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Stroke has become a more common disease worldwide. Despite great efforts to develop treatment, little is known about ischemic
stroke. Cerebral ischemia activates multiple cascades of cell type-specific pathomechanisms. Ischemic brain injury consists of a
complex series of cellular reactions in various cell types within the central nervous system (CNS) including platelets, endothelial
cells, astrocytes, neutrophils, microglia/macrophages, and neurons. Diverse cellular changes after ischemic injury are likely to
induce cell death and tissue damage in the brain. Since cells in the brain exhibit different functional roles at distinct time points
after injury (acute/subacute/chronic phases), it is difficult to pinpoint genuine roles of cell types after brain injury. Many
experimental studies have shown the association of apoptosis signal-regulating kinase 1 (ASK1) with cellular pathomechanisms
after cerebral ischemia. Blockade of ASK1, by either pharmacological or genetic manipulation, leads to reduced ischemic brain
injury and subsequent neuroprotective effects. In this review, we present the cell type-specific pathophysiology of the early phase
of ischemic stroke, the role of ASK1 suggested by preclinical studies, and the potential use of ASK suppression, either by
pharmacologic or genetic suppression, as a promising therapeutic option for ischemic stroke recovery.

1. Introduction

Ischemic stroke is a heterogeneous neurologic disorder char-
acterized by sudden onset and multiple environmental risk
factors [1, 2]. Ischemic stroke develops as a result of complex
pathomechanisms induced by a critical reduction in cerebral
blood flow (CBF) caused by either sudden or gradual occlu-
sion of cerebral arteries [3, 4]. The brain requires large
amounts of oxygen and glucose from the blood for energy
metabolism; thus, blockage of blood circulation causes
neurologic deficits [3–5]. The epicenter of a stroke, the area
of the brain with crucially impaired blood flow, is referred
to as the “infarct core,” and the neighboring area is referred
to as the “ischemic penumbra” or salvageable area [3–5].
Ischemia-related pathologic reactions can last for days to
weeks in these areas of the brain [4]. The main pathologic
changes involved in ischemic stroke are energy depletion,
calcium overload, excessive reactive oxygen species (ROS)
generation, inflammatory signals, and ion imbalance, all of

which can lead to cell death [3, 5, 6]. These changes are
severely detrimental to neuronal, glial, and endothelial cell
function [5] and lead to platelet activation, reactive gliosis,
immune cell activation, and neuronal cell death in the ische-
mic brain [3, 5, 7]. Over the last decades, various stroke
models have been designed in an effort to find new therapies
for stroke [8]. However, therapeutic candidates from preclin-
ical studies have failed to translate into effective therapies [8].
In this review, we will address the underlying pathophysiol-
ogy of ischemic stroke briefly, focusing on cell type-specific
mechanisms generated from preclinical ischemic stroke
models. Additionally, we discuss apoptosis signal-regulating
kinase 1 (ASK1) as a potential therapeutic target based on
preclinical testing.

2. ASK1

ASK1 is a member of the mitogen-activated protein kinase
kinase kinase (MAPKKK) family, which activates mitogen-
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activated protein kinase kinase (MAP2K: MKK4/MKK7,
MKK3/MKK6) and leads to the subsequent activation of
mitogen-activated protein kinase (MAPK) as part of a signal-
ing cascade [9–12]. ASK1 is endogenously expressed in vari-
ous cell types [13]. It is comprised of 1375 amino acids in
humans and 1379 in mice, and it contains a serine/threonine
kinase domain in the middle region [14]. The phosphoryla-
tion of threonine residues (Thr 838 in human and Thr 845
in mouse) is important for ASK1 activation [10, 15]. In nor-
mal conditions, ASK1 is a homooligomer, which binds to
another ASK1 via its C-terminal coiled-coil domain. The
N-terminal coiled-coil domain of ASK1 binds to thioredoxin
(Trx), which suppresses ASK1 kinase activity [9, 15]. Under
oxidative stress conditions, oxidized Trx is separated from
ASK1, and unbound ASK1 is activated by phosphorylation
[11, 16]. Calcium influx and oxidative stress can elicit phos-
phorylation of the ASK1 Thr residue [10, 15]. In addition,
tumor necrosis factor receptor-associated factor 2 (TRAF2)
and TRAF6 act as positive regulators of ASK1 after hydrogen
peroxide (H2O2) injury [10]. Negative regulators of ASK1,
14-3-3 proteins, block activation of ASK1 in the steady state
by binding to the C-terminal of ASK1 after Ser 966 phos-
phorylation [9, 10, 15]. However, oxidative stress promotes
dephosphorylation of ASK1 at Ser 966 and leads to detach-
ment of 14-3-3, which results in activation of ASK1 [10].
ASK1 is activated not only from oxidative stress but also
from endoplasmic reticulum stress and bacterial infection
[9, 11, 14]. Both Fas death receptor and tumor necrosis factor
(TNF) also activate ASK1 [17, 18]. ASK1 is known as an early
responder to ROS after cerebral ischemia [19]. After expo-
sure to various stimuli, activated ASK1 initiates multiple sig-
naling cascades, including c-Jun N-terminal kinase (JNK)
and p38, and governs cellular mechanisms, including cell
death, growth, and differentiation (Figure 1) [10, 14, 20].
Although ASK1 has previously been known to be mainly

involved in apoptotic cell death [21], recent research has
identified other functions of ASK1, such as its association
with thrombosis, brain edema, inflammatory responses, and
reactive gliosis after cerebral ischemia [19, 22–24].

3. Platelets and ASK1

Ischemic stroke is linked to vascular occlusion due to a
thrombus or emboli in the brain [25]. Platelets are necessary
for thrombosis and thromboembolism formation [26].
Platelet-induced thrombosis is associated with platelet adhe-
sion, activation, and aggregation [27]. Normally, homeostasis
is maintained by coagulation, fibrinolysis, and platelet func-
tion [28]. When homeostasis breaks down, platelets are
involved in thrombus formation through a complex process
[27]. For initial adhesion, platelets make connections
between platelet surface receptors (glycoprotein (GP) Ib-V-
IX complex or integrin αIIbβ3 and α2β1) and adhesive sub-
strates (von Willebrand factor (vWF) and collagen) on an
exposed endothelial extracellular matrix (ECM) [29–31].
The platelet GP IIb/IIIa surface receptor mediates platelet
aggregation through platelet-platelet interactions with extra-
cellular fibrinogen and vWF [25, 27, 29]. These binding
events trigger platelet activation and intracellular signaling
pathways, which induce the production of thrombin and
promote the release of activating factors (granule contents)
(adenosine diphosphate (ADP), epinephrine, and thrombox-
ane A2 (TXA2)) [27]. These factors can increase GP IIb/IIIa
and calcium levels [32, 33]. Upregulated calcium can induce
an increase in phospholipase A2(PLA2) [34]. A previous
study proved the expression of p38, extracellular signal-
regulated kinase 2 (ERK2), and JNK1 in platelets, which
can be activated by thrombin, collagen, vWF, and ADP
[35]. ASK1, expressed in human and murine platelets, has
recently been found to be rapidly activated by different plate-
let agonists (ADP, convulxin, and thrombin) [22]. Genetic
depletion of ASK1 leads to defects in platelet aggregation,
impaired integrin αIIbβ3 activation, and reduced TXA2
generation [22]. In Ask1−/− platelets, inhibition of cyto-
plasmic phospholipase A2 (cPLA2), an important enzyme
in the generation of TXA2, led to a reduction in throm-
bin-, collagen-, and convulxin-induced TXA2 production
[22]. Impaired platelet functions, caused by ASK1 deple-
tion in platelets, result in thrombosis deterioration, which
eventually becomes protective against arterial thrombosis
[22]. Hence, ASK1 serves as an important factor in throm-
bosis, and its activation is associated with an increased risk
factor for ischemic stroke.

4. Endothelial Cells and ASK1

The blood-brain barrier (BBB) consists of a highly specialized
endothelial structure and maintains brain homeostasis by
controlling para- and transcellular transport between blood
and the extracellular space [36]. Brain interendothelial
junction complex contains adherence junctions (vascular
endothelial cadherin, β-catenin), gap junctions (connexins),
and tight junctions (claudins, occludins, and junctional adhe-
sion molecules (JAM)), which are important for constructing
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Figure 1: Involvement of ASK1 in the cellular mechanism. After
various stresses, the activated form of ASK1 activates MAPKK
(MKK3/6 and MKK4/7), thereby activating MAPK including JNK
and p38. The ASK1 signaling pathway governs cellular fate such as
apoptosis, growth, and differentiation.
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barriers and cell-cell communication [36–39]. However,
pathological conditions, such as ischemic stroke, can change
BBB permeability and interactions between endothelial cells
[36, 37]. A damaged BBB allows blood to enter the paren-
chyma and causes brain damage [40], followed by cerebral
edema and vasomotor/hemodynamic dysfunctions [40].

Metalloproteinases (MMPs) and proteolytic enzymes
can affect BBB integrity by degrading neurovascular sub-
strates [37, 39]. Deterioration of the BBB caused by
MMP-mediated tight junction degradation is mainly asso-
ciated with MMP-9 [37]. BBB breakdown permits water
into the extracellular compartments and results in vaso-
genic edema in the injured brain [41]. MMPs also contribute
to edema formation [42]. Several reports have concluded
that the excessive activation of MMP-2 and MMP-9 in
the ischemic brain and cerebral endothelium leads to cel-
lular damage [39, 43]. By inhibiting MMPs, vascular hyper
permeability can be reduced by impeding degradation of
gap junction proteins and rearrangement of tight junction
proteins [44]. In this context, MMP-9 knockout contrib-
utes to preventing BBB disruption and enlargement of
brain lesion [45].

Vascular endothelial growth factor (VEGF), a vascular
permeability factor, is involved in the formation of vascular
leakages and vasogenic edema [44]. VEGF has permeabiliz-
ing effects on the endothelium through MMP-9-induced
reduction of tight junction proteins (zo-1, occludin) [44].
Previous studies have shown that administration of recombi-
nant human VEGF165 exacerbates the breakdown of BBB
integrity, which can be prevented by inhibiting VEGF at an
early stage of ischemic stroke [46, 47]. A relationship between
increased activation of MMP-9- and VEGF-induced BBB
leakage had also been identified [48].

Although ASK1 is necessary for angiogenesis and the
recovery of blood flow by direct expression of VEGF and
monocyte chemoattractant protein-1 (MCP-1) after unilat-
eral hindlimb ischemia, ASK1 and VEGF play an impor-
tant role in vascular permeability in cerebral ischemia
[24, 49]. Inhibition of ASK1 reduces ischemia-induced edema
formation and the expression of VEGF and aquaporin-1
(water channel protein) [24]. In addition, ASK1 silencing by
siRNA decreases gene levels of Mmp3, Vegf-a, Vegf-c, and
Aquaporin 12 and 18 [24]. ASK1 inhibition reduces MMP-9
activity in both mice and endothelial cell cultures. These
results suggest a role for ASK1 in suppressing neuronal cell
death [50], based on its profound effect on BBB permeability
and brain edema formation after ischemic stroke.

5. Immune Cells and ASK1

After cerebral ischemia, circulating blood leukocytes migrate
across disrupted vessel walls into the cerebral parenchyma
[40]. During this influx of immune cells, adhesion mole-
cules, such as vascular adhesion molecule-1 (VCAM-1),
intercellular adhesion molecule-1 (ICAM-1), E-selectin,
and P-selectin, promote the transendothelial recruitment of
immune cells [51–53]. Infiltrating immune cells accumulate
in the brain lesion and trigger the release of inflammatory
cytokines, which further promote tissue damage [40].

Peripheral blood cells are involved in a variety of functions,
from cell death to cell recovery, depending on the time
course of the ischemic stroke [54].

Neutrophils are subpopulations of leukocytes, which
exacerbate neuronal damage by participating in the early
stages of ischemic stroke [40, 55]. Transmigrated neutrophils
possess neurotoxic properties and produce cytokines, prote-
ase, chemokines, and ROS [56, 57]. Neutrophils also release
neurotoxic-related neutrophil extracellular traps (NETs),
composed of proteases and decondensed DNA [56]. More-
over, oxygen free radicals and proteolytic enzymes are also
released from penetrated neutrophil [58]. Several studies
have proven that the inhibition of either neutrophil accu-
mulation or adhesion can diminish ischemic brain injury
[55, 58]. Prevention of neutrophil infiltration toward the
ischemic lesion has beneficial effects on the ischemic brain
[59]. Inhibition of neutrophils by anti-neutrophil antibody
(RP3) efficiently reduces the extent of brain infarction and
the cerebral water content [60].

Brain microglia, representative immune cells of the brain,
contribute to the immune systems in the CNS through
defense mechanisms such as phagocytosis [40, 61]. After
acute cerebral ischemia, microglia are activated in response
to the influx of immune cells and become indistinguishable
from macrophages [62–64]. Microglia are activated via the
Toll-like receptor (TLR) pathway in response to cellular
damage after cerebral ischemia and release cytotoxic and
cytoprotective substances [40, 61]. Infiltrated blood-borne
macrophages in infarcted brain tissue are key modulators of
the immune system [63]. Although microglial activation
leads to tissue injury during early stages of cerebral ischemia,
microglia/macrophages participate in tissue recovery during
the late course of ischemia [65]. Astrocytes, fibroblasts, and
endothelial cells, as well as resident microglia and peripheral
macrophage, are involved in the production of inflammatory
cytokines such as interleukin-1β (IL-1β), transforming
necrosis factor-α (TNF-α), and transforming growth
factor-β (TGF-β) [58, 61, 62, 64, 66]. Although microglia
and macrophages are associated with brain plasticity and
recovery at later stages of cerebral ischemia, several studies
have reported that microglia and macrophages induce
neuronal injury through a TLR-4-dependent manner and
trigger the proinflammatory mediator in the acute stages
of ischemic stroke [67–69]. Pharmacological inhibition of
microglia showed protective effects in cerebral ischemia by
inhibiting a microglia-derived inflammatory mediator. Sup-
pression of activated microglia by minocycline led to reduced
brain infarction, improved neurological deficits, and dimin-
ished BBB leakage [70, 71]. Moreover, macrophage-derived
angiopoietin-like protein 2 knockout contributed to reduced
brain injury [67].

ASK1 is closely related to the immune system and is
required in inflammatory responses [14, 72]. It has been
reported that TLR4 activates ASK1 to initiate the MAPK
pathway and thereby express inflammatory-related genes
[73]. MAPK also mediates expression of a variety of
inflammatory genes such as cell surface adhesion mole-
cules, chemokines, and cytokines [74]. ASK1 is linked
to ventilation-induced cytokine production, neutrophil
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infiltration, and cell death in the lung [75]. The TLR/
ASK1/p38 pathway is important in chemokine production
and in triggering neurotoxicity in multiple sclerosis [76].
ASK1 contributes to production of TNF-α and inducible
nitric oxide synthase (iNOS) in primary microglia cell
culture [77]. However, ASK1 knockout in vivo and
in vitro models diminished lipopolysaccharide- (LPS-)
induced upregulation of IL-6, IL-1β, and TNF-α and
diminished LPS-exaggerated injury [9, 14, 72]. LPS-
induced ASK1/p38 signals and cytokine production in
the RAW264.7 macrophage cell line are attenuated by
antioxidants [14]. From previous studies on ischemic
injury, it is known that ASK1 silencing by siRNA reduces
infiltrated macrophages/resident microglia in brain regions
such as the striatum, cortex, and hippocampus, and ASK1
silencing downregulates proinflammatory cytokines such as
IL-6, IL-1β, and TNF-α in the ipsilateral hemisphere at late
stages of cerebral ischemia. In the RAW264.7 macrophage
cell line and BV2 microglia cell line, ASK1 inhibition
diminishes the release of proinflammatory mediators [23].
From a genetic perspective, microarray analysis shows that
ASK1 silencing decreased the gene levels of Il1b, Il6, Cxcl2,
Cxcl1, and Ccl2 [19]. Considering the relationship between
ASK1 and the immune response, ASK1 could be an
important regulator of the inflammatory response after
ischemic stroke.

6. Astrocytes and ASK1

The key roles of astrocytes in the neuronal system are
involved in the maintenance of brain physiology and neu-
ronal support, both structurally and metabolically, through
neurotransmitter regulation (glutamate uptake/release), ion
buffering, scavenging free radicals, enhancing BBB integ-
rity, and regulating water transports [78–81]. However,
astrocytes become hyperactivated in response to ischemic
stress and extend their processes, changing morphology
with the expression of glial fibrillary acidic protein
(GFAP) [7, 78]. Astrocytes migrate toward the injury site
and thus accumulate and produce a glial scar [7, 19, 80].
It has been reported that astrocytes produce and release
either trophic factors (brain-derived neurotrophic factor
(BDNF), fibroblast growth factor-2, and nerve growth
factor (NGF)) or inflammatory cytokines (IL-6, IL-1β,
TNF-α, and interferon-gamma (IFNγ)) [79, 82]. Trophic
factors play crucial roles in neuronal survival and protec-
tion, while inflammatory mediators contribute to brain
injury [18, 63, 83, 84]. Therefore, it is known that astrocytes
play dual roles in the immune system [78]. Although sev-
eral studies have provided evidence of the relationship
between reactive astrocytes and neurogenesis, previous
reports have suggested that reactive astrocytes block neuronal
regeneration [19, 81, 85–87].

ASK1 is present in astrocytes and is strongly expressed
after cerebral ischemia. Readily identified reactive astro-
cytes in ischemic lesions form a glial scar in the chronic
phase of ischemic stroke, which delays extension of neurite
and functional recovery [19]. However, siRNA targeting
ASK1 reduced reactive astrocyte marker GFAP in both

in vivo and in vitro studies, decreased glial scar formation,
andpromotedneuronal plasticity and functional performance
[19]. Moreover, ASK1 deletion suppressed mitochondrial
complex I inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine- (MPTP-) induced astrocyte activation and pro-
tected against degeneration of dopaminergic neurons [88].
In addition, p38, a molecule downstream of ASK1, is also
associated with reactive astrogliosis, and a conditional
GFAP/p38 knockout reduced astrogliosis [89]. Therefore,
several lines of evidence show that ASK1 may play a
major role in reactive astrocytes and glial scar formation
after ischemic stroke.

7. Neurons and ASK1

After ischemic injury, neurons are harmed by excitotoxi-
city, acidotoxicity, MMP, nitric oxide (NO), ion imbalances,
and free radicals, which results in neuronal death and cere-
bral damage [90–92]. Inhibition of ATP synthesis in the
mitochondria after ischemia depolarizes neuronal plasma
membranes [92]. Additionally, the intracellular influx of
excess calcium overloads via nonselective cation channels
and calcium channels depolarizes neurons [90]. Membrane
depolarization induces the release of the excitatory neuro-
transmitter glutamate, and the increase in glutamate
concentration can activate the N-methyl-D-aspartate
(NMDA) and α-amino3-hydroxy-5-methyl-4-isoxazolepro-
pionic acid (AMPA) receptors [92, 93]. Calcium-permeable
NMDA receptors induce further membrane depolariza-
tion, which aggravates calcium overload [92]. Ion imbal-
ances cause excessive ROS in the intracellular system
[94]. Increased NO production and free radicals can
enhance BBB leakage and contribute to apoptotic signaling
cascades [91].

Overexpression of ASK1 promotes apoptotic cell death,
and JNK/p38 MAP kinases closely interact with this process
[95, 96]. Increased ASK1 levels after cerebral ischemia also
induce apoptosis, which leads to neuronal cell death and
the development of infarct lesions [21]. Calcium influx
activates p38 signals in the ASK1+/+ mice-derived neuron,
but these p38 activations are suppressed in the ASK1−/−

mice-derived neuron [10]. ASK1 is closely related to Ca2+/
calmodulin-dependent protein kinase II (CaMK II), which
is activated by calcium influx [10, 97]. It has been reported
that CaMKII directly phosphorylates ASK1 at Thr 838
[10, 15, 97]. CaMKII inhibition reduces Ca2+-induced activa-
tion of ASK1 [15, 97]. NO activates ASK1, and the nitric oxide
synthase (nNOS) inhibitor 7-NI and the NMDA receptor
antagonist MK801 reduce ASK1 activity [98]. In addition,
an AMPA receptor blocker and a free radical scavenger pre-
vent activation of ASK1 and JNK [99]. These previous studies
demonstrated the neuroprotective effects from genetic knock-
down or pharmacological inhibition of ASK1 after cerebral
ischemia [21, 100, 101]. Neuroprotective drugs show benefi-
cial effects by suppression of ASK1/JNK signals [102]. Based
on previous studies, ASK1 may be involved in calcium influx,
oxidative stress, neuronal cell death, and cerebral infarctions
after ischemic stroke. (Table 1).
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8. Conclusion

Ischemic stroke is a complex neurologic disorder with
limited treatment options, which amplifies the need for drug
development. This review focuses on cell type-specific patho-
mechanisms, mainly targeting platelets, endothelial cells,
immune cells, astrocytes, and neurons in preclinical ischemic
stroke models. We focus on ASK1 as a major target molecule
in the etiology of ischemic stroke. Pharmacologic and genetic
inhibition of ASK1 has been shown to provide neuroprotec-
tive effects in cerebral ischemia. Therefore, we would like to
highlight the importance of ASK1 as a key target in drug
development for ischemic stroke.
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