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Abstract

 

Novel Methodology for Coronary Artery Disease Evaluation: 

From a New Imaging Technique to Deep Learning Based Quantification 

 

Youngtaek Hong 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

(Directed by Professor Hyuk-Jae Chang) 

 

Cardiovascular disease remains the leading cause of mortality in the world. Coronary 

computed tomographic angiography (CTA) has emerged as a reliable noninvasive modality 

for the diagnosis of coronary artery disease (CAD). However, on-site evaluation of CAD 

is still a challenging problem. To solve this problem, this dissertation covers methods rang-

ing from a new imaging acquisition technique to deep learning based automatic quantifi-

cation. To obtain quality CTA, catheter-directed selective CTA (S-CTA) was developed in 

the preclinical model, and the clinical feasibility of S-CTA was validated in patients who 

had diagnosed CAD. S-CTA successfully produced an optimal luminal enhancement with 

an extremely low-dose of iodine. Automatic quantification was developed using 

convolutional neural networks (CNN). We successfully measured vascular minimal lumen 

area, diameter stenosis, and plaque volume with the proposed CNN model. When S-CTA 
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was used for automatic quantification, the proposed CNN successfully captured intrinsic 

features of the contrast-enhanced lumen and calcified plaque better than C-CTA. S-CTA 

can be understood as an intraprocedural CTA modality under the combined-system that 

incorporates the coronary angiography system and a 320-detector row CT scanner. S-CTA 

enables a strategic stepwise approach for coronary catheterization and on-site evaluation 

for coronary stenosis. 

Key words: cardiovascular disease, coronary angiography, multidetector com-

puted tomography, machine learning, segmentation 
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Ⅰ. Introduction 

1. Need for a new imaging technique 

The coronary arteries supply blood into and out of the cardiac muscle, and they 

are mainly composed of the left and right coronary arteries. Coronary artery disease re-

mains the leading cause of morbidity and mortality in the world. The multi-slice computed 

tomography scanners perform non-invasive imaging of the coronary artery. This approach, 

which is called coronary computed tomography angiography (CCTA), allows the visuali-

zation of the coronary lumen after intravenous injection of a contrast agent. CCTA has been 

established as the gold standard for the evaluation and treatment of coronary artery disease 

(CAD).1, 2 However, it can only provide a 2-dimensional luminographic evaluation. There 

are several imaging acquisition modalities for coronary artery disease diagnosis such as 

intravascular ultrasound (IVUS)3 and optical coherence tomography (OCT).4 These inva-

sive modalities have been adjunctively utilized for cross-sectional evaluation of the luminal 
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area, atherosclerotic plaque burden, and plaque characterization. This image information 

may be crucial for successful revascularization while minimizing the risk of complica-

tions.5 Despite their efficacies, these modalities have several inherent limitations including 

high costs and high procedural risk based on their invasive nature.6  

CCTA has grown into an attractive imaging modality for diagnosis of cardiovas-

cular disease over the last decade. This is owing to technological advances such as an in-

crease of detector rows and a reduction of gantry ration time of the computed tomography. 

These advantages allow non-invasive diagnosis of CAD and quantitative analysis of related 

clinical features such as luminal stenosis7, 8 morphology and vulnerability of atherosclerotic 

plaque.9, 10 In a quantitative comparative analysis of coronary artery lesions, it was found 

that minimal luminal area and area stenosis were not significantly different between CCTA 

and IVUS.11 Unlike IVUS and OCT, CCTA is a three-dimensional image. Therefore, it can 

be utilized for morphological analysis and computational simulation such as hemodynamic 

analysis. In addition, this anatomical and physiological information can be used for proce-

dural planning before coronary intervention. Despite these advantages, CCTA is not 

actively utilized during coronary artery catheterization. This is due to the lack of adequate 

access to the device, especially in cases where strategic stepwise approaches are needed for 

severe and complicated cases of CAD.12  
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2. Introduction of modality combined system 

A recently introduced combined system, incorporating the coronary angiography 

system (INFX-8000C, Toshiba Medical Systems Corporation, Otawara, Japan) and a 320-

detector row CT scanner (Aquilion ONE ViSION Edition), was shown to allow CTA 

scanning during coronary artery catheterization without the need to move the patient from 

the catheterization room to the CT room (Figure 1A, 1B). The purpose of this study is to 

develop a CCTA imaging protocol that can be applied to patients who are lying on the table 

for coronary artery intervention. Using the engaged guiding catheter for the intervention, 

the contrast medium can be directly injected into the target artery (Figure 1C). In this cath-

eter-directed protocol, a coronary artery can be selectively imaged and then analyzed for 

quantitative measurement without further invasive manipulation such as IVUS or OCT. 

Therefore, this approach is expected to provide considerable and improved options for 

comprehensive CAD evaluation. Furthermore, it is expected that this technology will allow 

a significant reduction in the contrast dose required to perform comprehensive CAD eval-

uation. For a comprehensive evaluation of CCTA, accurate and elaborate quantification is 

a prerequisite. The importance of accurate quantification of atherosclerotic plaque in coro-

nary arteries has been demonstrated by numerous invasive studies.13, 14 The software re-

quired for CCTA analysis has recently been introduced to provide accurate assessment for 

plaque volume, plaque burden, and characterization in a semi- or fully automated manner.15 

However, these software require sophisticated manual adjustment to obtain a clinically 

meaningful measurement. Although a significant amount of research has been done on the 
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quantification of atherosclerotic plaques, their performance is still not suitable for clinical 

utilization. Recent research on setting the analysis parameters in the dedicated software for 

the CCTA is aimed toward obtaining clinically meaningful quantification results.16  
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Figure 1 Schematic illustration (A) and actual image (B) of a novel cardiovascular inter-

ventional therapeutic CT system (CVIT-CT). This combined-modality approach, which 

incorporates the angiography system (INFX-8000C, Toshiba Medical Systems Corpora-

tion, Otawara, Japan) and a 320-detector row CT scanner (Aquilion ONE ViSION Edition) 

enables CT-scanning and angiography at the same site. (C) The diluted contrast medium 

can be selectively injected through the pre-engaged catheter during the CT scan. 
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3. Breakthrough in machine learning technique 

Various machine learning techniques have recently made extensive progress in 

addressing computer vision problems such as classification and segmentation. Machine 

learning (ML)—a discipline that enables computers to learn without being programmed 

through developed algorithms derived from data—has been applied for automated disease 

diagnosis.17-19 ML can be performed by a myriad of methods and is ubiquitous in the fields 

of internet search, financial analyses, and fraud detection. In ML, a convolutional neural 

network (CNN) is a type of neural network that features huge improvements not only in 

whole-image classification but also in object detection.20-22 CNNs are also driving advances 

in medical image processing.23, 24 They showed the utility and efficacy of a CNN architec-

ture for semantic segmentation such as the labeling problem in medical imaging. In this 

study, a CNN based plaque quantification method that can produce clinically relevant re-

sults is proposed. 
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Ⅱ. Feasibility of Selective Catheter-Directed Coronary Computed Tomography 

Angiography Using Ultralow-Dose Intracoronary Contrast Injection in a 

Swine Model 

 

1. Material and Methods  

A. Animal preparation 

The Institutional Animal Care and Use Committee (IACUC, Yonsei University Health Sys-

tem at Seoul) approved this study protocol. Female swine (n=4, approximately 35–40kg) 

were acclimated in our animal facility (Department of Laboratory Animal Medicine, Med-

ical Research Center, Yonsei University College of Medicine) for 7–10 days before the CT 

examination was performed. On the day of the examination, each animal was medicated 

with an intramuscular mixture of enrofloxacin (5mg/kg) and atropine (0.05mg/kg) prior to 

any procedure. Sedation was induced by a combination of tiletamine (Zoletil 50, Virbac) 

5mg/kg and xylazine (Rompun, Bayer). Intravenous (IV) access was obtained via an ear 

vein with a 20-gauge catheter. The sedated animal was transported from the animal facility 

to angiography and CT combined-system for catheterization. Once placed on the device 

table, a mechanical ventilator maintained sedation with the oxygen level set at 1–2L/min. 

A mixture of 2% isoflurane (Forane) and 4 mg vecuronium bromide (0.10mg/kg) was in-

fused intravenously to obtain muscle relaxation. The right carotid artery was cut down with 

a guiding sheath to advance the catheter into the coronary artery. A guiding catheter (Cordis, 

JL 5-3.5) was engaged through the inserted sheath and selectively engaged in the right 

coronary artery (RCA) or left anterior descending (LAD) branch to perform the selective 



 

10 

 

CCTA study. Conventional coronary angiography was performed by manual injection of 5 

mL of contrast medium (320 mgI/mL iodixanol; Visipaque; GE Healthcare, Princeton, NJ) 

to confirm the appropriate catheter engagement in order to perform the angiogram. The 

heart rate was controlled with IV bolus of 40mg of esmolol to acquire a target heart rate 

range of 70-80 beats per minute from the initial range of 100-120 beats per minute. 
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B. CT protocols 

A 320-multidetector CT scanner (Aquilion ONE; Toshiba Medical Systems Corporation, 

Otawara, Japan) was employed to perform the CT scan. The ventilator was briefly stopped 

to achieve breath hold during CT scanning. The CT scan was performed using a cranial-to-

caudal acquisition with retrospective ECG-gating using the following parameters: collima-

tion and slice thickness, 0.5mm; reconstruction increment, 0.3 mm; tube rotation time, 0.35 

s; tube voltage, 120kVp; current, 550mA; and reconstruction field of view, 109–123mm. 

The data were reconstructed at 75% of the R-R length for all studies. If motion artifacts 

were present, a different cardiac phase was selected. The following modulation was applied 

to the reconstruction: kernel, FC43; reconstruction algorithm, adaptive iterative dose re-

duction (AIDR) 3D.  
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C. Selective CCTA study 

The contrast medium (Iomeron 400 mg/mL; Bracco, Milan, Italy) was diluted with normal 

saline to obtain optimal coronary enhancement (250–350 HU).25, 26 Contrast medium was 

adjusted to a concentration of 13.13mgI/mL in order to obtain 350HU with 120kVp of CT 

voltage. The diluted contrast medium was delivered with a dual-head power injector 

(Medrad Stellant Injector; Medrad, Indianola, PA) using the following protocols: protocol 

1 (P1), injection rate and volume of contrast medium, 2 mL/s, 20 mL; protocol 2 (P2), 3 

mL/s, 20 mL; protocol 3 (P3), 3 mL/s, 30mL; protocol 4 (P4), 4 mL/s, 20 mL; and protocol 

5 (P5), 4 mL/s, 30mL. These parameters are summarized in Table 1. A selective CCTA scan 

was simultaneously performed with injection of the contrast medium. A retrospective ECG-

gating was used without dose modulation. The scanning duration was fixed to 10s in order 

to blind the examiner to the injection rate and volumes for each of the examined protocols. 

Therefore, actual injection times were different from protocol to protocol (Figure 2). We 

acquired continuous volumes (average 6-7 sets of volumes) over the 10s scan duration. The 

interval between injections was 5 min, to allow elimination of contrast medium from the 

coronary artery and to ensure the animal condition was clinically stable. These protocols 

were separately performed in each LAD and RCA artery; thus, we could selectively obtain 

CT images of each of the coronary arteries individually. 
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Table 1 Protocols for Selective CCTA studies 

Protocol Voltage 

(kVp) 

Current 

(mA) 

Concentration of 

CM (mgI/mL) 

Volume 

(mL) 

Injection Rate 

(mL/s) 

Iodine 

Flux 

(mgI/s) 

P1 120 550 13.13 20 2 26.26 

P2 120 550 13.13 20 3 39.39 

P3 120 550 13.13 30 3 39.39 

P4 120 550 13.13 20 4 52.52 

P5 120 550 13.13 30 4 52.52 

CM = Contrast medium 
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Figure 2 The selective CCTA scan was simultaneously performed with the contrast injection. But 

the examined protocols (P1 – P5) have different injection duration. E.O.I - end of injection. 
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D. IV CCTA study 

The protocol for the IV CCTA study (PIV) was performed with 60mL contrast medium at 

5mL/s flow rate, and 30mL of saline flush at the same flow rate using a dual-head power 

injector. The timing-bolus technique was utilized by monitoring the contrast values in the 

ascending aorta. Serial monitoring for bolus tracking was simultaneously initiated with 

low-dose (120 kV, 20 mAs) contrast medium injections. When the values in the ascending 

aorta reached 180HU, the CT scan was started automatically with retrospective ECG-gating. 
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E. Image Analysis 

Selective CCTA images were transferred to a workstation (Vitrea fx6.4, Vital Images). A 

level III CT reader who was blinded to the selective CCTA protocols chose representative 

images for each of the protocols and selected the best phase to minimize motion artifacts 

as well as enhance the distal part of the arteries using 3D rendered images and maximum 

intensity projection images, when necessary. Representative images were transferred via 

portable USB drive to another standalone workstation (QAngio CT workstation, version 

2.0.2; Medis Medical Imaging Systems, Leiden, Netherlands) to delineate the luminal 

boundary and analyze luminal intensities.  

Measurements were made in the proximal, mid, and distal segments of the RCA and LAD, 

according to the Society of Cardiovascular Computed Tomography’s anatomy defini-

tions.27 The cross-sectional intensities were automatically recorded with 0.5-mm intervals. 

A transluminal attenuation gradient (TAG), defined as the linear regression coefficient be-

tween the luminal CT value and the length of the centerline of the measured coronary artery, 

was used.28 A representative example of TAG measurement is displayed in Figure 3. 
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Figure 3 Representative transluminal attenuation gradient (TAG) measurement images 

with the Q Angio-CT device. The TAG value was calculated automatically after the luminal 

attenuation measurement in the Q Angio-CT. The gradient of the linear fit formula for lu-

men intensity information indicates the TAG value for the image that was scanned with a 

representative selective coronary computed tomography angiography protocol (P1). 
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F. Statistical Methods 

A mixed model, involving the least squared means with Bonferroni correction was em-

ployed to evaluate the statistical significance of attenuation values between both studies. 

Attenuation values were expressed as means and standard error (SE). The 95% confidence 

interval was used to report associations in accordance with an optimal enhancement range 

of 250–350 HU. Differences in the least squared means were used to compare mean values 

among the protocols with partial segments. All statistical analyses were performed using 

SAS statistical software (SAS System for Windows; Version 9.2, SAS Institute, Cary, NC, 

USA). 
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2. Results  

The mean attenuation and SE values of the selective CCTA (P1, P2, P3, P4, and P5) and 

IV CCTA (PIV) studies are summarized in Table 2. In the per-vessel analysis, the mean 

attenuation value of all selective CCTA protocols was within the range of 250–350 HU, 

which is generally considered the optimal range. In the per-segment analysis, the mean 

attenuation values of the selective CCTA studies were in accordance with the suggested 

optimal contrast enhancement range for the proximal and middle segments. However, the 

attenuation values for the distal LAD in all selective CCTA protocols (P1~P5) and for the 

distal RCA in P2 were <250HU. The attenuation values of selective CCTA were generally 

higher for the RCA than for the LAD. The IV CCTA was over-enhanced, and the attenua-

tion value was >350HU in this study. We performed IV CCTA using 1.5mL/kg of contrast 

medium, as performed in a previous study.29 All selective CCTA protocols used in the cur-

rent study were adequate for clinical use as the respective mean attenuation values were 

within the optimal range. The P1 was considered the best protocol because the 95% confi-

dence intervals of the attenuation range best fit within the optimal contrast enhancement 

range (mid LAD, mid-RCA, distal RCA). In contrast, the P3 only demonstrated optimal 

enhancement range for the proximal RCA, while P2 and P4 showed optimal enhancement 

for the proximal and mid-RCA, and the P5 protocol for the distal RCA only. 

However, the 95% confidence intervals of the IV CCTA studies exceeded the optimal en-

hancement range (Figure 4). In view of the 95% confidence intervals, the P1 was regarded 

to be the best representative protocol of selective CCTA studies. Representative images of 
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P1 are further displayed in Figure 5. The TAG values of P1 and PIV were compared to de-

termine any differences in attenuation homogeneity, with values closer to zero implying 

greater homogeneity. In Figure 6, we observed that the TAG of P1 was more homogeneous 

than PIV (LAD: -1.5245 vs. -1.7558, p<0.001; RCA: 0.0459 vs. 0.0799, p<0.001). 
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Table 22 Luminal attenuation values and heart rates for the examined protocols 

 P1 P2 P3 P4 P5 PIV 

Per vessel       

LAD 270.3 ± 

20.4 

262.9 ± 

20.4 

276.8 ± 

20.4 

268.0 ± 

20.4 

251.3 ± 

20.4 

389.9 ± 

20.5 

RCA 322.6 ± 

7.4 

264.7 ±  

7.4 

274.0 ± 

7.4 

277.7 ± 

7.4 

334.7 ± 

7.4 

354.4 ± 

7.7 

Per segment       

pLAD 284.2 ± 

23.1 

294.7 ± 

23.1 

300.4 ± 

23.1 

287.2 ± 

23.1 

294.6 ± 

23.1 

425.9 ± 

23.2 

mLAD 297.6 ± 

19.9 

277.5 ± 

19.9 

277.4 ± 

19.9 

284.7 ± 

19.9 

250.2 ± 

19.9 

413.4 ± 

18.5 

dLAD 230.0 ± 

18.4 

216.4 ± 

18.4 

240.5 ± 

18.5 

232.8 ± 

18.4 

205.1 ± 

18.4 

335.6 ± 

18.5 

pRCA 341.6 ± 

8.0 

282.7 ±  

8.0 

294.2 ± 

8.0 

289.1 ± 

8.0 

351.0 ± 

8.0 

357.4 ± 

8.8 

mRCA 319.3 ± 

7.4 

275.1 ±  

7.4 

265.6 ± 

7.5 

291.2 ± 

7.4 

352.5 ± 

7.4 

361.8 ± 

8.0 

dRCA 302.4 ± 

16.7 

230.8 ± 

16.7 

253.3 ± 

16.8 

254.4 ± 

16.7 

296.8 ± 

16.7 

349.2 ± 

16.8 

HR 

(beats/min) 

64 ± 2 66 ± 3 65 ± 4 66 ± 4 65 ± 1 64 ± 3 

Attenuation values are given as mean ± SE (standard error).  

LAD – left anterior descending artery; RCA – right coronary artery; p, m, d – proximal, 

middle, distal. HR – Heart rate during scanning (beats/min) was given as mean ± SD 

(standard deviation). 
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Figure 4 Confidence interval of luminal attenuation values. The confidence interval indi-

cates the enhancement of the selective coronary computed tomography angiography 

(CCTA) study. The representative selective CCTA protocol (P1) was in accordance with 

the optimal enhancement range (250–350HU) in the mid LAD, mid-RCA, and distal RCA. 

Black is proximal LAD; purple is mid LAD; orange is distal LAD; yellow is proximal 

LAD; blue is mid LAD and green is distal LAD. 
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3. Discussion 

The current study is, to our knowledge, the first to document the feasibility of catheter-

directed selective CCTA using a combined modality system. In this study, we could estab-

lish a useful protocol for selective CCTA.  We could successfully obtain optimal contrast 

enhancement in the range of 250–350 HU by using an ultra-low-dose concentration of 

13.13mgI/mL. Further, the entire selective CCTA protocol revealed stable contrast en-

hancement compared with conventional IV CCTA at a clinically usable level. The iodinated 

contrast medium has been shown to have a dose-dependent relationship with contrast-in-

duced nephropathy (CIN)30 and implying the need for minimizing the contrast dose to pre-

vent CIN.31 In the current study, we could significantly reduce the amount of iodine by 

using ultra-low-dose contrast medium necessary for selective CCTA.  

This direct injection of diluted iodine contrast has previously been tested in post-

mortem studies and demonstrated the ability to clearly visualize the coronary trees and 

plaques.32 The representative protocol (P1) contains the 263 mg of iodine to produce the 

optimal enhancement range, which was 1.09% of the amount for the conventional method 

(PIV). Therefore, we suggest that this extremely small amount of contrast may be adequate 

for optimal imaging while possibly reducing the risk of CIN in patients undergoing PCI. 
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Figure 5 Representative images of the left anterior descending (LAD) and right coronary 

(RCA) arteries using P1 from the selective coronary computed tomography angiography 

(CCTA) protocols. A: 3D rendered image of LAD; B: maximum intensity projection im-

age of LAD; C: curved multi-planar reconstruction images of LAD; D: 3D-rendered im-

age of RCA; E: maximum intensity projection image of RCA; F: curved multi-planar re-

construction images of LAD. These images indicate that P1 yielded adequate luminal at-

tenuation with selective CCTA. 
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Figure 6. Comparison of transluminal attenuation gradient (TAG) for the representative 

case P1 and PIV in the left anterior descending (LAD) and right coronary (RCA) arteries. 

A:stretched view of the LAD with PIV of the IV study; B:stretched view of the LAD with 

P1 of the selective coronary computed tomography angiography (CCTA) study; C: TAG 

for the LAD was compared between the PIV and the representative case P1 (-1.5245, -

1.7558,  respectively); D:stretched view of the RCA with PIV of the IV study; E:stretched 

view of the RCA with P1 of the selective CCTA study; F: TAG for the RCA was compared 

between the PIV and the representative case P1 (0.0459, 0.0799, respectively). 
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Few prior studies have attempted to lower the amount of contrast medium using cath-

eter-based CCTA. A previous study using superior vena cava (SVC) catheter-directed 

CCTA was able to depict the coronary anatomy with adequate attenuation (HU > 250) using 

50 mL of contrast material.33 In that study, the pooled attenuation was similar to conven-

tional IV CCTA using 100 mL of contrast medium, which showed only 50% reduction of 

contrast medium. Another study using aortic-root catheter-directed enhancement also re-

duced the amount of contrast medium to as little as 20mL.29 However, that study required 

a specialized multi-hole pigtail catheter and still showed only 80% reduction of contrast 

medium. On the other hand, our technique uses a conventional coronary angiography cath-

eter, which is commonly used during coronary catheterization for injecting contrast me-

dium at an extremely low contrast dose (99% reduction). Moreover, the previously men-

tioned studies displayed an extremely high enhancement rate in proximal coronary artery 

segments with a rapid decreasing pattern of enhancement in distal regions, whereas our 

study found all segments of the coronary arteries examined to be relatively homogeneous. 

Previous studies used full- or half-concentrated contrast medium and introduced it into the 

SVC or aortic root, which made it difficult to control attenuation in the coronary arteries. 

However, the unique design of our study permitted us to modulate the concentration of 

contrast medium to obtain targeted enhancement. In addition, previous techniques had to 

inherently consider many patient-dependent factors such as body mass index, pulmonary 

circulation system, and aortic valve pathology; whereas our selective CCTA technique was 

independent of these factors, with the exception of the need for catheter engagement. The 

advent of the 320-detector row CT scan has allowed imaging of the entire coronary artery 
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tree during a single cardiac cycle. A TAG has been shown to be a useful tool for the eval-

uation of coronary artery stenosis28 and also for assessing the physiological significance of 

stenosis.34 Foremost, the current study demonstrated the feasibility and clinical utility of 

selective CCTA utilizing TAG values as compared with IV CCTA. 

This study is not without limitations. In order to obtain the peak enhancement timing 

for the CT scan as well as the optimal contrast injection duration, we had to perform a 

retrospective ECG-gating CT scan over 10s to cover the entire injection duration, which 

inevitably caused the elevation of radiation dose. Furthermore, we used a tube voltage of 

120kVp, which further increased the radiation hazard. Although less contrast injection time 

(<5 s) has been recommended to reduce the cardiac ischemic burden35, we used a relatively 

longer injection time (~10 s) to search for an optimal contrast injection duration and to 

avoid analytical bias, which may increase myocardial ischemia. In addition, the diagnostic 

catheter tip engaged the ostium of the coronary arteries, often making evaluation of the left 

main or ostial portion of RCA difficult. The attenuation value at the catheter-tip is >1000 

HU because of the material’s composition. Thus a beam-hardening artifact is created 

around the tip. Another limitation of this study is that the LCx was not included in the 

analysis. When we tried to engage the left coronary artery system with the guide catheter, 

it frequently engaged the LAD selectively, and due to the high anatomical variances in the 

LCx between porcine models, the catheter was intentionally fixed to engage and primarily 

visualize the LAD. Finally, similar to conventional angiography catheter-related complica-

tions, our novel technique may be prone to complications including coronary artery dissec-

tion, spasm, stroke, and even death during selective CCTA; albeit, the complication rates 
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are in general, extremely low.36 Forthcoming studies involving humans are warranted to 

further establish the optimal protocol37 and to confirm the feasibility of this technique. 

 In conclusion, the catheter-directed selective CCTA can produce an optimal contrast 

enhancement with ultra-low-dose contrast medium. This technique may provide additional 

means of coronary evaluation in patients who may require strategic planning prior to pro-

cedure utilizing a combined modality system. 
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Ⅲ. Clinical Feasibility of Selective Catheter-Directed Intracoronary Com-

puted Tomography Angiography Using Extremely Low-Dose of Iodine in Pa-

tients with Coronary Artery Disease 

 

1. Material and Methods 

A. Study population 

We prospectively included 65 consecutive patients who underwent C-CTA and were sched-

uled to undergo ICA for clinical indications. Patients with body weight <85 kg, heart rate 

<65 beats per minute during CT scan, and diameter stenosis of 25–99% at the left anterior 

descending, left circumflex, or right coronary artery were included. In patients with mul-

tivessel disease, only one vessel with severe stenosis was included. In contrast, pregnant 

patients and those with prior coronary artery bypass grafting surgery, contraindications to 

iodinated contrast material, hemodynamic instability, renal insufficiency (serum creatinine 

level >1.5 mg/dL or 133 µmol/L), absent sinus rhythm, and inability to hold their breath 

were excluded. The institutional review board of Yonsei University College of Medicine, 

Seoul, Korea, approved the study protocol, and all patients provided written informed con-

sent. 
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B. C-CTA protocol 

Before CT scanning, all patients received a 0.3-mg sublingual dose of nitroglycerin. If their 

heart rate was higher than 65 beats per minute, patients also received a single oral dose of 

50 mg metoprolol tartrate (Betaloc, Yuhan) unless beta-adrenergic blocking agents were 

contraindicated. C-CTA was performed on 320-slice CT scanner (Aquilion ONE ViSION 

Edition, Toshiba). Bolus tracking was used by placing the region of interest (ROI) in the 

ascending aorta, and scanning was started at 2 s after reaching the predefined threshold of 

180 Hounsfield units (HU). A 60–90 mL of contrast medium (370 mg iodine/mL, Iopamiro, 

Bracco) was used at a flow rate of 5 mL/s using a dual-head power injector (Medrad Stellant 

injector, Medrad) via the antecubital vein. Prospective electrocardiographic (ECG) gating 

with the following scan parameters was used: rotation time, 350 ms; tube voltage, 100–120 

kVp; tube current, 600–800 mA; and slice collimation, 320 × 0.5 mm. CTA images were 

reconstructed using a slice thickness of 0.5 mm at 75% of R-R interval, and FC04 as the 

convolution kernel and adaptive iterative dose reduction 3D as the reconstruction technique 

were used. Dose length product (mGy × cm) was recorded and then presented as mSv (mGy 

× cm × 0.014). 
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C. S-CTA protocol 

Following the developed protocol in swine model 38, S-CTA was performed using 13.13 

mg iodine/mL of diluted contrast material at an injection rate of 2 mL/s with tube voltage 

of 120 kV and current of 550 mA. In this study, the protocol was optimized according to 

clinical application: 17.19 mg iodine/mL at an injection rate of 5 mL/s with tube voltage of 

100 kV in patients with a body mass index <30 kg/m2 and 120 kV otherwise. The contrast 

medium was delivered via a 5-French Judkins diagnostic catheter (left or right) using a 

dual-head power injector (Medrad Stellant injector, Medrad). S-CTA was started at 1 s after 

the injection of contrast material to allow the contrast material to fully fill the target vessel. 

Prospective ECG gating was used in the same manner as in C-CTA; the same scan param-

eters in C-CTA were applied in S-CTA. The scan parameters are compared in Table 3. 
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D. Luminal enhancement analysis 

S-CTA and C-CTA images were transferred to a standalone workstation (QAngio CT work-

station, version 2.0.5; Medis Medical Imaging Systems, Leiden, Netherlands) to evaluate 

luminal enhancement and to delineate wall boundary. An experienced level Ⅲ CT reader 

manually evaluated luminal enhancement in HU at the proximal, mid, and distal segments 

of each vessel such as left anterior descending (LAD), left circumflex artery (LCx), and 

right coronary artery (RCA) according to the Society of Cardiovascular Computed Tomog-

raphy's anatomy definitions27 with cross-sectional intensities automatically recorded at 0.5 

mm intervals. Transluminal attenuation gradient (TAG)28, determined from the change in 

HU per 10-mm length of coronary artery and defined as the linear regression coefficient 

between the luminal HU and length of the evaluated vessel from the ostium (millimeters), 

was used for assessing the luminal homogeneity of artery (Table 4).  
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Table 3. Protocol summary for S-CTA and C-CTA 

  Protocol for S-CTA Protocol for C-CTA 

CT scanner 320-slice CT scanner 

(Aquilion ONE ViSION Edi-

tion) 

320-slice CT scanner 

(Aquilion ONE ViSION Edi-

tion) 

ECG gating Prospective Prospective 

Rotation time 350 ms 350 ms 

Slice collimation 320 × 0.5 mm 320 × 0.5 mm 

Tube voltage 100–120 kVp 100–120 kVp 

Tube current 600–800 mA 600–800 mA 

Slice thickness 0.5 mm 0.5 mm 

 

Iodine injection 
  

Technique By engaged catheter By intravenous infusion 

Rate 5 mL/s 5 mL/s 

Volume 15 mL 60–90 mL/s 

Concentration 17.19 mg iodine/mL 370 mg iodine/mL 

 

Radiation dose 

 

2.71 ± 1.10 mSv 

 

3.52 ± 2.50 mSv 

The effective radiation dose was significantly different (p < 0.0001). S-CTA, selective 

computed tomography angiography; C-CTA, conventional computed tomography angi-

ography; CT, computed tomography; ECG, electrocardiographic. 
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E. CTA analysis 

C-CTA and S-CTA were analyzed on a standalone workstation with dedicated software 

(QAngio CT version 2.0.5, Medis Medical Imaging Systems) by an expert reader with level 

III certification in cardiac CT. The analysis was performed using a standard 17-segment 

model 27 up to a luminal diameter limit ≥1.5 mm. To evaluate luminal enhancement, mean 

and standard deviation (SD) were calculated for per-vessel and per-segment analyses. 

Transluminal attenuation gradient (TAG) 28, defined as the linear regression coefficient for 

luminal enhancement changes along the artery axis, was calculated to evaluate homogene-

ity of luminal enhancement. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise 

ratio (CNR) were measured. The reader placed the ROI in the proximal artery (ROI1) and 

in the adjacent non-enhanced pericardial fat tissue (ROI2) at matched location on S-CTA 

and C-CTA (Figure 7). Image noise was defined as an SD of ROI1; SNR was calculated by 

dividing the average HU of ROI1 by image noise. CNR was calculated using the following 

formula: CNR = (average HU of ROI1 − average HU of ROI2)/image noise. 
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Table 4 Luminal enhancement and TAG on S-CTA and C-CTA 

  
Vessel 

(n = 110) 

Proximal 

(n = 110) 

Middle 

(n = 110) 

Distal 

(n = 110) 

Luminal  

enhancement 

(mean ± SE) 

    

S-CTA 
324.4 ± 8.0 

HU 

344.6 ± 8.1 

HU 

334.0 ± 8.8 

HU 

298.1 ± 8.9 

HU 

C-CTA 
312.0 ± 8.0 

HU 

357.9 ± 8.1 

HU 

312.9 ± 8.8 

HU 

270.5 ± 8.9 

HU 

p value <0.0001 <0.0001 <0.0001 <0.0001 

TAG      

S-CTA -0.65 -0.20 -0.28 -1.03 

Transluminal attenuation gradient (TAG) values at distal segment were not the statistically 

significant difference (p =0.002), however, other measurements significantly different be-

tween S-CTA and C-CTA (p <0.0001). HU = Hounsfield Unit, SE = standard error. 
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Figure 7 The region of interest (ROI) placement at a matched location between S-CTA and 

C-CTA. (A) ROI placement of C-CTA was shown with magenta and cyan color. (B) ROI 

placement of S-CTA was shown at the matched location with S-CTA. In these example 

images, C-CTA shows that image noise: 44.08 HU, SNR: 14.27, and CNR: 9.96 and S-

CTA shows show that image noise: 32.17 HU, SNR: 14.66, and CNR: 13.18. 
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F. Plaque volume analysis 

Plaque was semi-automatically measured, and revisions to our previously described 

method were made 39, 40. An example of plaque lesion assessment is shown in Figure 8. 

Plaque volume (PV) and percent aggregate plaque volume (%APV) were measured in 44 

lesions. PV was calculated as vessel volume minus lumen volume in each lesion seg-

ment. %APV was calculated by dividing APV by total vessel volume, and APV was defined 

as the total PV in each artery.  
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Figure 8 Representative plaque volume measurement. The expert manually edited the inner 

lumen and outer vessel wall contours. 
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G. Statistical Analysis 

Continuous variables are expressed as means ± SD if normally distributed or median (in-

terquartile range) if non-normally distributed. Paired Student’s t-test and Pearson’s corre-

lation coefficient using two-sided p values were employed to compare S-CTA and C-CTA, 

with Fisher’s z-transformation statistic used to compare correlations. A mixed model re-

porting the differences in the least square means with Bonferroni post hoc correction was 

employed to assess the statistical significance of luminal enhancement values expressed as 

mean ± standard error in the comparison between S-CTA and C-CTA. Bland–Altman plots 

with 95% confidence intervals were also constructed to display the correlations between S-

CTA and C-CTA. Statistical analysis was performed using SAS version 9.2 (SAS Institute) 

and MedCalc version 12.7.5 (MedCalc Software bvba). A p value of less than 0.0001 was 

considered statistically significant.  
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2. Results 

A. Clinical characteristics.  

Patient characteristics are presented in Table 5. The study cohort included 39 males (60%), 

and the mean age was 64.3 ± 10.2 years. Body mass index and risk factors for CAD at the 

time of CTA examination are listed in Table 5. The mean time difference between S-CTA 

and C-CTA was 5.8 days. No specific complications occurred after any of S-CTA and cor-

onary artery interventions. 
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Table 5 Patient Characteristics 

Patient characteristics n = 65 

Age, years (mean ± SD) 64.3 ± 10.2 

Male, n (%) 39 (60) 

Weight, kg (mean ± SD) 66.2 ± 9.9 

Body mass index, kg/m2 (mean ± SD) 24.7 ± 2.8 

Risk factors 
 

Hypertension, n (%) 27 (42) 

Hyperlipidemia, n (%) 42 (65) 

Diabetes mellitus, n (%) 46 (71) 

Current smoker, n (%) 23 (35) 

Distribution of examined vessel 
 

Left anterior descending artery, n (%) 55 (46) 

Left circumflex artery, n (%) 55 (46) 

Values are mean ± standard deviation, or n (%). 
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B. Luminal enhancement analysis 

In the per-vessel analysis, luminal enhancement was significantly higher on S-CTA than on 

C-CTA (324.4 ± 8.0 HU vs. 312.0 ± 8.0 HU, p < 0.0001). In the per-segment analysis, 

luminal enhancement was higher in the proximal segment only on C-CTA than on S-CTA; 

however, luminal enhancement was higher in the middle and distal segments on S-CTA 

than on C-CTA. All luminal enhancement ranges were significantly different between S-

CTA and C-CTA (p < 0.0001). Figure 9 shows a representative case example of S-CTA and 

C-CTA images obtained from the same patient in our study. TAG was compared in the per-

vessel and per-segment analyses. In the per-vessel analysis, TAG showed a significantly 

slower reduction pattern on S-CTA than on C-CTA (-0.65 HU/10 mm vs. -0.89 HU/10 mm, 

p < 0.0001). In the per-segment analysis, TAG on S-CTA showed a more than twofold 

slower reduction pattern than that on C-CTA in the proximal segment (-0.20 HU/10 mm vs. 

-0.65 HU/10 mm, p < 0.0001) and middle segment (-0.28 HU/10 mm vs. -0.74 HU/10 mm, 

p < 0.0001). Although TAG on S-CTA showed a more rapid reduction pattern than that on 

C-CTA in the distal segment, TAG values were not significantly different between S-CTA 

and C-CTA (-1.03 HU/10 mm vs. -0.82 HU/10 mm, p = 0.002). The luminal enhancement 

range and TAG are summarized in Table 4.  
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Figure 9 Representative case example of selective computed tomography angiography (S-

CTA) and conventional computed tomography angiography (C-CTA) images obtained 
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from the same patient. A: Axial view of C-CTA. B: Axial view of S-CTA. C: Curved mul-

tiplanar reconstruction on C-CTA. D: Curved multiplanar reconstruction on S-CTA. Yellow 

circles indicate contrast-enhanced left anterior descending and left circumflex arteries. 
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C. Image quality analysis.  

Image noise was significantly lower on S-CTA than on C-CTA (39.6 ± 10.0 HU vs. 43.9 ± 

9.4 HU, p < 0.0001). SNR and CNR were significantly higher on S-CTA than on C-CTA 

(9.3 ± 2.8 HU vs. 8.1 ± 3.0 HU, p = 0.0040 for SNR; 9.4 ± 3.2 HU vs. 8.5 ± 2.9 HU, p = 

0.0420 for CNR). 

Table 6 Comparison of quantitative plaque measurements between S-CTA and C-CTA 

 PV %APV 

S-CTA  113.2 ± 137.0 mm3 24.1 ± 13.3% 

C-CTA 145.1 ± 135.2 mm3 26.0 ± 13.8% 

Correlation 0.99 0.98 

Bland–Altman values (95% confidence intervals) -5.6, 9.4 -3.2, 19.5 

Mean and standard deviation are reported for each measure. PV, plaque volume; %APV, 

percent aggregate plaque volume; S-CTA, selective computed tomography angiography; 

C-CTA, conventional computed tomography angiography. 

 

  



 

47 

 

D. Plaque volume analysis.  

With respect to plaque subtypes, 50% were calcified; 45%, mixed; and 5%, noncalcified. 

The correlation coefficients and Bland–Altman values with 95% confidence intervals for 

the comparison of quantitative plaque measurements between S-CTA and C-CTA are 

shown in Table 6. The p values were significant for PV and %APV, indicating strong cor-

relation and agreement (Table 6). 
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3. Discussion 

We evaluated the clinical feasibility of S-CTA as a utilizable CTA modality during coronary 

catheterization. S-CTA successfully showed luminal enhancement, homogeneous luminal 

enhancement, and excellent correlation with respect to PV and %APV in the quantitative 

plaque measurements. In this study, C-CTA was performed with a general dose of iodine 

(60–90 mL × 370 mg iodine/mL = 22,200–33,300 mg iodine); however, S-CTA was per-

formed with a low dose of iodine (15 mL × 17.19 mg iodine/mL = 258 mg iodine). Although 

S-CTA was performed with an extremely low dose of iodine, an optimal luminal enhance-

ment of 250–350 HU 25, 26 was achieved. S-CTA showed more homogeneous luminal en-

hancement than C-CTA in the comparison of TAG. S-CTA was capable of producing a more 

homogeneous luminal enhancement pattern as the contrast material was directly injected 

into the intracoronary artery with consistent flow. This homogeneous luminal enhancement 

led to a significant reduction in image noise and concurrently produced improved SNR and 

CNR. Furthermore, radiation doses were significantly lower on S-CTA (2.71 ± 1.10 mSv 

vs. 3.52 ± 2.50 mSv) because S-CTA was performed with relatively small field of view. In 

the quantitative plaque measurements, PV and %APV on S-CTA showed excellent corre-

lation compared with those on C-CTA despite underestimation of PV and %APV when 

compared with those on C-CTA. Further studies comparing S-CTA and C-CTA with IVUS 

are needed to evaluate the clinical feasibility of S-CTA. 
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A. Clinical implications 

This combined-modality system enables intraprocedural CTA, which stemmed from the 

need for neurosurgical field and a new trauma workflow concept with CT scan in the emer-

gency room 41, 42. The clinical feasibility of intraprocedural CTA during coronary artery 

intervention was validated in our previous study 43. In this previous study, S-CTA was per-

formed during intervention for chronic total occlusion (CTO) as an intraprocedural CTA 

protocol, and we showed that intraprocedural CTA could contribute to successful interven-

tion for CTO. To our knowledge, this study is the first clinical trial on catheter-directed 

intracoronary contrast-injected imaging protocol during on-site catheterization. Several 

previous animal studies in which catheters were placed at the superior vena cava and aortic 

root in a swine model reported the feasibility of catheter-directed contrast-injected CTA. 

However, a contrast volume reduction of only 50% and 80% was achieved with specialized 

multi-hole pigtail catheter to spray out the contrast medium. Moreover, clinical validation 

was not performed in these studies 36, 44. Conversely, S-CTA showed an iodine dose reduc-

tion rate of 99%, and any additional specialized catheter was not necessary as a conven-

tional diagnostic catheter was used in S-CTA. S-CTA might serve as a useful imaging mo-

dality for CAD evaluation in patients who present with chronic kidney disease by using a 

low dose of iodine. In this study, we performed S-CTA in patients with diameter stenosis 

of 25–99%, and no specific complications occurred after S-CTA. Although S-CTA was 

performed with an acceptable radiation dose, if S-CTA was applied in multivessel disease, 

additional radiation exposure would be inevitable. Further optimization of the scan protocol 

will reduce radiation exposure on S-CTA. Fractional flow reserve (FFR), which represents 
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the pressure differences across a coronary artery stenosis in invasive coronary catheteriza-

tion, can be calculated from CT scan images by utilizing computational fluid dynamics 

(CFD) techniques 45, 46. As S-CTA can produce CTA images that can be utilized for CFD-

based FFR calculation, we might obtain information on plaque characteristics and blood 

pressure through a single S-CTA scan without additional coronary catheterization. Thus, 

comprehensive evaluation of plaques and lesion-specific ischemia including their charac-

terization might be feasible during on-site coronary catheterization in the near future. How-

ever, further investigation is clearly needed to support this contention.  
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B. Study limitations 

Our study has some limitations that should be mentioned. First, S-CTA was compared with 

C-CTA in a relatively small number of plaque lesions. Second, the reference standard for 

plaque quantification was C-CTA, albeit PV and %APV were only compared between S-

CTA and C-CTA. Further study is needed to compare plaque quantification with S-CTA, 

C-CTA, and IVUS. In conclusion, S-CTA might serve as a useful imaging modality for on-

site CAD evaluation and procedure planning for complex lesion, especially when on-site 

atherosclerotic plaque analysis is required.  
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Ⅳ. Deep learning based quantification of stenosis and coronary calcium score 

from coronary CT Angiography 

 

1. Introduction 

Coronary computed tomographic angiography (CTA) has emerged as a reliable 

noninvasive modality for the diagnosis of coronary artery disease (CAD).47-50 The improve-

ment of CT image quality over the past decade allows direct evaluation of the entire coro-

nary tree and assessment of both stenosis and coronary plaque.51-53 Clinical results from 

CTA currently include only visual stenosis interpretation. Contrast density difference 

(CDD), a measure of luminal contrast kinetics, has been shown to be related to lesion-

specific ischemia by invasive fractional flow reserve.54 To date, quantitative measurements 

of stenosis or plaque from CTA are not part of the clinical routine, due to the need for 

subjective and prohibitively time-consuming manual artery editing. 

The time during which CTA matured also coincides with both dramatic increases in com-

putational power and computer graphics capabilities by standard off-the-shelf computer 

workstations and advances in machine learning, resulting in improved and personalized 

decision-making in many areas of everyday life. A new class of machine learning algo-

rithms, deep learning, including the well-known convolutional neural networks (CNN), has 

been shown to be very effective for automated object detection and image classification 

from a wide range of data.55-59 Our objective was to evaluate the feasibility of segmentation 

of coronary lumen and calcified plaque (CP) from CTA using a deep learning or CNN-
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based segmentation approach, and further, to evaluate quantitative stenosis (and other lu-

minal image biomarkers such as minimum luminal area and CDD) in comparison to expert 

readers and the Agatston coronary calcium score (CCS) in comparison to non-contrast CT. 
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2. Methods 

A. Patients and imaging protocol 

In this retrospective study, we included 156 consecutive patients who underwent contrast-

enhanced CTA for clinical indications at Cedars-Sinai Medical Center. CTA was performed 

on a dual-source 64-slice CT scanner (Definition Siemens Medical Solution, Forchheim, 

Germany) in accordance with societal guidelines. Beta-blockers (orally or intravenously) 

were administered if necessary to achieve a target patient heart rate of 60- beats/min or less. 

Prospective and retrospective gating protocols were utilized with a tube voltage of 100 kV 

in patients with a body mass index (BMI) < 30 kg/m2 and 120 kV otherwise. Sublingual 

nitrates were administered just before the scan, and iodinated contrast (65-130 ml) was 

power injected, followed by a saline flush. Reconstructed data parameters were: 512x512 

matrix, 0.5 x 0.5 mm2 pixel size, 0.6 mm slice thickness, and 0.3 mm slice increment. The 

study was performed according to the guidelines of Cedars-Sinai Medical Center Institu-

tional Review Board, and all patients provided written informed consent.  
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B. Coronary CTA analysis 

The reconstructed CTA were transferred to a central database. Plaque analysis was per-

formed on standard Windows workstations with the semi-automated software tool Au-

toplaque (version 2.0, Cedars-Sinai Medical Center, Los Angele, CA, USA)52 by expert 

readers with level III or higher certification in cardiac CT. For each scan, the reader first 

placed a circular region-of-interest in the aortic root and scan-specific plaque thresholds 

were computed by the software as described previously.60, 61 Quantitative measurements 

were made in each coronary segment using a standard 17-segment model62 (SCCT guide-

lines) up to a luminal diameter limit ≥ 1.5 mm. Plaque quantification was performed with 

adaptive algorithms that are scan-specific, as previously described.60, 61 Minimal lumen area 

(MLA) CP volume of the lesion were measured.60, 61 Quantitative percent diameter stenosis 

(DS) was calculated by dividing the narrowest lumen diameter by the average of two 

normal non-diseased reference cross-sections. CDD was defined as the maximum percent 

difference in contrast densities (luminal contrast density or attenuation per unit area), with 

respect to the proximal reference cross-section (with no disease). If the manual adjustments 

were needed, edits were made using the standardized correction options in the software, 

which allows for editing of vessel wall, lumen, calcified plaque and adjustment of plaque 

thresholds. Interobserver variability was evaluated in a subset of 20 patients by two inde-

pendent readers. CCS is measured from non-contrast CT.63 From CTA, Agatston score from 

CP volume was calculated using a regression relation, similar to our previous study.64 For 

calculating CCS from CTA, 3.0326 Agatston units/mm3 was used as a conversion factor 

and systematically compared to Agatston calcium scores measured from non-contrast CT. 
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C. Data preparation for convolutional neural networks 

The lesion segments were reconstructed to straightened views by using the extracted cen-

terlines. The input of the convolutional networks was the extracted from 2-D cross-sec-

tional image, while the expert annotations were defined as the target references of the con-

volutional networks. We evaluated 2 sets of plaque thresholds for the input: the scan-spe-

cific thresholds used in the software and a general threshold evaluated from a separate 

training cohort of 50 patients acquired at the same site with the same acquisition parameters 

(-10 to 200 HU for NCP, lumen 201 HU to 499 HU, CP ≥500 HU). In this study, the expert 

annotations had three labels as follows: background, contrast-enhanced lumen, and CP. We 

divided the target annotation into two types: 1) background and foreground (lumen + CP 

annotations); and 2) background and foreground (CP annotation only). Therefore, we pre-

pared 2 sets of 4 channels input (CTA cross-sections preprocessed with the 4 HU threshold 

ranges), and 2 classes target (background and foreground). Two datasets were trained sep-

arately, one for each target. 
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D. Deep Learning architecture 

A convolutional network architecture inspired by M-Net65 was designed. M-Net is an end-

to-end CNN architecture for segmenting brain structures from Magnetic Resonance (MR) 

Images, and it was inspired by U-Net.55, 56 M-Net was proposed to overcome the drawbacks 

of U-Net. U-Net was performed on 256 × 256 × 256 MR volume images, and it consisted 

of continuative 2D convolutional layers.55 Therefore, it has the disadvantage of being una-

ble to use 3-D information. A 3-D U-Net consisting of serial 3-D convolutional layers was 

proposed to utilize 3-D information. However, this architecture requires a large memory to 

train this volume of images, even when using down-sampled resolution images as inputs.56 

M-Net has a 3D-to-2D convolutional layer in front of the U-Net architecture to utilize 3D 

information memory efficiently. Another advantage of M-Net is the leg-like layers on the 

front and back of U-Net, and its two side paths provide functional deep-supervision. How-

ever, 3-dimensional input was reconstructed with a stack of 2D images, and the number of 

slice images that must be accumulated to produce a 3-dimensional input was empirically 

determined. In this study, we used a straightened curved planar reformation image, which 

was reconstructed with the center line of the coronary artery, thus creating inconsistencies 

in the length of the lesion. Therefore, 2D U-Net is more suitable for this study. We included 

two side pathways to take advantage of the M-Net. Our architecture is a 2D CNN without 

a 3D-to-2D converter. Our convolutional architecture is the combination of the encoding 

and decoding steps. The encoding step has 5 sets of compression layers. A compression 

layer set has 2 convolutional layers of size 3 × 3 and a max-pooling layer of size 2 × 2. 

These compression layers produce half the size of the input dimension using contextual 
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information. The number or convolutional filters was gradually increased to avoid infor-

mation loss as information was reduced by max-pooling. Decompression is symmetric to 

the compression step by replacing max-pooling with up-sampling to recover dimension. 

The feature maps from each convolution layer is concatenated to the corresponding next 

convolution layer to enable precise feature localization. Skip connection was introduced to 

create two side pathways. These side pathways help the model to be trained with sufficient 

information. Figure 10 shows the proposed CNN architecture. All convolution layers are 

activated with the parametric rectified linear unit to ensure fast convergence of the convo-

lutional network.66 Batch normalization was applied to accelerate the training of the con-

volutional networks.67 Dropout probability was set to p = 0.5 to prevent overfitting.68 The 

final layer is processed by a 1 × 1 convolution layer with 2 channels (foreground, back-

ground) and pixel-wise SoftMax, which allows the probability of 2 classes. The final seg-

mentation labels were assigned to the classes with maximum probability for every pixel. 

We combined binary cross-entropy (Eq. 1) and Jaccard index (Eq. 2), also known as inter-

section over the union, to compare the similarities and diversities of the sample sets. 

 

(1) 

 

(2) 

Thus, the joint loss function is defined as follows: 
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(3) 

We used an Adam optimizer to optimize the loss function, and the convolutional architec-

ture was trained for 70 epochs. 
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Figure 10 Proposed convolutional neural networks architecture. 
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E. Cross-validation 

The entire experiments were performed using 10-fold cross-validation, for robust non-bi-

ased evaluation. During validation, all the lesion cases were randomly shuffled and split 

into 1/10 of the aggregate data. The model trained with 9/10 of the data (642 lesions) and 

then tested against the remaining subset (remaining 72 lesions). The validation was re-

peated 10 times and results concatenated until the entire dataset was segmented. MLA, DS, 

CDD, and CP volumes were computed from both expert and deep learning for each lesion 

and exported to Excel.  
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F. Validation for plaque quantification 

To validate plaque quantification performance of our deep learning model, we compared 

CP volume from CTA and IVUS. We utilized 10 lesion segments that were performed CTA, 

S-CTA, and IVUS for the validation. CP volume from IVUS was manually measured by 

expert IUVS reader in a blind manner, and CP volume from CTA and S-CTA was measured 

with proposed deep learning model at the matched location.  
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G. Deep learning on Selective CTA 

To validate the feasibility of the S-CTA as an adjunctive imaging modality for CAD eval-

uation, the proposed deep learning model was utilized with S-CTA to measure CP volume. 

The model was trained with 716 lesion segments, and these segments were not related with 

S-CTA or C-CTA. The trained deep learning model was applied on 10 S-CTA/C-

CTA/IUVS paired volume datasets, and the CP volume was measured. The measured CP 

volume was compared with the CP volume from IVUS. 
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H. Statistical analysis 

The primary end-point of this study was the performance of the deep learning compared to 

the evaluation by the expert reader. Statistical analysis was performed using Excel add-in 

Analyse-it software (Analyse-it, Leeds, UK). Continuous variables were expressed as mean 

± standard deviation or median and interquartile range (IQR). Deep learning and expert 

quantifications were systematically compared, using the Spearman correlation coefficient 

and Bland-Altman plots and paired Wilcoxon rank-sum test. Deep learning performance 

was also evaluated with dice similarity coefficient (DSC), as a measure of overlap between 

expert and deep learning. This is computed by:  

DSC = 2TP/(2TP+FP+FN), 

Where TP (true positive) is the number of correctly positively annotated voxels, FP (false 

positive) is the number of incorrectly positively annotated, and FN (false negative) is the 

number of incorrectly negatively annotated voxels. A p-value of < 0.05 was considered 

statistically significant. 
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3. Results 

A. Patient characteristics 

The patient characteristics are presented in Table 7. The study cohort included 113 males 

(73%), and the mean age was 66 ± 10 years. Body mass index, risk factors, and history of 

coronary artery disease at the time of CTA examination are listed in Table 7. 



 

66 

 

Table 7 Patient characteristics 

Number of patients 156 

Age, years (mean ± SD) 66 ± 10 

Male, n (%) 113 (73) 

Body mass index, kg/m2 27 ± 5 

Risk factors and history of coronary artery disease   

Diabetes, n (%) 27 (17) 

Hypertension, n (%)  81 (52) 

Hyperlipidemia, n (%) 110 (71) 

Current smoker, n (%) 11 (7) 

Previous myocardial infarction, n (%) 2 (1) 

Symptoms   

Typical angina, n (%) 8 (5) 

Atypical angina, n (%) 12 (8) 

Nonanginal chest pain, n (%) 45 (29) 

Shortness of breath, n (%) 72 (46) 

Asymptomatic, n (%) 55 (35) 
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B. Experiments 

The proposed model was trained for 70 epochs; we chose the best performance model dur-

ing the training. We tested its performance according to the general threshold model and 

the scan-specific threshold model separately. In the training process, we measured training 

loss, training accuracy, validation loss, and validation accuracy. We also measured dice 

coefficient on the test dataset. Tables 8–11 show the training results according to the general 

threshold model and the scan-specific threshold model. Figure 11 shows a representative 

example for the training procedure. 
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Table 8 Training results on lumen model with general threshold dataset. 

  Lumen model 

  
Best 

Epoch 

Training 

Loss 

Training 

Acc 

Validation 

loss 

Validation 

Acc 

0_fold 60 0.0226  0.9954  0.0242  0.9959  

1_fold 61 0.0236  0.9958  0.0237  0.9959  

2_fold 62 0.0222  0.9961  0.0237  0.9959  

3_fold 61 0.0237  0.9957  0.0250  0.9958  

4_fold 65 0.0262  0.9960  0.0241  0.9958  

5_fold 68 0.0245  0.9955  0.0242  0.9959  

6_fold 50 0.0260  0.9954  0.0252  0.9957  

7_fold 70 0.0245  0.9955  0.0242  0.9959  

8_fold 48 0.0255  0.9955  0.0253  0.9956  

9_fold 70 0.0249  0.9956  0.0231  0.9960  

Aver-

age 
  0.0244  0.9957  0.0243  0.9958  

Acc = Accuracy 
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Table 9 Training results on calcified plaque model with general threshold dataset. 

  Calcified plaque model 

  
Best 

Epoch 

Training 

Loss 

Training 

Acc 

Validation 

loss 

Validation 

Acc 

0_fold 29 0.0223  0.9982  0.0077  0.9986  

1_fold 30 0.0115  0.9983  0.0069  0.9988  

2_fold 30 0.0196  0.9981  0.0085  0.9985  

3_fold 29 0.0114  0.9986  0.0071  0.9987  

4_fold 59 0.0055  0.9990  0.0063  0.9989  

5_fold 59 0.0047  0.9992  0.0060  0.9989  

6_fold 40 0.0231  0.9983  0.0068  0.9987  

7_fold 29 0.0234  0.9983  0.0068  0.9988  

8_fold 50 0.0100  0.9995  0.9984  0.9988  

9_fold 50 0.0110  0.9986  0.0073  0.9987  

Aver-

age 
  0.0142  0.9986  0.1062  0.9987  

Acc = Accuracy 
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Table 10 Training results on lumen model with scan-specific threshold dataset. 

  Lumen model 

  Best Epoch Training loss Training Acc Validation loss Validation Acc 

0_fold 36 0.0239  0.9958  0.0238  0.9959  

1_fold 37 0.0229  0.9959  0.0233  0.9960  

2_fold 38 0.0218  0.9961  0.0237  0.9960  

3_fold 36 0.0252  0.9955  0.0236  0.9958  

4_fold 39 0.0235  0.9958  0.0231  0.9960  

5_fold 34 0.0245  0.9956  0.0242  0.9959  

6_fold 37 0.0229  0.9958  0.0230  0.9960  

7_fold 33 0.0252  0.9952  0.0244  0.9959  

8_fold 27 0.0457  0.9948  0.0273  0.9954  

9_fold 40 0.0219  0.9961  0.0235  0.9960  

Average   0.0257  0.9957  0.0240  0.9959  

Acc = Accuracy 
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Table 11 Training results on calcified plaque model with scan-specific threshold dataset. 

  Calcified plaque model 

  
Best 

Epoch 

Training 

Loss 

Training 

Acc 

Validation 

loss 

Validation 

Acc 

0_fold 40 0.0059  0.9990  0.0060  0.9989  

1_fold 40 0.0052  0.9990  0.0054  0.9990  

2_fold 40 0.0052  0.9990  0.0054  0.9990  

3_fold 39 0.0045  0.9992  0.0068  0.9989  

4_fold 36 0.0047  0.9992  0.0055  0.9990  

5_fold 43 0.0053  0.9990  0.0055  0.9990  

6_fold 39 0.0056  0.9990  0.0057  0.9990  

7_fold 38 0.0053  0.9990  0.0057  0.9990  

8_fold 37 0.0064  0.9991  0.0058  0.9990  

9_fold 38 0.0508  0.9991  0.0569  0.9990  

Aver-

age 
  0.0099  0.9991  0.0109  0.9990  

Acc = Accuracy 

  



 

72 

 

 

Figure 11 A representative example of training procedure. This image was captured on 

Tensor board. 
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B. Quantitative CTA measures 

Out of 716 lesion segments, MLA, DS, CDD, and CP volume were measured. The typical 

time for computation was <32 seconds on a standard Windows workstation (mean 31.1 ± 

21.0 seconds). Figure 12 shows a representative case example of quantitative plaque anal-

ysis from our study. Figures 13-16 show the correlations and Bland-Altman plots for the 

quantitative measures MLA, DS, CDD, CP volume. Overall, both general threshold and 

scan-specific threshold quantifications showed excellent correlation and agreement for 

MLA, DS, CDD, and CP volume with expert quantification. The scan-specific threshold 

quantification demonstrated Spearman rank coefficients from 0.96 to 0.99, and the general 

threshold quantification showed rank coefficients from 0.86 to 0.91.  
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C. Plaque quantification validation 

We compared the CP volumes from CTA with the reference volumes from IVUS. Table 12 

shows the measured plaque volumes. Our deep learning model measured CP volumes that 

were close to the reference CP volumes (mean 144 mm³ vs. 151 mm³, CTA, IVUS, respec-

tively). 

Table 12 Calcified plaque volume from C-CTA and IVUS 

Case # 
Calcified plaque volume (mm³) 

CTA IVUS 

00 288 313 

01 60 81 

02 256 234 

03 135 119 

04 82 88 

05 94 171 

06 99 103 

07 179 184 

08 102 58 

09 145 161 

average 144 151 
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D. Plaque quantification validation for selective CTA 

We compared the CP volumes from S-CTA, C-CTA, and IVUS and calculated the differ-

ence between the CP volumes. The proposed deep learning model measured CP volumes 

that were close to the reference CP volumes (mean 142 mm³ vs. 151 mm³, CTA, IVUS, 

respectively). Volume differences of S-CTA − IUVS and C-CTA − IUVS were calculated. 

The mean difference from S-CTA − IVUS showed less difference than C-CTA − IVUS. 

The maximum volume difference between S-CTA and IUVS was 26 mm³, but the maxi-

mum difference between C-CTA and IVUS was 77 mm³ (case number 05). Table 13 shows 

the CP volume measurement results. 
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Table 13 Calcified plaque comparison between S-CTA/C-CTA and IUVS 

Case # 

Calcified plaque volume (mm³) Volume difference (mm³) 

S-CTA C-CTA IVUS S-CTA - IVUS C-CTA - IVUS 

00 302 288 313 11 25 

01 68 60 81 13 21 

02 218 256 234 16 22 

03 113 135 119 6 16 

04 79 82 88 9 6 

05 145 94 171 26 77 

06 94 99 103 9 4 

07 176 179 184 8 5 

08 64 102 58 6 44 

09 167 145 161 6 16 

aver-

age 
142 144 151 11 24 
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Figure 72 Representative case example of lumen and calcified plaque quantification 

in the proximal to mid left anterior descending artery (LAD). (A) Curved planar 

reformation view on the lesion. (B) The cross-sectional image at the level of ob-

structive lesion (indicated in green). (C) The cross-sectional image at the level of 

minimal lumen area (indicated in red). (D) and (E), and (F) are expert quantification 

of the lesion. (G) and (H), and (I) are deep learning quantification of the lesion. 

Blue indicates contrast-enhanced lumen and yellow indicates calcified plaque. In 

expert quantification, MLA: 2.9 mm2, DS: 43.7%, CDD: 8.1%, and CP volume 71.6 

mm3. Compared to deep learning quantification, MLA: 2.9 mm2, DS: 43.1%, CDD: 

7.6%, and CP volume 86.5 mm3. 
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Figure 83 (A) Spearman correlation and (B) Bland-Altman plots on minimal lumen area 

evaluation between deep learning and expert quantification. A strong Spearman correlation 

was observed r = 0.984, and 95% of limits agreements were -1.2 to 1.2 mm2. 

 

Figure 94 (A) Spearman correlation and (B) Bland-Altman plots on percent diameter ste-

nosis evaluation between deep learning and expert quantification. A strong Spearman cor-

relation was observed r = 0.957. The 95% of limits agreements were -7.7 to 9.5 %. 
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Figure 105 (A) Spearman correlation and (B) Bland-Altman plots on percent contrast den-

sity difference evaluation between deep learning and expert quantification. A strong Spear-

man correlation was observed r = 0.975, and 95% of limits agreements were -3.9 to 3.8 %. 

 

Figure 116 (A) Spearman correlation and (B) Bland-Altman plots on calcified plaque vol-

ume evaluation between deep learning and expert quantification. A strong Spearman cor-

relation was observed r = 0.999, and 95% of limits agreements were -5.5 to 6.1 mm3. 

 

Table 14 shows the DSC results for lumen and CP annotations (scan-specific threshold) 
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during the 10-fold cross-validation. Table 15 shows the median and IQR of the imaging 

biomarkers with the p-values for pairwise comparison between deep learning and expert 

quantification. The correlation coefficients and Bland-Altman 95% confidence intervals for 

the comparison of quantitative plaque measures using general or scan-specific threshold 

are shown in Table 15.  
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Table 14 Dice similarity coefficient between expert and deep learning annotations for 10-

fold cross-validation 

No. of fold DSC for Lumen DSC for CP 

0_fold 0.96  0.91  

1_fold 0.96  0.91  

2_fold 0.96  0.90  

3_fold 0.95  0.91  

4_fold 0.96  0.90  

5_fold 0.95  0.88  

6_fold 0.96  0.92  

7_fold 0.95  0.89  

8_fold 0.95  0.90  

9_fold 0.95  0.91  

Mean DSC 0.95  0.90  

Dice similarity coefficient (DSC) evaluates the segmentation performance. The value of 

the DSC ranges from 0 to 1, where 0 means that there is no similarity and 1 means that 

there is complete similarity. 
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While the p-values were significant for all the biomarkers for the general thresholds, MLA 

and CDD were not significantly different from expert quantification for scan-specific 

threshold only (P=0.6786 and P=0.2996, respectively). From the Bland-Altman plots in 

Figures 13-16, for all the quantitative measures, the 95% limits of agreement for the general 

thresholds were wider by 200-300%, indicating worse agreement with the expert reader 

(Table 15). Even for scan-specific thresholds, however, there were few outliers, and these 

could be attributed to ostial lesions particularly at the ostium of the Left Main artery, per-

formance of deep learning was lower/less accurate in these lesions. Table 16 shows the 

absolute difference between 2 expert readers for the quantitative parameters. For all the 

quantitative parameters, 95% limits of agreement for the deep learning method were within 

range of the differences between 2 expert readers.  
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Table 15 Comparison of deep learning vs expert evaluation for measured parameters (me-

dian and interquartile ranges are reported for each measure) 

 Plaque thresholds utilized  

Quantitative parameter  General Scan-specific 

Minimal Lumen Area (mm2)   

Deep Learning Evaluation 4.2 (2.5 - 6.4) 4.4 (2.6 - 6.6) 

Expert (manual) Evaluation 4.4 (2.6 - 6.6) 4.4 (2.6 - 6.6) 

P – value 0.0043 0.6786+ 

Correlation 0.915  0.984 

Bland Altman (95% limits) -2.7, 2.3 -1.3, 1.3 

CP volume (mm3)   

Deep Learning Evaluation 10.1 (1.4 - 32.0) 10.2 (1.7 - 33.9) 

Expert (manual) Evaluation 10.3 (1.7 - 33.9) 10.3 (1.7 - 33.9) 

P – value <0.0001 <0.0001 

Correlation r = 0.859 r = 0.999 

Bland Altman (95% limits) -33.4, 31.6 -5.5, 6.1 

Diameter Stenosis (%)   

Deep Learning Evaluation 28.2 (17.3 - 39.6) 26.6 (16.3 - 38.5) 

Expert (manual) Evaluation 26.0 (15.1 - 37.9) 26.0 (15.1 - 37.9) 

P – value <0.0001 <0.0001 

Correlation r = 0.873 r = 0.957 

Bland Altman (95% limits) -18.3, 23.0 -7.7, 9.5 

Contrast density difference (%)   

Deep Learning Evaluation 13.2 (7.6 - 21.4) 11.2 (5.6 - 18.4) 

Expert (manual) Evaluation 11.6 (6.0 - 18.3) 11.6 (6.0 - 18.3) 

P – value <0.0001 0.2996+ 
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Correlation r = 0.873 r = 0.975 

Bland Altman (95% limits) -8.0, 12.0 -3.9, 3.8 

Generic indicates that general threshold applied CNN model, Scan-specific indicates that 

scan-specific threshold applied CNN model. Median (1st quartile – 3rd quartile), P-value is 

Wilcoxon rank sum test and p < 0.05 is considered as significant. +For MLA and CDD, 

pairwise differences were significantly not different for the scan-specific method, in-

dicating equivalence. 
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Table 16 Inter-observer variability (absolute difference) in quantitative measures 

Quantitative parameters   

Minimal Lumen Area (mm2)   

Mean 1.5 ± 2.2 

95% CI 0 - 6.3  

CP volume (mm3)  

Mean 5.6 ± 19.9  

95% CI 0 - 51.1 

Diameter Stenosis (%)  

Mean 11.6 ± 11.8 

95% CI 1.0 - 36.0 

Contrast density difference (%)  

Mean 2.6 ± 2.6 

95% CI 0 – 7.9 

For all quantitative parameters, 95% limits of agreement for the deep learning method were 

within range of the differences between 2 expert readers.  
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E. Coronary calcium score from quantitative CTA 

CCS was calculated from CTA from CP volume. In 47 patients where non-contrast CT data 

was available, CCS derived from CP volume showed strong correlation with CCS from 

non-contrast CT (Spearman rank correlation=0.8784, p<0.0001) and did not differ signifi-

cantly [484.3 ± 633.5 vs. 514.2 ± 689.4, p=0.11]. 
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4. Discussion 

In this study, we evaluated the feasibility of deep learning for quantitative coronary artery 

analysis and showed that clinically relevant parameters such as MLA, DS, CDD, and CP 

volume could be accurately measured from CTA. We further showed that the coronary cal-

cium score could be measured from contrast-enhanced CTA following such measurement. 

Our deep learning model successfully captured intrinsic features of contrast-enhanced lu-

men and CP from CTA. To the best of our knowledge, this has not been demonstrated before. 

We also evaluated two sets of plaque thresholds for measurement of MLA, DS, CDD, and 

CP volume. These two methods showed a strong correlation with expert quantification, 

with scan-specific thresholds yielding more accurate results. While this requires minor 

manual interactions (the placing of a standard region-of-interest at the aortic root), these 

are not time-consuming tasks and with further development of this new approach, could 

potentially become fully automated. 

Deep learning, a particular form of machine learning, has been recently applied to other 

noninvasive imaging, both by our group and others; our study is in line with and extends 

these studies. Myocardial perfusion imaging with Single Photon Emission Computed To-

mography can be automatically interpreted by deep learning.59 We have shown that epicar-

dial adipose tissue, a metabolically active fat depot directly surrounding the coronary ar-

teries, can be quantified automatically using deep learning from non-contrast CT.57 Deep 

learning can potentially identify hemodynamically significant coronary stenosis by analyz-

ing the left ventricle from CTA.58 Our deep learning method allows rapid measurement (1.7 
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± 1.1 seconds per lesion) of quantitative stenosis parameters such as MLA, DS, and CDD, 

as well as plaque features such as CP volume and coronary calcium score derived from 

CTA. While currently these parameters are not included in standard clinical reporting, by 

utilizing our novel approach such quantitative data could become routinely available. CDD 

is a quantitative measure of luminal contrast kinetics, and our recent work has shown that 

this parameter is related to both lesion-specific ischemia54, 69 and cardiac death.70 Our study 

showed that there is no difference between manual evaluation and deep learning evaluation 

of CDD. The coronary calcium score is a strong predictor of major adverse cardiovascular 

events; however, it is typically not quantified from contrast-enhanced CTA. 

In the validation, we compared CP volumes from S-CTA and C-CTA with IVUS. We used 

only 10 test volumes paired with C-CTA, S-CTA, and IVUS. It was not enough to calculate 

statistical significance but we found that CP volume from S-CTA was closer to the refer-

ence volumes. S-CTA produced hologenetic luminal enhancement, and it caused better 

quantification performance even though we applied same CNN architecture and same pa-

rameters. On-site evaluation of S-CTA is possible with the proposed CNN model. 

We can obtain the calcium score without additional non-contrast CT scan. Once incorpo-

rated into the software, such deep learning models can enhance CTA clinical report by re-

porting stenosis grades, and the presence of obstructive stenosis, as well as the coronary 

calcium score. Further, change in quantitative stenosis could provide a simple measure of 

total plaque progression in serial studies71 and allow clinicians to monitor progression or 

regression of a disease. 
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This study has some limitations. Our deep learning quantification was still semi-automatic, 

with minor manual operations required from the observer. Since the model was performed 

on a designated lesion segment, the observer set the proximal and distal limits of the lesion. 

While scan-specific plaque thresholds, as applied in this study, showed more accurate 

agreement with expert readers, it can be considered as a bias. In this feasibility study, we 

did not include non-calcified plaque measurement; for this task, a more complex deep-

learning architecture, with shape regularization of the vessel wall,57 similar to the expert 

reader annotations, may be necessary. 

5. Conclusions 

Our deep learning-based method enables quantitative measurement of coronary artery dis-

ease and coronary calcium score accurately and may enhance clinical reporting. 
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Abstract (in Korean) 

 

관상동맥 질환 평가를 위한 새로운 방법론:  

새로운 영상 획득 기법부터 심층학습기반 자동 정량화까지 

 

<지도교수 장혁재> 

 

연세대학교 대학원 의과학과 

 

홍영택 

 

심혈관 질환은 여전히 세계에서 사망률의 주요 원인이다. 관상 동맥 단층 촬

영 혈관 조영(CTA)은 관상 동맥 질환(CAD)의 진단을 위한 신뢰할 수 있는 비

침습적 영상 모달리티로 자리 잡았다. 그러나 CAD의 진단-치료 현장 평가는 

여전히 어려운 문제이다. 이 문제를 해결하기 위해, 이 논문은 새로운 영상 획

득 기법에서부터 딥 러닝기반 자동 정량화까지 다룬다. 고품질 CTA를 얻기 

위해 동물실험을 통해 도관 직접 주입방식의 선택적 CTA(S-CTA)를 개발했으

며, CAD를 진단받은 환자에게 S-CTA의 임상적 타당성을 성공적으로 검증했다. 

자동 정량화는 합성곱 신경망(CNN)을 이용해 개발했으며, 개발된 CNN모델은 

최소 내강 면적, 직경 협착증 및 플라크 볼륨 등을 성공적으로 측정했습니다. 

S-CTA가 자동 정량화에 사용될 때 개발된 CNN은 종래의 CTA보다 더 나은 
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혈관 내강과 석회화 플라크의 본질적 특징을 성공적으로 분석할 수 있었다. S-

CTA는 관상 동맥 혈관 조영 시스템과 CT 스캔을 함께하는 결합 시스템에서 

시술 중 사용가능한 CTA방법으로 활용될 수 있습니다. S-CTA는 관상 동맥 중

재시술 중 협착증에 대한 현장 평가 및 시술 전략 수립을 지원할 수 있습니다. 

핵심 단어: 관상동맥 질환, 관상동맥 조영술, 컴퓨터 단층촬영, 딥 러닝, 영

상 분할 

 


