier transformation. 1H-NMR spectra were manually corrected for phase 

and baseline distortion using TOPSPIN 3.5 (Bruker Instruments, Billerica, MA) and 

referenced to the trimethylsilyl propionic acid (TSP) signal (0.0 ppm).   
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4. Data and statistical analysis 

 All 1H-NMR spectra were processed and analyzed using Chenomx NMR 

Suite 7.7 software (Chenomx, Edomonton, Canada). Post-processing consisted of 

Fourier transformation, phasing and baseline correction. Chemical shifts were 

referenced to TSP at 0.0 ppm. Spectral regions from 0.5 to 9.0 ppm [Isoleucine (Iso), 

Leucine (Leu),  Valine (Val), Threonine (Thr), Lactate (Lac), Alanine (Ala), Uracil 

(Ura), Lysine (Lys), Glutamate (Glu), Methionine (Met), Aspartate (Asp), Free 

choline (Cho), Phosphocholine (PC), Glycerophosphocholine (GPC), Taurine (Tau), 

Myo-inositol (m-Ins), Glycine (Gly), Phosphoethanolamine (PE), Inosine (Ino), 

Tyrosine (Tyr), Hypoxanthine (Hyp), Formate (For), Succinate (Suc), and Uridine 

(Uri)] were selected for quantification. The peak amplitudes of the metabolites were 

measured by fitting a Voigt (e.g., Gauss+Lorentz) line-shape function. Metabolites 

[mM] were quantified by comparing the integrated TSP signal to the metabolite signal.  

Patients were grouped into two groups in three different ways, according to 

the following factors: the presence or absence of LN metastasis, central LN metastasis, 

and lateral LN metastasis. Normality was assessed using the Kolmogorov-Smirnov 

tests. Chi-square analysis was used to analyze categorical variables and the student t-

test was used to analyze continuous variables. 1H-NMR spectroscopic data were 

analyzed using the Mann-Whitney U test because the results of the Kolmogorov-

Smirnov test were statistically significant (p-value <0.05), which indicated that the 

data did not follow a normal distribution.  
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For multivariate analysis of spectral data, Matlab R2012a (MathWorks, 

Natick, MA), SIMCA-P version-13.0 software (Umetrics, Sweden), and Excel 

(Microsoft, Seattle, WA) programs were used. The spectral data were normalized to 

the total spectral area. The spectral region between 0.5 and 10 ppm was divided into 

bins of 0.01 ppm width. The water region from 4.6 ppm to 4.9 ppm was excluded 

prior to the analysis. The binned data were aligned using the icoshift algorithm in 

Matlab 36, and were converted to the SIMCA-P format in Excel. Pareto scaling was 

used to preprocess the data. The intensity of each metabolite was normalized to the 

total intensity before statistical analysis. Orthogonal projections to latent structure 

discriminant analysis (OPLS-DA) is one of the popular methods for multivariate 

analysis in metbolomics 37. Before OPLS-DA was performed, data were variable 

stability (VAST) scaled, with the standard deviation and the variation coefficients of 

the metabolites as scaling factors 38. OPLS-DA were performed to maximize the 

separation between the two groups of interest. Statistical analyses were conducted 

using statistical software (R, Statistical Package version 3.3.3; R Foundation for 

Statistical Computing, Vienna, Austria; www.R-project.org). The muma package was 

used to perform OPLS-DA 39. 

 

III. RESULTS 

 Tissue samples from 52 patients were available during the study period. The 

median age of the patients was 41.5 years (range 15-74 years). Twelve patients were 

http://www.r-project.org/
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male and 40 were female. The median tumor size was 23 mm (range 13-40 mm). 

Among the patients, 32 had central LN metastasis and 19 had lateral LN metastasis. 

All patients with lateral LN metastasis had central LN metastasis as well, thus the 

results of comparison in two ways; according to the presence or absence of LN 

metastasis and central LN metastasis were identical. Therefore the comparisons were 

analyzed in two ways according to the presence or absence of LN metastasis or lateral 

LN metastasis. Four patients had distant metastasis.  

No clinical or histopathological characteristic was significantly different for all 

comparisons when the patients were classified into two groups according to the 

presence or absence of LN metastasis or the presence or absence of lateral LN 

metastasis. Patient demographics and histopathological characteristics are shown in 

Table 1. 
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Table 1. Patient demographics and clinicopathologic characteristics 

Variable Total 

¶LN metastasis P-

value 

Lateral LN 

metastasis 
P-

value 

(+) (-) (+) (-) 

Number of patients 52 
32 

(61.5%) 

20  

(38.5 %) 
 

19  

(36.5 %) 

33 

(63.5%) 
 

Age 
41.5 

(15-74) 

37 

(15-66) 

42.5 

(16-74) 
0.328 

35 

(15-60) 

43 

(16-74) 
0.139 

Gender       

Male 
12 

(23.1%) 
7 5 0.795 6 13 0.270 

Female 
40 

(76.9%) 
25 15  6 27 

Primary tumor size 

(mm) 

23 

(13-40) 

23 

(13-40) 

23 

(14-37) 
0.563 

20 

(13-40) 

23 

(14-37) 
0.895 

Distant metastasis 
4 

(7.7%) 
4 0 0.100 4 0 0.014 

* Note – Unless otherwise specified, the data are the medians (range). 

¶LN, lymph node. 
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1H-NMR spectroscopy quantified 24 metabolites in normal and PTC tissues. 

On univariate analysis, no metabolite showed significant difference between two 

groups classified according to the presence or absence of LN metastasis or the 

presence or absence of lateral LN metastasis (Table 2). 

 

Table 2. Comparison of metabolites obtained by 1H-NMR spectroscopy between 

patient groups classified by the presence of lymph node metastasis and lateral lymph 

node metastasis 

 

Metabolite 

concentration  

(mM) 

¶LN metastasis 

P-value 

Lateral LN metastasis 

P-value 
(+) (-) (+) (-) 

Number of patients 32 20  19 33  

Isoleucine 
0.02 

(0.01-0.47) 

0.03 

(0.00-0.47) 
0.821 

0.02 

(0.01-0.16) 

0.02 

(0.00-0.47) 
0.924 

Leucine 
0.05 

(0.01-0.16) 

0.06 

(0.01-1.02) 
0.880 

0.05 

(0.01-0.41) 

0.05 

(0.01-1.02) 
0.761 

Valine 
0.06 

(0.02-0.34) 

0.06 

(0.02-0.79) 
0.940 

0.05 

(0.02-0.34) 

0.06 

(0.02-0.80) 
0.642 

Lactate 
1.70 

(0.61-10.51) 

1.57 

(0.39-7.11) 
0.328 

1.66 

(0.61-10.51) 

1.70 

(0.39-7.11) 
0.500 
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Threonine 
0.07 

(0.04-2.97) 

0.08 

(0.03-0.97) 
0.873 

0.07 

(0.04-2.97) 

0.08 

(0.03-0.97) 
0.518 

Alanine 
0.15 

(0.04-0.58) 

0.14 

(0.03-1.50) 
0.940 

0.13 

(0.04-0.58) 

0.16 

(0.03-1.50) 
0.635 

Uracil 
0.02 

(0.01-0.09) 

0.02 

(0.01-0.12) 
0.461 

0.03 

(0.01-0.09) 

0.16 

(0.01-0.12) 
0.218 

Lysine 
0.07 

(0.02-0.56) 

0.10 

(0.01-1.15) 
0.918 

0.12 

(0.02-0.56) 

0.06 

(0.01-1.15) 
0.337 

Glutamate 
0.25 

(0.08-2.51) 

0.29 

(0.04-2.53) 
0.665 

0.25 

(0.10-0.56) 

0.25 

(0.04-2.53) 
0.601 

Methionine 
0.04 

(0.01-0.16) 

0.04 

(0.01-0.25) 
0.397 

0.04 

(0.01-0.16) 

0.04 

(0.01-0.25) 
0.655 

Aspartate 
0.07 

(0.02-0.52) 

0.06 

(0.01-0.67) 
0.288 

0.07 

(0.02-0.52) 

0.07 

(0.01-0.67) 
0.464 

Choline 
0.03 

(0.01-0.22) 

0.03 

(0.01-0.19) 
0.714 

0.03 

(0.01-0.22) 

0.03 

(0.01-0.19) 
0.635 

Phosphocholine 
0.19 

(0.04-1.04) 

0.20 

(0.05-0.72) 
0.925 

0.21 

(0.04-0.99) 

0.19 

(0.04-1.04) 
0.655 

Glycerophosphocholin

e 

0.06 

(0.02-616.00) 

0.07 

(0.02-0.25) 
0.880 

0.06 

(0.03-0.41) 

0.06 

(0.02-616.0) 
0.842 

Taurine 
0.55 

(0.16-1.58) 

0.50 

(0.08-2.39) 
0.763 

0.52 

(0.24-1.58) 

0.50 

(0.08-2.39) 
0.512 

Myo-inositol 1.21 1.40 0.652 1.14 1.25 0.798 
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(0.27-4.71) (0.24-4.25) (0.27-4.71) (0.24-4.25) 

Glycine 
0.14 

(0.04-0.98) 

0.14 

(0.04-2.06) 
0.585 

0.11 

(0.04-0.98) 

0.15 

(0.04-2.06) 
0.992 

Phosphoethanolamine 
0.35 

(0.05-0.1.88) 

0.54 

(0.11-1.61) 
0.560 

0.31 

(0.11-1.88) 

0.44 

(0.05-1.61) 
0.992 

Inosine 
0.02 

(0.00-0.13) 

0.02 

(0.00-0.12) 
0.301 

0.02 

(0.00-0.13) 

0.02 

(0.00-0.13) 
0.909 

Tyrosine 
0.02 

(0.00-0.16) 

0.02 

(0.00-0.44) 
0.893 

0.02 

(0.01-0.16) 

0.02 

(0.00-0.44) 
0.270 

Hypoxanthine 
0.02 

(0.00-0.16) 

0.04 

(0.01-0.51) 
0.293 

0.03 

(0.01-0.16) 

0.02 

(0.00-0.51) 
0.585 

Formate 0.20 0.13 0.185 0.19 0.15 0.275 

(0.01-0.89) (0.00-0.48)  (0.05-0.89) (0.00-0.48) 

Succinate 
0.02 

(0.01-0.76) 

0.03 

(0.00-0.52) 
0.297 

0.02 

(0.01-0.76) 

0.02 

(0.00-0.52) 
0.790 

Uridine 
0.01 

(0.00-0.02) 

0.01 

(0.00-0.02) 
0.917 

0.01 

(0.00-0.02) 

0.01 

(0.00-0.23) 
0.551 

* Note – Unless otherwise specified, the data are the medians (range). 

¶LN, lymph node. 
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OPLS-DA was performed to separate patients into two groups for each 

comparison. OPLS-DA score plots did not separate the two groups clearly for all three 

comparisons. When patients were classified according to the presence or absence of 

LN metastasis and central LN metastasis, the OPLS-DA score plot exhibited 

nonseparation between the two groups (A in Fig 1). The corresponding OPLS-DA 

loading S-plot showed that lactate which was located in the left lower section of the 

S-plot was the most important metabolite to discriminate two groups (B in Fig 1). 

When patients were classified according to the presence or absence of lateral LN 

metastasis, the OPLS-DA score plot exhibited nonseparation between the two groups 

(A in Fig 2) and the corresponding OPLS-DA loading S-plot showed that lactate in 

the left lower section of the S-plot and myo-inositol in the right upper section were 

the most important metabolites to discriminate two groups divided according to 

presence or absence of lateral LN metastasis (B in Fig 2). 
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Figure 1. (A) OPLS-DA score plot for lymph node metastasis. Red dots represent 

patients with lymph node metastasis and black dots represents patient without lymph 

node metastasis. The x-axis is the first component from OPLS-DA and the y-axis is 

the corresponding orthogonal score. (B) OPLS-DA loading S-plot for lymph node 

metastasis. The x-axis is the covariation and the y-axis is the corresponding 

orthogonal score. The metabolites situated at the upper right or lower left sections are 

statistically relevant and represent possible discriminating variables. 

  

A B 
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Figure 2. (A) OPLS-DA score plot for lateral lymph node metastasis. Red dots 

represent patients with lateral lymph node metastasis and black dots represents patient 

without lateral lymph node metastasis. The x-axis is the first component from OPLS-

DA and the y-axis is the corresponding orthogonal score. (B) OPLS-DA loading S-

plot for lateral lymph node metastasis. The x-axis is the covariation and the y-axis is 

the corresponding orthogonal score. The metabolites situated at the upper right or 

lower left sections are statistically relevant and represent possible discriminating 

variables.  
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IV. DISCUSSION 

 The aim of this study was to explore metabolic differences in PTC according 

to the presence or absence of LN metastasis. We found that no metabolite could 

discriminate the two groups. However, lactate was found to be the most promising 

metabolite for discrimination.  

 Metabolomics is the analytic study of the metabolome, which differs in 

cancer cells and represents alteration of metabolic processes, and understanding the 

metabolome will allow deeper understanding of carcinoma development 27. Several 

previous studies have applied metabolomics to PTC. In earlier times, studies were 

conducted to identify metabolic differences between thyroid neoplasms and normal 

thyroid tissue 34. Normal thyroid tissue presented a higher level of lipids as well as 

lower levels of alanine, lactate and choline compared to neoplastic tissue 34. 

Subsequent studies focused on discriminating benign and malignant thyroid 

neoplasms such as follicular adenoma or goiter nodules 40,41. Recent studies further 

revealed that NMR spectroscopy could be applied to percutaneous FNA samples 42,43. 

In these studies, malignant thyroid nodules were found to show higher relative 

concentrations of lactate and choline 43. The results indicated that the NMR spectra of 

FNA cytology samples were similar to those of surgical specimens; hence, it had the 

potential to detect and classify thyroid tumors before surgery 42. Furthermore, there 

was an attempt to discriminate nodular thyroid disease by analyzing urine and serum 

using 1H-NMR spectroscopy 44. In this study, metabolomics could discriminate 
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healthy controls from non-neoplastic nodules, follicular adenoma and PTC 44. 

Increased lactate levels were observed in the blood serum of patients with nodular 

thyroid disease compared to healthy controls 44. 

 To our knowledge, this was the first research to discriminate the presence of 

metastatic LN in patients with PTC using 1H-NMR spectroscopy. Although our results 

failed to discriminate patients with and without LN metastasis, our data suggested the 

possibility of lactate being the most promising metabolite to predict LN metastasis. 

Lactate has been previously reported to increase in cancer 45. Lactate reflects two 

important characteristics of biological changes that occur in tumor metabolism. First, 

tumor hypoxia shifts cellular energy production toward glycolysis from which lactate 

is generated as a by-product 45. Second, it reflects aerobic glycolysis which tumors 

exhibit even if oxygen is present 46. The importance of lactate is that it may indicate a 

more aggressive tumor phenotype that expresses LN metastasis in cancers of other 

organs 45,47. In this study, lactate stood out as the most promising metabolite to 

represent the group with LN metastasis 47. 

 There are some limitations to this study. First, it is a retrospective study. 

Second, we performed ex vivo spectroscopy using surgical specimens. In vivo 1H-

NMR spectroscopy is the most optimal diagnostic method for the preoperative 

diagnosis of thyroid nodules and prediction of prognosis. However, as performing in 

vivo 1H-NMR spectroscopy can be complicated by various issues such as thyroid 

movement during respiration or shimming difficulty due to large susceptibility 
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differences between the neck and air in trachea, we decided to perform ex vivo 1H-

NMR spectroscopy 48. Third, our study was done with a small sample size and the 

proportion of patients with LN metastasis was relatively high which may explain the 

failure to discriminate LN metastasis. 

 

V. CONCLUSION 

Our data suggest that lactate may be used to predict LN metastasis and prognosis in 

patients with PTC. Further studies with larger sample sizes are needed to elucidate 

significant metabolites which can indicate the presence of LN metastasis in patients 

with PTC.  
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ABSTRACT(IN KOREAN) 

 

대사체학을 이용한 갑상선 유두암의 림프절 전이 예측 

 

< 지도교수 곽 진 영 > 

 

연세대학교 대학원 의학과 

 

서 지 원 

 

연구목적: 갑상선 유두암 환자에서 대사체학을 이용하여 림프절 전이를 예

측할 수 있는 대사체를 발견한다. 또한 이 대사체의 새로운 예후 예측인자

로서 가능성을 평가한다. 

연구방법: 2013년 10월부터 2015년 7월까지 세브란스 병원에서 갑상선 

전절제술과 중앙 경부 림프절 절제술을 받은 환자 52명을 대상으로 하였

다. 이중 일부 환자는 측부 경부 림프절 절제술을 같이 시행하였다. 연구 

검체는 세브란스 병원 유전자 은행에서 각 환자의 갑상선 유두암 검체를 

제공 받았다.  검체는 전처치를 한 후 양성자 핵자기공명 분광법 (proton 

nuclear magnetic resonance spectroscopy) 을 시행하였다. 환자는 경부 림프절 

전이 유무, 중앙 경부 림프절 전이 유무, 그리고 측부 경부 림프절 전이 유

무에 따라 두 군으로 나누어 각각 비교하였다. 범주형 자료는 카이제곱 검

정, 연속형 자료는 독립표본 T 검정으로 비교하였다. 각 군의 대사체 값 

비교는 Mann-Whitney U test 로 비교하였다. 두 군 사이의 다변수 분석

은 orthogonal projections to latent structure discriminant analysis (OPLS-DA) 로 

분석하였다. 
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연구결과: 52명 중 32명이 중앙 경부 림프절 전이가 있었고 19명은 측부 

경부 림프절 전이가 있었다. 세가지 방법으로 나누어 비교한 모든 경우에

서 유의하게 차이를 보이는 임상적 또는 조직학적 특성은 없었다. 단변수 

분석에서 두 군 사이에 유의하게 차이를 보이는 대사체는 없었다. 다변수 

분석에서 OPLS-DA 로 두 군을 구별하지 못하였다. 대사체 중에는 lactate 

가 가장 중요한 대사체로 밝혀졌다. 

결론: 어떤 대사체도 경부 림프절 전이를 예측할 수 없었다. 그러나 

lactate 가 대사체 중 가장 중요한 대사체임이 밝혀졌다. 앞으로 더 많은 

환자 군을 대상으로 연구하여 경부 림프절 전이를 예측할 수 있는 대사체

를 발견하기 위한 연구가 필요할 것으로 보인다. 
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