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ABSTRACT

Analyses of molecular and cellular mechanisms of hypothetical

protein FAM188B function in gastrointestinal cancer

Eun-Seok Choi

Department of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Hyoung-Pyo Kim)

It has been previously reported that FAM188B has significant differential
exon usage in cancers (NCBI GEO GSE30727), but the expression and function
of FAM188B are not well characterized. Here, | explored the functions of
FAM188B by a knockdown strategy, using siRNAs specific for FAM188B in
gastric and colon cancer cell lines. FAM188B is a novel gene encoding a protein
that is evolutionarily conserved among mammals. Its mMRNA has been found to
be highly expressed in most solid tumors, including gastric and colorectal
cancer. FAM188B knockdown induced apoptosis in cancer cell lines, and
simultaneous treatment of anticancer drugs and siFAM188B had a synergistic

1



effect on reducing cell viability in gastric cancer. To identify the underlying
mechanism, siFAM188B was transfected into colon cancer cell lines.
Interestingly, siFAM188B treatment induced the upregulation and activation of
p53, and consequently increased the p53-regulated pro-apoptotic proteins
PUMA and BAX. Proteomic analysis of FAM188B immunocomplexes revealed
p53 and USP7 as putative FAM188B-interacting proteins. Deletion of the
putative USP7-binding motif in FAM188B reduced the interaction of
FAM188B with USP7. It is noteworthy that FAM188B knockdown resulted in a
decrease in overall ubiquitination of p53 immunocomplexes, as well as p53
ubiquitination, because USP7 is involved in p53 deubiquitination and
FAM188B has recently been proposed as a putative deubiquitinase. FAM188B
knockdown inhibited both colony formation and anchorage-independent growth
in vitro. In addition, FAM188B knockdown by siRNA reduced tumor growth in
xenografted mice, with an increase in p53 expression. Taken together, our data
suggest that FAM188B has a putative oncogenic function, controlling p53
stability to promote cell growth. Therefore, control of FAM188B could be a

possible target to inhibit tumor growth.

Key words: FAM188B, p53, hypothetical protein, cancer, deubiquitinase USP7
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Analyses of molecular and cellular mechanisms of hypothetical

protein FAM188B function in gastrointestinal cancer

Eun-Seok Choi

Department of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Hyoung-Pyo Kim)

I. INTRODUCTION

1. Stomach cancer and colon cancer

Stomach cancer is the third leading cause of cancer death in both sexes
worldwide (723,000 deaths, 8.8% of the total). In particular, the highest
estimated mortality rates are in Eastern Asia (24 per 100,000 in men, 9.8 per
100,000 in women).! Thus, it is necessary to develop a therapeutic strategy to
overcome the high mortality rates caused by stomach cancer. Stomach cancer is
composed of heterogeneous cell populations that manifest malignancy by
aberrantly regulating cell proliferation, differentiation, angiogenesis, migration,
and metastasis,? and its carcinogenic process is complex.3*
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Colorectal cancer (CRC) is the third most prevalent cancer worldwide and is
a major contributor to cancer mortality.> CRC is heterogeneous disease,
biologically classified into three major groups according to their molecular
characteristics. The first is the chromosomal instable group, which accumulates
mutations in specific oncogenes and tumor suppressor genes. The second class
is the microsatellite instability (MSI) group, which leads to genetic hyper
mutation, and the third is distinguished by CpG island methylation.® In addition,
large-scale genomic studies have been conducted to advance our understanding
of CRC at a molecular level, including The Cancer Genome Atlas analysis of
276 colon cancer patients.” Many critical pathways contribute to the
development of CRC, including APC, WNT, RAS-MAPK, PI3K, TGF-3, TP53,
and DNA mismatch repair.” However, despite these efforts, there is still lack of
detailed characterization for low to intermediate frequency mutations or novel
candidates. Therefore, it is necessary to continue to search for novel genes

related to carcinogenesis.

2. Hypothetical protein FAM188B

Substantial proportions of genes (59%) in the human genome are reported as
‘hypothetical’ and are annotated as being of ‘unknown function’.® Hypothetical
proteins are predicted from nucleic acid sequences and their existence has not
been experimentally proven. Another feature of the hypothetical protein is that

it has low identity compared to known proteins.® However, despite their

4



hypothetical status, which can be an obstacle to investigations of their
expression patterns and potential functions in cellular pathways, such genes are
often expressed to varying degrees in disease and are therefore biomedical
relevant.’® Thus, excluding ‘unknown’ or ‘hypothetical’ genes from analyses of
candidate targets removes the opportunity to explore unprecedented molecular
mechanisms that may be involved in clinically significant pathological
dysfunctions. Recently, a hypothetical protein, FAM63A, was characterized to
interact with ubiquitin and identified as a new DUB family member, and the
analysis of evolutionarily conservation among human genomes identified
several homologues including FAM63B, FAM188A, and FAM188B. The
comparison of protein sequences showed these proteins shared a conserved
region, a catalytic domain for the hydrolysis of ubiquitin at the carboxyl
terminal of proteins. They were named MINDY (motif interacting with Ub

containing novel DUB family) lysine 48 deubiquitinase.!

3. Apoptosis and cancer

Programmed cell death inhibits the development of cancer naturally through
apoptosis of abnormal cells, but cancer develops when this mechanism is
disrupted.*? Typically, when chromosomal abnormality occurs, the expression
of tumor suppressor P53 is increased, leading to apoptosis of the cells.!®
Regulation of p53 is controlled by various post-translational modifications. The
ubiquitin-proteasome system (UPS) is the main pathway for controlling protein

5



integrity, and is central to the regulation of many cellular functions, notably
including cell survival and death.}* !> Ubiquitination is a remarkably complex,
specific, three-enzyme (E1-E2-E3) cascade that utilizes two E1, ten E2, and
hundreds of E3 ubiquitin ligases.’* Deubiquitinases (DUB, ubiquitin
isopeptidase) are UPS components that catalyze removal of an ubiquitin moiety
from poly-ubiquitin chains,’* the human genome encodes 98 DUB genes
classified into 6 families.” Thus, the dynamic and combinatorial interactions
between ubiquitination and deubiquitination set the threshold for apoptotic
signaling.’® For example, the E3 ubiquitin ligase MDM2 ubiquitinates the tumor
suppressor p53, and DUBSs, such as ubiquitin-specific proteases USP2a, USP7,
USP10, USP22, and USP42, are involved in regulating the stability of p53 and
MDM2 by removing ubiquitin moieties.** 92! However, what determines

whether p53 or MDM?2 is the primary USP substrate is not known.8 22



Il. MATERIALS AND METHODS

1. Datasets and extraction of differentially expressed genes
The mRNA expression profiling for cancer cell lines was obtained from
Cancer Cell Line Encyclopedia (CCLE) database

(https://portals.broadinstitute.org/ccle).?* Gene expression datasets for colorectal

cancers (GSE20842?* and GSE20916% were retrieved from NCBI Gene
Expression Omnibus and TCGA Colorectal 2 (215 colorectal adenocarcinoma
and 22 paired normal colorectal tissue samples were analyzed. This dataset is a
combination of Colon Adenocarcinoma [COAD] and Rectum Adenocarcinoma
[READ] data from the TCGA data portal and consists of Level 2 (processed)
data. Corresponding DNA copy number data is available in TCGA Colorectal
2.)) These datasets were used for the analysis of the up-regulated genes of
colorectal cancer in Oncomine (https://www.oncomine.org/).?® Differentially
expressed genes were extracted by selecting discrimination criteria for >2x of
expression difference with p-value < 0.001 between normal tissues and
colorectal adenocarcinoma. PANTHER Gene Ontology tool was used to
classify the overlapping genes and | focused on the “unclassified” 155 genes
which are most frequently classified and are not belonged to any three
classification criteria (biological process, molecular function and cellular

component).?’


https://portals.broadinstitute.org/ccle

2. Drug resistance test

Cells, plated in 6-well culture plates (8x10* cells/well), were transfected with
5 nM siFAM188B or NC siRNA using Lipofectamine RNAIMAX (Thermo
Fisher Scientific, San Jose, CA, USA). All drugs (etoposide and cisplatin) were
treated at various ranges of concentrations (0.5~4.0 uM and 2.5~40.0 uM,
respectively) 24 hr after siRNA transfection. Cytotoxicity was measured at 48
hr and 72 hr after drug treatment by tetrazolium dye MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

3. Short hairpin RNA (shRNA) treated stable cell lines
For lentivirus production, HEK293T cells were seeded at a density of
3.5x10° cells per 100 mm dish. Five plates for each constructs were prepared

and incubate at 5% CO,, 37°C incubator for 24 hr. The mixture of plasmids

(FAM188B-targeting sShRNA plasmids, pSPAX2, and pMD2.G) was
transfected into the prepared cells next day. Supernatant of HEK293T cells was
harvested after 48 hr and concentrated with Lenti-X concentrator (Clonetech) at

4°C for 16 hr. Concentrated viruses were infected into prepared HCT-116 cells

in 6-well plates (3.0x10° cells/well) with Polybrene (Sigma-Aldrich). Media

was replaced after 6 hr incubation to remove the remained viruses. sShFAM188B

infected cells were classified as GFP signal and collected by flow cytometry.
FAM188B-targeting ShRNA sequences: sShFAM188B#1 (5’-CTT TGG AAA

TAC GGC TAA CAA-3’) and shFAM188B#2 (5’-CAG ATA CTT TCT GGA
8



TCACTT-3)

4. Analysis of the FAM188B sequence conservation

Amino acid sequence of Larimichthys crocea,?® Nothobranchius kadleci,
Nothobranchius rachovii, Aphyosemion striatum, Fundulus heteroclitus,
Xenopus tropicalis,?® Alligator mississippiensis,® Mus musculus,® Bos taurus,
Callithrix jacchus,® Macaca fascicularis,*®* Macaca mulatta,® Pongo abelii,
Pan troglodytes, and Homo sapiens® were obtained from GenBank. Sequences

were aligned using Clustal Omega software®® and draw the phylogram.

5. Cell culture and human tissue samples

The human cell lines used in these studies (HCT-116, SW620, HT-29, AGS,
SNU-638, A549, U87, JIMT1, MDA-MB-231, HeLa, HEK293 and HDF) were
obtained from American Type Culture Collection (Manassas, VA, USA) or
Korean Cell Line Bank (Seoul, Korea). All the cells were cultured with
designated media (Corning, Manassas, VA, USA) supplemented with 10% fetal
bovine serum (Corning) and 1x Penicillin Streptomycin (Invitrogen, Carlsbad,
CA, USA) at 37°C containing 5% CO..

Fresh human stomach tissue samples were obtained from patients
undergoing surgery and were stored in RNA Later solution (Qiagen, Hilden,
Germany) for total RNA extraction or in liquid nitrogen for protein extraction.
All patients provided informed consent prior to collection of tissues, and the

9



study was approved by the Institutional Review Board of National Cancer

Center, Korea (NCCNCS13732).

6. Reverse transcription polymerase chain reaction (RT-PCR) and
quantitative RT-PCR (qRT-PCR)

Total RNA was extracted using TRIzol reagent (Invitrogen, Waltham, MA,
USA) according to the manufacturer’s protocol and was purified using an
RNeasy column with RNase-free DNasel treatment (Qiagen, Hilden, Germany).
First-strand cDNA was synthesized from 1 pg of total RNA using a
Transcriptor cDNA  Synthesis kit (Roche, Basel, Switzerland) and
poly-d(T)18-21 primers.

Primers and probes for RT-PCR and gRT-PCR that spanned two consecutive
exons were designed using Primer3 software (http://frodo.wi.mit.edu/primer3/).
gRT-PCR reactions were performed using a LC480 real-time PCR machine
(Roche). FAM188B targeting probe sequences: [FAM]-TGT TTG AAG GAG
ATA GCAAAG CCG ACT GTG-[TAMRA]

Primer sequences are listed in Table 1.

10
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Table 1. Primer sequences for PCR reactions

Target name Forward primer (5’ - 3) Annealing
g Reverse primer (5’ - 3°) temp. (°C)
FAM188B GAG TCC TGG CAG CTG TCC AA 54

GCATCT GAAGGC TGCAGT CC

ACTB CAT CGAGCACGG CAT CGT CA 58
TAG CAC AGC CTG GAT AGC AAC

BAX TTG GGC TCA CAA GTT AGA GAC 60
promoter_p53RE  AAG

CCT GGA TCT AGC AAT ATA GCC

CAC

PUMA TCAGTGTGT GTGTCCGACTGTC 60
promoter_p53RE  GGC AGG GCC TAG CCCA

7. Plasmid constructs

FAM188B was cloned into pGEM-T easy, pFLAG-CMV2, pAcGFP-Cl1,
pACGFP-N3, and pcDNAS3.1 vector. Ubiquitin tagged with HA and p53 wild
type constructs were cloned into pcDNA3.1 vector. pCl-neo-FLAG-HAUSP
(FLAG-tagged USP7) was obtained from Addgene. FAM188B-targeting
SshRNA sequences were cloned into pHRST vector. pSPAX2, and pMD2.G

were used for lentivirus propagation.

8. FAM188B antibody generation
For the detection of FAM188B, | generate polyclonal antiserum by

immunization with hemocyanin-conjugated peptides with sequences predicted

11



to be antigenic as well as specific for the FAM188B protein C-terminus
(722~738 amino acid residues: TISEDTDNDLVPPLELC - 17mer) (AbFrontier,

Seoul, Korea).

9. Western blot analysis

Harvested cells were lysed using M-PER Mammalian Protein Extraction
Reagent (Thermo Fisher scientific) with protease inhibitor cocktail (Roche).
Protein separation was performed by sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to polyvinylidene fluoride (PVVDF)
membranes (Merck Millipore, Billerica, MA, USA). Membranes were blocked
with 5% skim milk and incubated following antibodies: FAM188B (F374C),
GAPDH, GFP (JL-8), p53 (DO-1), p53 (FL393), p-p53 (Serl5), p21, BAX,

PUMA, USP7, a-tubulin, HA, ubiquitin, FLAG-M2, PARP, Caspase-3

10. Small interfering RNA transfection

FAM188B expression was silenced in HCT-116 colon cancer cells by
transfecting with FAM188B-specific siFAM188B (Qiagen) targeting the
sequence 5’-CTG ACC ATT GAC ACC ACC CAA-3’, Allstar negative control
(NC) siRNA (Qiagen) was used as a negative control. Cells, plated in 6-well
culture plates (8x10* cells/well), were transfected with 5 nM siFAM188B or NC
siRNA using Lipofectamine RNAIMAX (Thermo Fisher Scientific) according

to the manufacturer’s protocol.
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11. DNA fragmentation assay

Cells were seeded on coverslips and incubated at 37°C containing 5% CO;

incubator for overnight. After 4% paraformaldehyde fixation step, nuclei were
stained by Hoechst33342 (0.1 ug/ml) for 5 min and washed three times. The
coverslips were mounted onto glass slides using mounting reagent and obtained
image from fluorescence inverted microscope Axio Observer Z1 (Zeiss,

Oberkochen, Germany) at 400x magnification.

12. Flow cytometry for cell cycle and apoptosis

The cell cycle was analyzed in cells transfected with siFAM188B by flow
cytometry after staining with propidium iodide (Sigma-Aldrich). Annexin V
assays for the detection of apoptotic populations was carried out using a BD
FITC annexin V apoptosis detection kit | (BD Pharmingen, San Jose, CA, USA)

according to the manufacturer’s protocol.

13. Migration and invasion assay

Migration and invasion assays were performed according to the
manufacturer's instructions. Cells (1x10°) in 0.2 ml of serum-free medium were
seeded onto the top of each Transwell in 24-well cell culture plates or/and 0.75
ml of complete growth medium containing 1% FBS was added to each well in

the lower chamber. For invasion assay, Matrigel coating is needed before
13



addition of cells in Transwell. Following incubation for 48 hr at 37°C,
non-invasive cells were removed from the upper chamber, the cells attached to
the lower chamber were fixed and stained with Diff-Quik solution (Sysmex)

and then counted under a light microscope.

14. Proteomic analysis and profiling of interacting partners
Immunoprecipitation of FAM188B interacting proteins were performed
using HEK293 cells (1.5x10° cells/plate) transfected with 10 pg of
pFLAG-FAM188B plasmid and incubated for 48 hr, and processed with 40 ul
of anti-FLAG-M2 agarose affinity gel (Sigma-Aldrich) according to the
manufacturer’s protocol. Analyses were performed using an LTQ XL linear ion
trap mass spectrometer (MS) system (Thermo Fisher Scientific). All MS/MS
samples were analyzed using Proteome Discover software (version v.1.4;
Thermo Fisher Scientific), set up to search the Uniprot_sprot database and IPI

human database.

15. Immunocytochemistry

Cells were seeded on circular cover slip and fixed in 4% paraformaldehyde
(PFA) for 15 min at room temperature (RT). After fixation step, wash two times
with ice cold 1x PBS buffer and permeabilized in 1x PBS containing 0.25%
Triton X-100 for 10 min at RT. The samples were blocked with 1% BSA in

PBST buffer for 30 min and incubated primary antibody in humidified chamber

14



for 1 hr at RT. Dye-conjugated secondary antibodies were incubated for 1 hr at
RT and nucleus was stained with Hoechst33342 (0.1 ug/ml) for 5 min. The
coverslips were mounted onto glass slides using mounting reagent and images

were captured using confocal microscope (Zeiss 510 Meta, Carl Zeiss).

16. Nuclear fractionation

Cells were transfected with siRNAs (NC and siFAM188B) and harvested at
24 hr and 48 hr. After washing the cell pellet with 1x PBS solution, harvested
cells were lysed with 100 ul of Buffer A (10 mM HEPES, 1.5 mM MgCl,, 10
mM KCI, 0.5 mM DTT, 0.05% Igepal, pH7.9) for 10 min on ice. Supernatant
was the cytoplasmic fraction and it was moved to new 1.5 ml tube. The pellet
(3,000 rpm for 10 min at 4°C) was suspended with 75.2 ul of Buffer B (5 mM
HEPES, 1.5 mM MgCl,, 0.2 mM EDTA, 0.5 mM DTT, 26% glycerol (v/v),
pH7.9) and 4.8 ul of 5 M NaCl. Homogenized the pellet with micro-pestle and
leave it on ice for 30 min. Supernatant was aliquoted after additional

centrifugation (24,000 g for 20 min at 4°C).

17. Luciferase assay

Dual luciferase assays were performed according to the manufacturer’s
protocol (Promega, Madison, WI, USA). Briefly, HCT-116 cells were
transfected with NC siRNA or siFAM188B at a final concentration of 5 nM

together with pGL2-p21-luc (Addgene, Cambridge, MA, USA) and
15



pGL4.70hRluc (Promega) plasmids. After 24 and 48 hr, cells were harvested,
washed twice with cold 1x phosphate-buffered saline (PBS), and lysed using
passive lysis buffer. Lysates were added to LARII solution layered on the
bottom of a 96-well plate, and firefly luciferase activity was measured. A
second measurement of Renilla luciferase activity was then performed by
adding Stop&Go solution. All measurements were carried out using a Victor3

reader (Perkin Elmer, Waltham, MA, USA).

18. Chromatin immunoprecipitation assay

ChIP assays were performed using HCT-116 cells transfected with NC
siRNA or siFAM188B at a final concentration of 5 nM and incubated for 48 hr.
Cells were fixed in 1x PBS and 1% formaldehyde at 37°C for 10 min and
stopped by adding glycine at a final concentration of 0.125 M. Fixed cells lysed
with Igepal CA630 (Sigma-Aldrich) containing lysis buffer and centrifuged at
2,500 g for 5 min to collect nuclei. Collected nuclei were lysed and sonicated
for 7.5 min (0.5 min on, 1 min off cycles) using a Bioruptor sonicator
(Diagenode, Denville, NJ, USA). Fragmented genomic DNA was subsequently
immunoprecipitated using an anti-p53 antibody (DO-1) with protein A/G
agarose beads (Santa cruz Biotechnology). Immunoprecipitated DNA was
purified by phenol/chloroform/isoamyl alcohol extraction. Amplification of
BAX and PUMA genes was carried out using SYBR green master mix with
p53-RE primers using an LC480 real-time PCR machine (Roche).
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Amplification signals from immunoprecipitations were normalized to input

control DNA.

19. p53 ubiquitination assay

HCT-116 cells were seeded 8.0x10* cells per well in 6-well plate and
transfected with NC siRNA or siFAM188B. 100 uM of MG132 treated to
siRNA-treated cells for 4 hr before harvest. Pellets were lysed with M-PER
buffer (Thermo Scientific) with proteinase inhibitor (Roche) on ice for 1 hr.
Cell lysates were immunoprecipitated with anti-p53 (DO-1) or anti-HA
antibodies and immunoblotted with anti-HA or anti-p53 (DO-1) antibody,
respectively. Samples were loaded 1 mg for IP lanes and 20 ug for whole cell

lysate lanes.

20. Colony forming unit assay and soft agar assay

HCT-116 shRNA stable cells were plated at 1x10° cells/plate in a 6-well
culture plate. Doxycycline treatment was used for induction of shFAM188B.
On the seventh day after the shFAM188B induction, colonies were stained with
crystal violet (Sigma) and images of visible colonies were obtained by
fluorescence inverted microscope Axio Observer Z1.

HCT-116 cells (8.0x10* cells/well) were treated with NC siRNA or
siFAM188B and incubated at 37°C 5% CO; containing incubator for 16 hr.

HCT-116 cells were suspended in McCoy’s 5A containing 0.35% low melting
17



agarose and plated onto solidified 0.6% agarose containing McCoy’s 5A in
six-well culture plates at a density of 5 x 10° cells per well. After incubating for
3 wk at 37°C in the 5% CO; incubator, the number of stained colonies was
counted, and images were obtained. Three independent experiments were

carried out for each assay.

21. Establishment of xenograft and tumor treatment in vivo with
siFAM188B

Single-cell suspension of colon cancer cell line HCT-116 (2.0x10° cells) in
100ul of 1xPBS was subcutaneously injected in 6 wk old male BALB/c nude
mice (CANnN.Cg-Foxnlnu/CrljOri, Orient Bio, Korea). When the tumor size
reached 30mm3, Allstars negative control (Qiagen) or FAM188B (Qiagen)
SiRNA were injected into tumor via electroporation according to the
manufacturer’s instructions using NEPA21 Super Electroporator Typell (Nepa
Gene Co., Chiba, Japan). Electroporation was repeated every 7 days and
monitored the tumor size twice a week for up to 3 wk. Each tumor volume was
calculated by the modified ellipsoidal formula (Length x Width x Width) / 2.
Length indicates the longest dimension of the tumor and width means shorter
dimension, parallel to the mouse body. The experiment procedure and protocol
were approved by Institutional Animal Care and Use Committee in National

Cancer Center of Korea (NCC-16-231).
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22. Immunohistochemical staining
Tumor tissues were fixed with 10% neutral buffered formalin.
Formaldehyde-fixed specimens were paraffin-embedded and cut to a thickness

of 3 um. Sections were dried at 56°C for 1hr, and immunohistochemical

staining was performed with Discovery XT (Ventana Medical Systems, Tucson,
AZ, USA) as follows: sections were deparaffinized, rehydrated with EZ prep
(Ventana Medical Systems), and washed with reaction buffer (Ventana Medical
Systems). The antigens were retrieved with heat treatment in
Tris-ethylenediaminetetraacetic acid (EDTA) pH 8.0 buffer (CC1, Ventana
Medical Systems) at 90°C for 30 min for anti-FAM188B antibody (Atlas
Antibodies AB, Stockholm, Sweden) and p53 (FL353). Parallel sections

incubated with normal lIgGs (SantaCruz) instead of primary antibodies were

used as negative controls.

23. 3D structure prediction
FAM188B amino acid sequence was predicted and converted to PDB files at

Phyre2 server (http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index).

The predicted FAM188B 3D model was visualized by PyMOL ver.1.7 program.

24. Statistical analysis
The statistical significance of differences between groups was determined

using Student’s t-test. ANOVA was used to analyze the clinicopathological
19
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information in Prism software. Cox proportional hazard model was used to
evaluate the effect of patients’ characteristics on disease free survival and
overall survival. The survival curves were estimated using Kaplan-Meire
method, and the difference in survival curves was tested using the log-rank test.

P-value less than 0.05 was considered statistically significant.

20



I11. RESULTS

1. FAM188B is evolutionarily conserved in vertebrates

In the previous study, FAM188B was identified as a gene with significant
differential exon usage between gastric cancer tissues and paired adjacent
normal tissues in 30 gastric cancer patients based on comparisons of
transcriptomes using an Affymetrix Exon 1.0ST microarray (NCBI Gene
Expression Omnibus GSE30727).% However, FAM188B is annotated as ‘a
hypothetical protein’ for which the transcript is the only supporting evidence for
functionality in public databases. To characterize the function of FAM188B,
FAM188B homolog sequences were searched in ncbi  website
(https://www.ncbi.nlm.nih.gov/protein) and aligned 16 FAM188B sequences
from fish to human using EBI Clustal Omega.*® Of the 16 species, all of them
have highly conserved FAM188B catalytic residue in DUF4205 which is
recently classified probable ubiquitin carboxyl-terminal hydrolase domain
(Figure 1). Human is the most closely to primates such as P. troglodytes
(chimpanzee), P. abelii (orangutan), M. mulatta (rhesus macaque) and M.
fascicularis (crab-eating macaque) in the cladogram (Figure 2). Therefore, this
result suggested that FAM188B would be vital gene in vertebrates and

evolutionarily conserved.
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Figure 1. Alignments of FAM188B protein homolog sequences. Conserved
residues are indicated with asterisks (completely conserved) or dots (mostly

conserved).
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Figure 2. Cladogram based on the sequence alignment of 16 species.
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2. FAM188B is confirmed genuine gene and elevated in tumor tissues

| previously investigated transcript variants in gastric cancer and found
FAM188B among the numerous different exon usage genes.*® To identify the
existence of FAM188B, quantitative reverse transcription polymerase chain
reaction (QRT-PCR) was performed because this gene has been reported as
hypothetical protein and not characterized in any species. FAM188B mRNA
was detected in all 20 normal tissues and the mRNA expression was especially
more elevated in lung, thyroid, trachea, and uterus (Figure 3A). Since
FAM188B was picked from the differential gene expression analysis in gastric
cancer, | carried out absolute gRT-PCR using 75 gastric cancer patient tissues
(Table 2). Most of the patients showed that the fold change of FAM188B
MRNA was greater than base line (68 out of 75 patients) (Figure 3B). Mean of
FAM188B mRNA expression in tumor tissues also significantly increased
compared to normal tissues (Figure 3C). Herein, FAM188B was confirmed

genuine gene and it significantly increased in tumor tissues.
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Figure 3. Validation of FAM188B mRNA expression in normal mucosa and

gastric cancer tissues. (A) The mRNA expression was absolutely quantitated

using qRT-PCR. Error bar indicates S.D. (B) Distribution of

fold change data was arranged in descending order. (C) The expression of

FAM188B was absolutely measured by gRT-PCR. Red line indicates mean and

FAM188B mRNA

error bar indicates S.D. All expriments were performed triplicate. (n=75)
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Table 2. Clinicopathological information of 75 gastric cancer patients

No. of patients

Number of patients

Age at diagnosis (yr)

Disease staget

Lauren type

Bormann type

Total
Male
Female

Range
Mean £ SD

Tumor stage

Node stage

Metastasis stage

Intestinal
Diffuse
Mixed
Intermediate
Not annotated

Tla
Tib
T2
T3
T4a
T4b
NO
N1
N2
N3a
N3b
MO
M1

Type | (protruded type)
Type Il (ulcerative type)

Type I (ulceroinfiltrated type)

Type IV (diffuse type)

Not determined

75
53
22

21-86
60.7+13.3

16
29
22

26
11
13
17

63
12

+Stage classification follows the TNM classification system by Union for International

Cancer Control (UICC)
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3. High expression of FAM188B mRNA in gastric cancer shows significant
differences in Lauren classification

To further analyze the mMRNA expression of FAM188B, | used
clinicopathological classification to compare them, such as Lauren classification,
Histology, Bormann type, and stages (pT stage, pN stage, final stage) (Table 3).
Among the classification methods, FAM188B mRNA expression showed
significant differences in Lauren classification. Two main types of Lauren
classification (intestinal and diffuse type) were analyzed and mRNA expression
of FAM188B was significantly increased in Intestinal type. To examine whether
FAM188B was used as a marker to identify stages, | plotted the FAM188B
expression level of two classified stages (early gastric cancer and advanced
gastric cancer) (Figure 4). FAM188B mRNA level was higher in the tumor
tissues of advanced gastric cancer (stage lla ~ I\V) compared to that of early
gastric cancer. FAM188B expression was increased in the tumors but
statistically significant only in Ilb, Illa and IV stages. In summary, FAM188B
may be used as a possible marker of advanced gastric cancers (AGC) and it
would be involved in the progression from early gastric cancer to advanced

gastric cancer.
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Table 3. Analysis of FAM188B mRNA expression by clinicopathological

information
Class Mean p-value  Significance
Lauren Intestinal 7.18542 0.0079 *x
classification Diffuse 2.43012
Mixed 2.29971
Indeterminate 20.17803
Histology Well diff. 6.48604 0.7132 N.S.
Moderate diff. 4.71920
Poorly diff. 10.09003
Signet ring 3.04266
Mucinous 2.72247
Not annotated 10.97892
Bormann type Bormann 1 3.73687 0.8451 N.S.
Bormann 2 10.24630
Bormann 3 6.11695
Bormann 4 5.563745
Not identified 1.76495
pT stage Tib 1.76495 0.2576 N.S.
T2 3.89326
T3 11.62397
T4a 3.93559
T4b 2.90383
pN stage NO 8.26654 0.3374 N.S.
N1 4.57596
N2 13.09295
N3a 3.99201
N3b 1.55150
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final stage la
Ib
lla
b
Ila
Ib
Iic
v

1.76495
3.61544
10.21396
7.56976
13.12077
4.44903
2.64522
3.68534

0.643 N.S.

+ Well diff: well differentiation, Moderate diff: moderate differentiation, Poorly

diff: poorly differentiation, p: pathologic stage, T: characteristics of the tumor,

N: presence of any lymph nodes metastases, N.S.: Not significant

§ Statistical significance was calculated by ANOVA in GraphPad Prism5
program. (*p<0.05, **p<0.01, ***p<0.001)
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Figure 4. FAM188B mRNA expression analysis in early gastric cancer and
advanced gastric cancer. Absolutely quantitative RT-PCR results were
analyzed by stage classification. Mean=®S.E.M. Stage classification follows the
TNM classification system by Union for International Cancer Control (UICC),
(Early gastric cancer (EGC): stage la and Ib (n=10), Advanced gastric cancer
(AGC): Stage lla, Ilb, Illa, Ib, Ilc, IV (n=65)). *p<0.05, **p<0.01,
***n<0.001
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4. Generation of FAM188B antibody

After verification of the mRNA expression of FAM188B in tissues, | tried to
guantify the FAM188B protein expression. However, among the commercially
available antibodies, there were no antibodies that could detect the protein by
Western blot. Therefore, the epitope of FAM188B was predicted and injected it
into the rabbit to generate our own anti-FAM188B antibody (Figure 5A). Of the
several candidates, only the FAM188B (F374C) antibody targeting C-terminus
of the protein detected a properly sized FAM188B protein. To confirm that the
antibody works properly, GFP-tagged FAM188B constructs were transfected
into HEK293 cells and detected by FAM188B (F374C) antibody (Figure 5B).
Only the FAM188B N-terminus tagged GFP constructs
(PACGFP-C1-FAM188B) was detected by GFP (JL-8) antibody. According to
this result, | compared the membrane detected with GFP antibody and the
membrane detected with FAM188B (F374C) antibody. The size shifted protein
in a lane of pAcGFP-C1-FAM188B except endogenous FAM188B was
confirmed and they were in the same position at the membranes (Figure 5B).
Taken together, FAM188B (F374C) antibody was appropriately established

since same size proteins were found in these two membranes.
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Figure 5. FAM188B epitope prediction and antibody validation by Western
blot. (A) Antigenicity prediction of FAM188B. Red circles indicate selected
peptides for epitope. (B) HEK?293 transfected with GFP-tagged FAM188B and
AcGFP-tagged FAM188B were separated by SDS-PAGE and detected by

FAM188B, FLAG-M2 and GFP antibodies.
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5. Knockdown of FAM188B results in apoptotic cell death

To identify the function of FAM188B, FAM188B-targeting SiRNA was
treated in AGS to knockdown the expression. | used two siRNAs targeting
FAM188B which target the exon 16 to 17 (siFAM188B) and exon 5
(sSiFAM188B-2) due to avoid off-target effect of sSiRNA (Figure 6A). | carried
out gRT-PCR to confirm the mRNA expression in AGS treated with
siFAM188B from 24 hr to 96 hr after sSiRNA treatment. Treatment of SiRNA
resulted in a significant decrease in the mRNA expression of FAM188B at all
time points. The MRNAs in siFAM188B treatment only expressed 30% of NC
siRNA (Figure 6B). Next, | performed Western blot analysis to investigate
whether protein expression was decreased as decrement of mMRNA expression.
Compared to NC siRNA, siFAM188B treatment dramatically reduced the
expression of FAM188B from the 24 hr time point (Figure 6C). Therefore,
siFAM188B appropriately knocked down FAM188B mRNA and subsequently
reduced protein expression.

As a result of siFAM188B treatment, slow proliferation and suspended dead
cells in AGS were observed (Figure 7A). | hypothesized that FAM188B relates
to cell survival. To test this hypothesis, cell cycle analysis and nuclei staining
assay with siFAM188B were performed. | observed increment of GO/G1 phase
and nuclei fragmentation in siFAM188B treated condition, suggesting that
FAM188B regulates the cell survival (Figures 7B and 7C). In order to elucidate
the mechanism of cell death, apoptosis was measured by Annexin V assay.
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Since Annexin V binds to the endothelium phosphatidylserine (PS) and
propidium iodide (PI) was able to penetrate the nucleus through perforated
membranes during apoptosis, cells were stained with Annexin V and PI.
Annexin V/PI stained cells were increased in FAM188B knocked down cells
(31.47%) compared to negative control (11.53%) (Figure 7D). Taken together,
siFAM188B affects reduction of mMRNA and protein expression level and

results in apoptotic cell death, suggesting that FAM188B regulates cell survival.
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Figure 6. FAM188B expression validation in gastric cancer cell line AGS
treated with siFAM188B. (A) Schematic view of FAM188B and siFAM188B
targeting regions. (B) mRNA expression was absolutely quantitated by
gRT-PCR. All experiments were performed triplicate. Error bar indicates S.D.

(C) Cell lysates were separated by SDS-PAGE and detected by anti-FAM188B
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Figure 7. Knockdown of FAM188B results in cell death. (A) Phenotype of

AGS treated with or without sSiFAM188B. (B) Cells were processed for cell cycle

analysis by flow cytometry (dead cell population: sub GO/G1 is indicated in %).

(C) DNA stained by Hoechst33342 with or without siFAM188B. White arrow

heads indicate fragmented nuclei. Scale bar = 20 um. (D) Cells were transfected

with siFAM188B and stained with Annexin V/Pl. The stained cells were

analyzed by flow cytometry for apoptosis. UR and LR indicates apoptotic cells.
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6. Knockdown of FAM188B reduces migratory potential and invasive
property

Most of the causes of death in patients with solid tumors are metastatic
relapses. The initial phenotype of metastasis is invasiveness of the cell.*’
Therefore, it is important to know the acquirement of invasiveness in cancer cell.
To examine whether FAM188B has migratory potential and/or invasive
property, | performed migration and invasion assays in vitro. Migrated cells
through the pore were counted and the results were plotted. The migratory
potential was significantly decreased in AGS treated with siFAM188B-1 and -2
but there was no difference between siFAM188B treatments (Figure 8A).
Knockdown of FAM188B also significantly inhibited invasive property in AGS
cells but there was a significant difference between siFAM188B treatments
(Figure 8B). Taken together, FAM188B regulates migration and is involved to

metastatic relapse.
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Figure 8. Inhibitory effect of siFAM188B on migration and invasion ability.

(A) Cells were treated with or without siFAM188B and counted the number of

migrated cells. (B) Cells were treated with or without siFAM188B and counted

the number of invaded cells. N.S.: not significant, *p<0.05, **p<0.01,

***n<0.001
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7. FAM188B is localized in the cytoplasm

Previous results indicate that FAM188B is increased in tumor tissues and
cell death in knockdown. To apply the findings to therapy, | have to know
where FAM188B is expressed in the cell. Therefore, GFP-tagged FAM188B
was transfected into HEK293 cells and images were obtained from fluorescence
inverted microscope (Figure 9). According to the images, FAM188B was
localized in cytoplasm. To confirm whether cytoplasmic localization of
FAM188B is specific to HEK293 or exogenous protein, | performed
immunocytochemistry on endogenous FAM188B by anti-FAM188B (F374C)
antibody. Three gastric cancer cells (AGS, SNU-638, and MKN-28), a colon
cancer cell HCT-116, and a non-cancerous cell HEK293 were used. FAM188B
was located in the cytoplasm in the all tested cells (Figure 10). Therefore, |
identified FAM188B localized in cytoplasm in several cells and | would have to

use the chemicals to treat the tumor because of the limitation of access.
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Figure 9. Location of exogenous GFP tagged FAM188B in HEK293.
GFP-tagged FAM188B was transfected in HEK293 cells and image was

obtained from fluorescence inverted microscope. Hoechst33342 was used as

DNA staining reagent. Scale bar = 10 um

40



Hoechst FAM188B Merged
33342

AGS

SNU-638

MKN-28

HCT-116

HEK293

Scale bar =10 um

Figure 10. Localization of endogenous FAM188B in cell lines. FAM188B

was stained with Alexa Fluor 594 dye conjugated anti-FAM188B antibody and

images were obtained by fluorescence inverted microscope. Hoechst33342

indicates nucleus. Scale bar = 10 um
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8. Treatment of chemotherapeutic agents is more effective in FAM188B
down-regulated cells

Cisplatin and etoposide are the most widely used anti-cancer drugs for
chemotherapy. Cisplatin crosslinks with the purine base on DNA to interfere
with the DNA repair mechanism and causes apoptosis.® Etoposide also causes
DNA strand breakage due to form the ternary complex with DNA and
Topoisomerase Il enzyme.* To examine the effect of anti-cancer drugs, I
analyzed cell survival after cisplatin or etoposide treatment in AGS treated with
or without siFAM188B by using MTT assay. Two anti-cancer drugs
significantly reduced the cell survival rate in siFAM188B treated cells (Figure
11A and 11B). Therefore, chemotherapeutic agents were more effective in
FAM188B down-regulated condition. This suggests that it can be applicated in

gastric cancer, which shows low FAM188B expression, as a possible mediation.
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Figure 11. Effects of anti-cancer drugs on cell survival of AGS cells treated
with siFAM188B. (A) Cells were simultaneously treated with cisplatin and
siFAM188B. (B) AGS cells were simultaneously treated with etoposide and
siFAM188B. Cell survival was measured by MTT assay. All experiments were

performed triplicate. Error bar indicates S.D. * p<0.05
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9. FAM188B is related to resistance to chemotherapeutics

Using immunohistochemistry of tissue microarrays, the expression of
FAM188B protein was analyzed in gastric cancer lesions in a total of 107
gastric cancer patients (Table 4). Fundic glands showed strong positivity, and
pyloric glands, foveolar epithelium and intestinal metaplasia showed moderate
to weak signals. The staining pattern was mostly cytoplasmic with occasional
luminal surface staining. Representative immunostained images showing ‘High’
and ‘Low’ FAM188B expression in gastric cancer are presented in Figure 12A.

A statistical analysis revealed that FAM188B expression was significantly
associated with the sex of the patient and the size and pathological classification
of the lesion (Table 3). High expression was more frequent in males (86.1%,
n=31) than in females (13.9%, n=5) (p=0.014), and lesions were larger in the
FAM188B low-expression group (5.95+2.84 c¢cm) than in the high-expression
group (4.88£1.87 cm) (p=0.045). Notably, differences in pathological
characteristics between FAMI188B ‘Low’ and ‘High’ groups were also
significant, based on differentiation status by Lauren classification (FAM188B
high: 61.1% in intestinal type, 25.0% in diffuse type; p<0.001). However,
FAM188B expression itself as a prognostic factor showed no significance in
terms of either disease-free survival (p=0.585) or overall survival (p=0.388)
(Figure 12B). Thus, | assessed whether the efficacy of chemotherapy depended
on FAM188B expression. Intriguingly, both disease-free and overall survival
were improved by adjuvant chemotherapy in the FAMI88B ‘Low’ group
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(Figure 12C), but no survival benefit of chemotherapy was observed in the
FAM188B ‘High’ group (Figure 12D). The consistent result was found after
adjusting the effects of other prognostic factors. These findings suggest that
FAM188B expression can be used as a predictive marker of chemotherapeutic

efficacy.
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Figure 12. FAMI188B resists to chemotherapeutic agents. (A)
Immunohistochemistry of gastric cancer tissues. Representative images of
FAMI188B ‘High’ (left panel) and FAM188B ‘Low’ (right panel) are presented.
(B) Differences in disease-free survival and overall survival were not
statistically significant between FAM188B ‘Low’ patients and FAMI88B
‘High’ patients (p=0.585 and p=0.388 for disease-free and overall survival,
respectively). (C) The dependence of differences in disease-free survival and
overall survival of FAMI88B ‘Low’ patients on adjuvant chemotherapy.
Patients receiving adjuvant therapy showed higher disease-free survival
(p=0.0031) and overall survival (p=0.0015) than those than without adjuvant
chemotherapy. (D) The dependence of differences in disease-free survival and
overall survival of FAM188B ‘High’ patients on adjuvant chemotherapy. There
was no significant difference in disease-free survival (p=0.4562) or overall
survival (p=0.4256) between patients receiving and not receiving adjuvant

therapy.
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Table 4.

clinicopathological characteristics in 107 gastric cancer patients

Relationship

between

FAM188B

expression

FAM188B FAM188B
‘Low’ expression ‘High’ expression P-value
(n=71) (n=36)
Sex 0.014
Male 45 (63.4%) 31 (86.1%)
Female 26 (36.6%) 5 (13.9%)
Age (yr) 53.8+£10.7 56.2+11.6 0.294
Size (cm) 5.95+2.84 4.88+1.87 0.045
Location 0.179
Upper body 17 (23.9%) 5 (13.9%)
Middle body 31 (43.7%) 13 (36.1%)
Lower body 23 (32.4%) 18 (50.0%)
Pathological
Classification
Lauren type <0.001
Intestinal 18 (25.4%) 22 (61.1%)
Diffuse 45 (63.4%) 9 (25.0%)
Mixed 8 (11.3%) 5 (13.9%)
T-stage 0.099
1-2 13 (18.3%) 13 (36.1%)
3 30 (42.3%) 14 (38.9%)
4 28 (39.4%) 9 (25.0%)
N-stage 0.352
0-1 27 (38.0%) 15 (41.7%)
2 19 (26.8%) 13 (36.1%)
3 25 (35.2%) 8 (22.2%)
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FAM188B FAM188B
‘Low’ expression ‘High’ expression P-value
(n=71) (n=36)
Stage 0.603
I 24 (33.8%) 14 (38.9%)
i 47 (66.2%) 22 (61.1%)
Adjuvant
0.247
Chemotherapy
36 (50.7%) 14 (38.9%)
Not done
35 (49.3%) 22 (61.1%)
Done
Recurrence
) 0.630
insyr
46 (64.8%) 25 (69.4%)
Absent
25 (35.2%) 11 (30.6%)
Present
Deathin 5 yr 0.445
Deceased 44 (62.0%) 25 (69.4%)
Survived 27 (38.0%) 11 (30.6%)
Recur. or Death
) 0.636
in5yr
42 (59.2%) 23 (63.9%)
Recurred
29 (40.8%) 13 (36.1%)

Non-recurred

49



10. FAM188B is expressed in other cancer cell lines and tissues.

To determine the expression of FAM188B in other cancers, | first searched
for mRNA expression in the Cancer Cell Line Encyclopedia (CCLE) database.?
Most of solid cancer cell lines express high FAM188B mRNA except
lymphoma, leukemia, B-cell, T-cell, and chondrosarcoma (Figure 13A). Next,
MRNA expression level was confirmed in various cancer cell lines and found
that colon cancer cell lines (HCT-116, SW620 and HT-29) and breast cancer
cell lines (JIMT1 and MDA-MB-231) highly expressed FAM188B mRNA
(Figure 13B). The protein expression pattern of endogenous FAM188B in
several cell lines was similar to mMRNA expression (Figure 13C). These results
proposed that the existence of hypothetical protein FAM188B was confirmed

experimentally and it is highly expressed in colorectal and breast cancer cells.
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Figure 13. Confirmation of FAM188B mRNA and protein expression level.
(A) FAM188B mRNA expression levels in CCLE database. Box-and-whisker
plots show the distribution of mMRNA expression for each cancer type. Line in
the box indicates median and dashed line indicates mean. (B) mRNA of
FAM188B was absolutely quantitated by gRT-PCR using 12 cell lines. Error
bar indicates S.D. (C) Whole cell lysates were separated with SDS-PAGE and

detected by anti-FAM188B and anti-GAPDH antibodies.

51



11. FAM188B is highly expressed in colon cancer tissues.

According to the previous results, | found that FAM188B is highly
expressed in gastric cancer and knockdown of FAM188B results in apoptosis
and additional chemotherapy significantly reduced cell survival. Since
FAM188B also expressed in other cell lines, especially in colon and breast
cancer cell lines, public database Oncomine (www.oncomine.org)?® was used to
search the mRNA expression of tumor tissues. Of the twenty other cancer types,
FAM188B mRNA expression increased only in 3 colon cancer analysis sets
(Figure 14A). To examine in more detail, | investigated the expression of
FAM188B in each of the three datasets. FAM188B mRNA expression was
highly increased in multiple CRC data sets?* 2° (TCGA Colorectal 2,
p=2.48x10-16; GSE20916, p=6.59x10-7; GSE20842, p=2.68x10-26) (Figure
14B). These data confirmed that FAM188B is up-regulated in colorectal cancer
tissues. Therefore, | decided to identify the function of FAM188B in colorectal

cancer.
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Figure 14. Analysis of FAM188B expression in 20 distinct cancer types. (A)
RNA-seq. analyses of FAM188B were displayed in Oncomine webpage. (B)
FAM188B expression comparison between normal and tumor patient tissues
using TCGA colorectal 2, GSE20916, and GSE20842 data set. Upper and lower
dots indicate the maximum and minimum values. The middle line in the box

indicates median.
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12. FAM188B down-regulation leads to cell death in colon cancer cell lines.

To understand the function of FAM188B, | knocked down FAM188B
expression using FAM188B-specific sSiRNA in the three colon cancer cell lines
HCT-116, HT-29 and SW620 because these cell lines have different mutations.
From the COSMIC Cell Line Project, HT-29 and SW&620 cell lines have
p.R273H mutation but not in HCT-116. K-ras mutation was detected in
HCT-116 and SW620 cell line.** Transfection of cells with siFAM188B
decreased FAM188B mRNA expression from 24 hr to 96 hr as determined by
gRT-PCR (Figure 15A, Figure 16A and 16E) whereas negative control (NC)
siRNA had little effect on FAM188B expression. FAM188B protein levels were
also reduced by siFAM188B, as determined by Western blot (Figure 15B,
Figure 16B and 16F). To test the effects of FAM188B knockdown on cell
growth, two different FAM188B-targeting siRNAs (siFAM188B and
siFAM188B-2) were used. After knockdown of FAM188B by siFAM188B or
siFAM188B-2, HCT-116 cell growth decreased with time (Figure 15C, Figure
16C and 16G). A microscopic analysis of DAPI-stained cells also revealed that
siFAM188B treatment increased brightly fluorescent and fragmented nuclei,
which is indicative of apoptosis (Figure 15D). As cell growth inhibition could
be occurred either by cell cycle arrest or cell death, | examined the effect of
FAM188B knockdown on cell cycle. Interestingly, the sub-GO/G1 population
increased in the siFAM188B-treated cells, which corresponds to apoptotic cells
(Figure 15E). In addition, FAM188B knockdown increased the population of
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Annexin V/Pl-stained cells. Apoptosis induced by siFAM188B was not limited
to HCT-116 cells because siFAM188B treatment also increased Annexin
V/Pl-positive cells in other colon cancer cell lines, HT-29 and SW620
compared with NC siRNA-treated cells (Figure 15F, Figure 16D and 16H). All
these data suggest that down-regulation of FAM188B expression in colon

cancer cells leads to apoptosis.
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Figure 15. Effects of FAM188B knockdown on cell death in HCT-116. (A)
MRNA level of FAM188B on HCT-116 cells treated with negative control
SiRNA or siFAM188B was absolutely quantitated by gRT-PCR. Error bar
indicates S.D. (B) Lysates were separated by SDS-PAGE and detected by
anti-FAM188B antibody and anti-GAPDH antibody as an internal control. (C)
HCT-116 cells were transfected with NC siRNA, siFAM188B, or
siFAM188B-2 and images were taken for cell growth. Scale bar indicates 50
um. (D) Cells treated with siFAM188B and stained by Hoechst33342. White
arrowheads: fragmented nuclei. Scale bar indicates 20 um. (E) Effect of
siFAM188B on cell cycle was measured by flow cytometry. (F) Cells were
stained with Annexin V/PI at 72 hr after siRNA transfection and analyzed by

flow cytometry (PI stained cells apoptosis population: UR and UL).
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Figure 16. Confirmation of the cell death phenotype in HT-29 and SW620
colon cancer cell lines treated with siFAM188B. (A and E) mRNA level of
FAM188B on HT-29 cells (A) or SW620 (E) treated with NC siRNA or
siFAM188B was absolutely quantitated by qRT-PCR. Error bar indicates S.D.
(B and F) Lysates of HT-29 (B) or SW620 cells (F) were separated by
SDS-PAGE and detected by anti-FAM188B antibody and anti-GAPDH
antibody as an internal control. (C and G) The images of siFAM188B treated
HT-29 (C) and SW620 cells (G) were captured for 72 hr. Scale bar represents
200 um. (D and H) HT-29 (D) or SW620 cells (H) were stained with Annexin
V/PI at 72 hr after siRNA transfection and analyzed by flow cytometry (Pl

stained cells apoptosis population: UR and UL).
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13. The identification of FAM188B-interacting partners

To investigate the mechanism of FAM188B involvement in cell death,
potential cellular FAM188B binding partners were analyzed by LC/MS-MS
(Figure 17A). Mass peaks from MS searches against the database identified a
total of 104 unique proteins bound to FAM188B. These proteins were analyzed
using the DAVID server* and String-DB* to cluster proteins according to their
involvement in intracellular biological processes and evidence-based interacting
groups, respectively. As expected, based on results obtained by FAM188B
down-regulation, many FAM188B-binding proteins were involved in cell cycle
regulation and apoptosis. Notably, clusters on the interaction map of
FAM188B-binding proteins revealed several clusters including the
tumor-suppressor proteins p53 as well as USP7 (Figure 17B, arrows).
Interestingly, when | immunoprecipitated p53 proteins, | observed that
FAM188B as well as USP7 were in the p53 immunocomplexes (Figure 17C),

indicating that FAM188B forms a complex with p53.
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Figure 17. Analysis of FAM188B-interacting proteins. (A) FLAG-tagged
FAM188B was overexpressed in HEK-293 cells and immunoprecipitated complexes of

FLAG-tagged FAM188B were resolved on SDS-PAGE gels. Image of
Coomassie-blue staining of the gel is shown. (B) The resolved proteins in (A) were
processed for LC/MS-MS analysis and searched against String-DB to see the
interactions in ‘Evidence View’. Black arrow indicates interacting protein
separately confirmed by immunoprecipitation. (C) Validation of FAM188B
interaction to USP7 and p53 by immunoprecipitation of HEK-293 cell lysate

with p53 (DO-1) antibody and immunoblotted with indicated antibodies.
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14. FAM188B silencing activates p53 and its downstream pathway.

Because p53 is an important regulator for cell death control, | further
examined a possible association of p53 in the siFAM188B-induced apoptosis in
more detail. When cells were stained for p53, more p53 were localized in the
nucleus in the siFAM188-treated cells than in the NC siRNA-treated cells
(Figure 18A). Consistent with these immunocytochemistry data, more p53
protein was detected in the nucleus fraction than in the cytosolic fraction when
FAM188B was knockdown (Figure 18B). Next, | tested whether p53 is
activated in the FAM188B knocked down cells by immunoblotting using
antibodies that recognize Serl5-phosphorylated p53 (active form of p53).43
FAM188B knockdown increased p53 as well as Ser15-phosphorylated p53, and
thus enhanced protein levels of p53-regulated genes, including p21, PUMA, and
BAX, which are in the apoptosis pathway (Figure 18C).

To further test p53 activation transcriptionally, promoter assay was
performed using p21 promoter-luciferase construct because p21 is known to be
a p53 target gene.** siFAM188B treatment increased the transcriptional activity
of p53 toward its downstream target p21 by ~ 2-fold (Figure 19A and 19B).
Moreover, chromatin immunoprecipitation (ChlIP) assays using p53 antibodies
showed increased binding of p53 to BAX (Figure 19C) and PUMA promoters
(Figure 19D) in the siFAM188B-treated cells. These results show that
FAM188B down-regulation activates p53, resulting in upregulation of apoptosis
related genes, including BAX and PUMA, which leads to cell death.
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Figure 18. Knockdown of FAM188B activates the p53 downstream
pathway. (A) p53 was primarily stained by p53 (DO-1) antibody and
AlexaFlour 594 was used as secondary antibody. Images were obtained by
fluorescence inverted microscope. (Scale bar = 20 um) (B) translocated p53 was
detected by Western blot after cytoplasmic and nuclear fraction. PARP and
a-tubulin are the nuclear and cytoplasmic control, respectively. (C) activated
p53 downstream pathway proteins in HCT-116 treated with NC siRNA or

siFAM188B were detected by indicated antibodies.
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Figure 19. Knockdown of FAM188B results in activation of the p53
downstream pathway. (A-B) Activation of the p21 promoter was significantly
increased by siFAM188B treatment at 24 (A) and 48 hr (B). (C-D) The
p53-responsive element of BAX (C) and PUMA promoter regions (D) was

measured by ChIP qRT-PCR assays.
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15. Expectation of FAM188B three-dimensional protein structure

From the FAM188B amino acid sequences, | converted it as a pdb file
format in Phyre2 web server® and visualized using PyMOL 1.7 program. The
structure looked like a “golf club head” (Figure 20). Unexpectedly, FAM188B
has many alpha helix structures, indicated by cyan, which easily crosses the
biological membranes because of its hydrophobicity. The predicted sites of
USP7 binding motifs, indicated by yellow, were located in surface region.
Therefore, | hypothesized the interaction between FAM188B and USP7
regulates p53.

To compare the 3D-modeling structure, another web server
SWISS-MODEL* was used. However, SWISS-MODEL showed only 5
homologous protein structure parts such as FGFR1 Oncogene Partner (FOP),
FAMG63A/MINDY-1, Probable GTPase engC, Noggin, and PlyCB. FOP was
identified a fusion partner of FGFR1 in leukemia-associated chromosomal
translocation and found as a centrosome protein.*” FAM63A/MINDY-1 is
recently identified as a deubiquitinase specifically cleaving at Lys-48-linked
poly ubiquitin which is a protein degradation signal.** engC is a ribosome
GTPase protein in Streptococcus genus. Noggin is known to regulate a major
class of metabologens, bone morphogenetic proteins (BMPs).*® PlyCB is a lysin
from the streptococcal bacteriophage Ci subunit B.*° After the analysis of these
proteins annotation, structural comparisons give no information for the function
of FAM188B.
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Figure 20. Prediction of FAM188B ternary structure. Predicted FAM188B
structure was drawn by ribbon diagram (upper) and surface representation
(lower). Cyan represents alpha helix structure. Yellow indicates the USP7

binding motifs.
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16. FAM188B regulates p53 stability via interaction with USP7

To determine how FAM188B knockdown enhances p53 protein levels,
FAM188B-interacting proteins were identified by LC/MS-MS (Figure 17B).
Out of FAM188B binding proteins, USP7 and p53 related to apoptosis. |
hypothesized that USP7 is a mediator to regulate deubiquitination of p53. In
accordance with this, the online protein domain prediction site, ‘Eukaryotic
Linear Motif resources’,> also predicted the presence of a USP7 binding motifs
in FAM188B (Figure 21A). USP7 protein was detected in FAM188B
immunoprecipitates in the cells with FAM188B over-expression (Figure 21B),
indicating a complex formation of FAM188B with USP7. To investigate which
motif of FAM188B is responsible for its complex formation with USP7, either
FLAG-tagged wild type or mutant FAM188B with deletion of USP7 binding
motif-1 (AUSP7-1) or USP7 binding motif-2 (AUSP7-2) were overexpressed in
HCT-116 cells, followed by immunoprecipitation of exogenous FAM188B
using anti-FLAG antibodies. USP7 was consistently found in the wild type
FAM188B immunocomplexes but USP7 levels decreased in the mutant
FAM188B immunocomplexes (AUSP7-2), suggesting that USP7-2 motifs of
FAM188B are important for its complex formation with USP7 (Figure 21C).
Next, to examine whether USP7 interacts with p53, Co-IP assay was performed
after etoposide treatment to increase p53 expression. Etoposide treatment
resulted in an increase in p53 and a decrease in FAM188B. p53 was found in

the USP7 immunocomplexes and this complex formation increased in etoposide
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treatment (Figure 21D). Next, | tested whether FAM188B levels affect to
complex formation of USP7 and p53. A basal level of USP7 was detected in the
p53 immunocomplexes. However, interestingly, this complex formation
appeared to increase in the siFAM188B treated cells after 24 hr, and it became
weaker at 48 hr although the endogenous USP7 protein expression was not
changed by FAM188B silencing (Figure 21E).

To confirm whether FAM188B is involved in p53 deubiquitination, |
examined the change in level of ubiquitinated p53 after FAM188B knockdown
in the cells expressing HA-tagged ubiquitin. Compared with NC siRNA-treated
cells, lower p53 level was detected in the HA-immunoprecipitated complexes
from siFAM188B-treated cells (Figure 22A). In addition, the level of
HA-tagged ubiquitin decreased in the p53 immunocomplexes from
siFAM188B-treated cells compared with those of NC siRNA-treated cells. A
lower level of endogenous ubiquitinated p53 was also detected in the p53
immunocomplexes from siFAM188B-treated cells than those of NC
siRNA-treated cells (Figure 22B), while ubiquitination of total protein was

increased in siFAM188B-treated cells.
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Figure 21. USP7 interacts with FAM188B. (A) Predicted position of seven

Input
Input

USP7 binding motifs was indicated on FAM188B protein. AUSP7-1 and -2 are
the position of deletion mutants. (B) Co-IP of overexpressed FAM188B and
USP7 in HCT-116 cell. (C) Verification of the interaction between FAM188B
and USP7 using overexpression of wild type and AUSP7 FAM188B constructs.
(D) Lysates from HCT-116 cells treated with or without etoposide (5 uM) were
immunoprecipitated and immunoblotted with indicated antibodies. Eto:
etoposide (E) FAM188B silencing increased the interaction between USP7 and
p53. Cell lysates from HCT-116 cells treated with NC siRNA or siFAM188B
for 24 and 48 hr were immunoprecipitated with anti-p53 antibody and

immunoblotted with anti-USP7 antibody.
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Figure 22. Knockdown of FAM188B regulates p53 deubiquitination. (A)
HA-tagged ubiquitin (5 ug) was transfected to HCT-116. Cell lysates from
HCT-116 treated with NC siRNA or siFAM188B were immunoprecipitated by
anti-HA antibody and immunoblotted with indicated antibodies. (B) Cell lysates
from HCT-116 co-transfected with HA-tagged ubiquitin and NC siRNA or
siFAM188B were immunoprecipitated by anti-p53 (DO-1) antibody and

immunoblotted with indicated antibodies.
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17. FAM188B knockdown inhibits tumor growth in vivo.
To further investigate the effect of FAM188B down-regulation on tumor

growth, | established a shFAM188B-inducibile HCT116 stable cell line.
Doxycycline induced FAM188B shRNA, which led to FAM188B
down-regulation (Figure 23A). The numbers of colonies were reduced by
FAM188B shRNAs especially in shFAM188B#2 stable cell line (Figure 23B).
Next, | examined the effects of FAM188B knockdown on
anchorage-independent colony formation by soft agar assay. When HCT-116
cells were treated with siFAM188B, anchorage-independent colony formation
was significantly decreased (Figure 23C). These data indicated that FAM188B
might have an oncogenic function.

To test the effect of FAM188B silencing on tumor growth in vivo, HCT-116
cells were subcutaneously xenografted into BALB/c nude mice, and FAM188B
SiRNA was delivered by electroporation. Tumor volume was regularly
measured after treatment with FAM188B siRNA. The growth of
siFAM188B-treated tumors was significantly reduced from the first week
compared to that of NC siRNA treated tumors (Figure 24A, top). When the
tumors were removed from the sacrificed mice, siFAM188B-treated tumors
were smaller than the NC siRNA-treated tumors (Figure 24A, bottom). To
verify the FAM188B knockdown in the xenografted tumors, tumor tissues were
processed for  immunostaining using  anti-FAM188B  antibodies.

Immunohistochemistry analysis showed that FAM188B protein levels reduced,
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while p53 protein levels increased, in the siFAM188B-treated tumors (Figure
24B). These data indicate that FAM188B expression is important for tumor
growth in vitro and in vivo.

Taken altogether, our data indicate that FAM188B has a critical oncogenic
effect, possibly via enhancing p53 ubiquitination and thus p53 down-regulation.
Therefore, targeting FAM188B could be a good strategy to control tumor

growth.
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Figure 23. FAM188B knockdown effects on cell proliferation. (A) shRNA
stable cell lines were confirmed by quantitative real-time PCR. mRNA
expression of FAM188B was normalized by GAPDH. Data were shown as
meantS.D. (B) FAM188B downregulated cells were inhibited proliferation in
HCT-116 as indicated with colony forming assay. DOX indicates doxycycline.
(C) HCT-116 cells (5.0x10%) treated with NC siRNA or siFAM188B was
cultured in soft agar for 18 days. The colonies were stained with INT solution.

All experiments were performed triplicate.
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Figure 24. Knockdown of FAM188B inhibits cell proliferation in vivo. (A)
HCT-116 cells (2.0x10°) were injected into the nude mice (n=7) subcutaneously
and tumor growth was monitored twice a week. When tumor size reached
30mm?, siRNAs were treated a week for 3 wk. Black arrow indicates the sSiRNA
treatment. Tumor size was measured at indicated time points (representative
images of tumors; NC siRNA (top lane) and siFAM188B (bottom lane)). (B)
Immunohistochemistry of FAM188B and p53 protein detected from tumor
tissues from mice using control 1gG, anti-FAM188B and anti-p53 (FL393)

antibodies (Scale bar = 100 um).
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Figure 25. A proposed model for regulation of p53 stability by FAM188B
and USP7. High level of FAM188B maintains the tumor suppressor protein
p53 as low level through interacting with USP7 to prevent the deubiquitination
of p53 (left, upper). Reduced FAM188B stabilizes the p53 which interacts with
free USP7 and results in cell death (right, upper). FAM188B might be act as an

oncogene in this proposed model (lower).
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IV. DISCUSSION

Cancer progression is the result of various biological processes, and may
also be altered by unexplored functions of novel/hypothetical genes, and/or
variants of known genes. Despite the tremendous effort devoted to analyze
available genomic information, as much as 59% of human genes were annotated
as ‘hypothetical’ when the human genome was first reported,® ! and 24-31% of
Entrez/ensemble database entries are currently annotated as ‘uncharacterized’.°
FAM188B was also annotated as ‘a hypothetical protein’ for which the
transcript is the only supporting evidence for functionality in public databases
when this study was begun. Hypothetical proteins are increasing because of the
development of the sequencing techniques. The database in UniProt is also
increasing with accumulation of the sequencing data and there is a huge
difference between UniProtKB/TrEMBL which is automatically annotated and
is not reviewed and UniProt/Swiss-Prot which is manually annotated and is
reviewed,> suggesting that unannotated novel proteins are dramatically
identified every year. In addition to these accumulating data, up-regulated
hypothetical proteins have been discovered in cancers.*® Therefore, identifying
the characteristics of hypothetical protein is important for understanding
mechanisms of tumorigenesis as well as provision of novel therapeutic targets.

To determine whether FAM188B is a protein-coding gene or a non-coding
gene, | verified poly-(A) tail which is a marker of mature mRNA. If the gene

does encode a protein, it would be interesting to characterize the effect of the
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protein on tumorigenesis; otherwise, the only possible use of the gene would be
as a biomarker. However, the mature mRNA sequence of FAM188B from the
colon cancer cell line HCT-116 showed a poly-A signal sequence in its 3” UTR,
suggesting that this gene could indeed encode a protein. This evidence led us to
generate a rabbit polyclonal antibody to detect the FAM188B protein. Using the
generated anti-FAM188B specific antibody, | could detect over-expressed or
endogenous FAM188B protein by immunoblotting and immunohistochemistry.
From the results, the location of FAM188B is in the cytosol and rarely exists in
nucleus. Furthermore, as revealed by transcriptome profiles of the public
databases including the CCLE, Oncomine and NCBI GEO,> the expression of
FAM188B was significantly enhanced in tumors at the mRNA level. These
results suggest that FAM188B has important housekeeping functions in
maintaining cell viability.

Generally, the first way to try to understand the function of specific genes is
to remove it. FAM188B siRNA was treated to gastric cancer cell line AGS
and/or colon cancer cell line HCT-116 and | observed retarded proliferation and
suspended dead cells. It suggests FAM188B is an important gene for survival.
However, identifying genuine interacting partners—a key to the known world
of biological pathways—is crucial to understand the working mechanisms of
this unknown protein. The catalogue of FAM188B-interacting proteins was
defined through immunoprecipitation of FAM188B followed by LC/MS-MS
analysis. A clustering of these proteins according to their Gene Ontology (GO)
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biological process showed that the major clusters were ‘protein translation’ and
‘cell death/apoptosis,” followed by ‘chromatin regulation’ and ‘RNA-binding
proteins’. Among these biological processes, cell death and protein degradation
categories were of interest, because knockdown experiments suggested that this
protein might be involved in regulating cell survival. Thus, | verified the
FAM188B-interacting proteins identified by mass-spectrometry using
co-immunoprecipitation, and then proceeded to characterize FAM188B
functions related to cell death. Immunoprecipitation using an anti-p53 (DO-1)
antibody confirmed the interaction of FAM188B with p53. Intriguingly, GO
analyses categorized several proteins into an ‘ubiquitin-dependent protein’
group; among them was USP7 (also known as HAUSP), which clustered with
p53 as a FAM188B-interacting protein. USP7 is known to stabilize p53 by
deubiquitinating it, as well as its inhibitor MDM2.%5 %6-As such, USP7 has come
to be considered a therapeutic target in many cancers.!* 2 In breast cancer,
TSPYL5 was reported to reduce p53 levels through physical interactions with
USP7.5" In addition to USP7, USP2a, and USP10 are also involved in regulating
p53 ubiquitination in different contexts;'* thus, evidence supporting USP7 as
the major p53 modulator is inconclusive. In our study, however, the amount of
FAM188B-bound USP7 dramatically increased upon FAM188B overexpression
in HCT-116 cells. Conversely, FAM188B down-regulation increased unbound
USP7 and this free-USP7 may decrease the level of ubiquitinated p53. The fact
that USP7 plays a pivotal role in deubiquitinating both p53 and MDM2, as
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noted above, seemingly undermines the interpretation that USP7 is a p53
stabilizer. This may be the reason why the decrease of ubiquitinated p53 in
SsiFAM188B treated cells was not extreme. However, the shorter half-life of
MDM2 compared to p53, as a result of MDM2 self-ubiquitination,? % may
ultimately lead to cell death through accumulated p53. If a mediator exists, that
could be the answer to the questions “What determines whether p53 or MDM2
is the primary USP7 substrate?”? and “What determines how USP7 is
regulated?”.?? FAM188B might be the mediator. In tumor cells, high levels of
FAM188B would be predicted to function by eliminating p53 and keeping it at
a low level to allow tumor cells to grow. Therefore, elevated expression of
FAM188B in tumor tissues indicates that FAM188B would strongly inhibit p53
deubiquitination and thereby provide tolerance against stressful conditions, such
as treatment with cytotoxic agents.

The most intriguing result in this study was confirming the tumorigenicity of
FAM188B. The colony forming ability of FAM188B was significantly
abolished by silencing its expression in vitro. Interestingly, in soft agar colony
formation assays, a golden standard to determine cellular transformation and
tumorigenicity,®® FAM188B silencing showed dramatic reduction of
anchorage-independent colony growth. Moreover, in vivo tumor growth assays
also revealed that FAM188B led to a dramatic difference in tumor masses of
xenografted HCT-116 in  BALB/c nude mice. Accordingly
immunohistochemical analyses revealed that FAM188B is a vital gene for
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proliferation or survival. Although additional studies with human tissue are also
required to assess feasibility, these results suggest that FAM188B
over-expression could be used as a predictive biomarker for cancer diagnosis,
and inhibiting FAM188B activity could be utilized as the putative target of
cancer progression. Although further studies are required to reveal how
FAM188B expression is regulated, our findings clearly support the conclusion
that FAM188B is an important regulator of p53 stability in growing cells.

As a mediator of USP7, | have elucidated mechanisms that affect cell
survival by controlling ubiquitination of p53, but there are many things to be
revealed. First, | have to prove that FAM188B is actually acting as
deubiquitinase. In recent study,’* FAM188B was classified as MINDY family
and named probable ubiquitin carboxyl-terminal hydrolase MINDY-4, but
failed to provide experimental evidence for its function.

During the additional experiment to stratify unknown functions of
FAM188B in the tumor cells, | also observed that down-regulation of
FAM188B results in decrease of FOXM1 expression which is a transcription
factor and promotes oncogenesis with its aberrant upregulation. Since
knockdown of FOXM1 sequentially reduced the CD44 expression level,% |
speculate that FAM188B promotes the tumorigenesis through the
FOXM1-CD44 pathway independently of the ability to regulate the stability of
p53 through USP7. As a result, 1 observed the elevated expression of
CD44v8-10, one of the CD44 variants and elucidated as a marker of cancer
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stem cell (CSC).%!

In this study, the hypothetical protein FAM188B was revealed to be a
genuine protein whose expression is significantly elevated in colon cancer cell
lines. On the basis of FAM188B loss-of-function analyses, | suggest that
FAM188B functions to sustain cell viability by decreasing p53 activation,
through inhibition of the deubiquitinase USP7. This provides significant insight
into the importance of FAM188B in enhancing cell survival, as well its use as a
potential target in cancer therapy. Further research on the details of FAM188B
regulatory mechanisms, as well conditions with p53 mutations, will increase our

understanding of FAM188B as a potential therapeutic target.
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V. CONCLUSION

In summary, | experimentally proved that hypothetical protein FAM188B is
a genuine protein and evolutionarily conserved from fish to human. | identified
FAM188B downregulation leads to cell death, suggesting that it is an important
gene for survival. | also found that reduction of FAM188B enhances
chemotherapeutic effects in gastric cancer in vitro and in vivo. To understand
the mechanism of FAM188B, HCT-116, a colon cancer cell, was used and
found that the p53 pathway was activated by FAM188B knockdown. |
investigated ubiquitination to determine how the p53 pathway is activated since
USP7 and p53 interact with FAM188B. Finally, | identified FAM188B
regulates p53 stability through interacting with deubiquitinase USP7 in vitro.
Taken together, a putative oncogene FAM188B interacts with USP7 and
regulates p53 stability by participating in deubiquitination. Our study of
FAM188B will contribute to the knowledge on its mechanism in tumorigenesis

and provide a clue for the development of future cancer therapeutics.
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