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Summary

Alzheimer’s disease (AD) is the leading cause of dementia in the

elderly. Despite decades of study, effective treatments for AD are

lacking. Mitochondrial dysfunction has been closely linked to the

pathogenesis of AD, but the relationship between mitochondrial

pathology and neuronal damage is poorly understood. Sirtuins

(SIRT, silent mating type information regulation 2 homolog in

yeast) are NAD-dependent histone deacetylases involved in aging

and longevity. The objective of this study was to investigate the

relationship between SIRT3 and mitochondrial function and

neuronal activity in AD. SIRT3 mRNA and protein levels were

significantly decreased in AD cerebral cortex, and Ac-p53 K320

was significantly increased in AD mitochondria. SIRT3 prevented

p53-inducedmitochondrial dysfunction and neuronal damage in a

deacetylase activity-dependent manner. Notably, mitochondrially

targeted p53 (mito-p53) directly reduced mitochondria DNA-

encoded ND2 and ND4 gene expression resulting in increased

reactive oxygen species (ROS) and reduced mitochondrial oxygen

consumption. ND2 and ND4 gene expressions were significantly

decreased in patients with AD. p53-ChIP analysis verified the

presence of p53-binding elements in the human mitochondrial

genome and increased p53 occupancy of mitochondrial DNA in

AD. SIRT3 overexpression restored the expression of ND2 and ND4

and improved mitochondrial oxygen consumption by repressing

mito-p53 activity. Our results indicate that SIRT3 dysfunction

leads to p53-mediated mitochondrial and neuronal damage in AD.

Therapeutic modulation of SIRT3 activity may ameliorate mito-

chondrial pathology and neurodegeneration in AD.

Key words: Alzheimer’s disease; gene expression;

mitochondria; p53; SIRT3.

Introduction

Alzheimer’s disease (AD), the most common age-dependent neurode-

generative disease, is characterized by irreversible memory loss and

cognitive decline. Patients with AD may exhibit a range of behavioral and

psychological symptoms including mood changes. Degeneration of

subcortical cholinergic basal forebrain neurons may lead to the

dysfunction of gamma-amino butyric acid (GABA)ergic and glutamater-

gic neuronal systems, and degeneration of subcortical serotonergic and

aminergic nuclei may also contribute to AD symptoms (Coyle et al.,

1983; Canter et al., 2016). Accumulations of intracellular and extracel-

lular protein aggregates, that is neurofibrillary tangles containing

phosphorylated Tau protein and beta-amyloid plaques, directly con-

tribute to neuronal dysfunction and neurodegeneration and the devel-

opment of progressive development of dementia. Many therapeutic

approaches have targeted cholinergic restoration and beta-amyloid

removal, but unfortunately therapeutics directed at these targets have

had very limited success to date (Wolfe, 2002; Canter et al., 2016).

A growing body of evidence suggests that epigenetic modifications

contribute to AD pathogenesis (Lee & Ryu, 2010). Epigenetic changes

encompass an array of molecular modifications to both DNA and

chromatin, including transcription factors and cofactors. SIRTs (mam-

malian homolog of silent mating type information regulation 2 homolog

in yeast) are a family of epigenetic mediators that play various functions

in aging, chromatin integrity, metabolic regulation, and longevity (Kim

et al., 2007; Hirschey et al., 2010). Among sirtuins, SIRT1 has been

mostly widely studied and its level is changed in AD brains (Shi et al.,

2005; Someya et al., 2010; Kim et al., 2011).

SIRT3, the most abundant sirtuin in the brain, is localized to the

mitochondrial inner membrane and matrix and nucleus of neurons

(Onyango et al., 2002). It regulates mitochondrial activity by ROS in many

cell types and modulates CREB phosphorylation and fat metabolism (Shi

et al., 2005; Hirschey et al., 2010; Kim et al., 2010). Importantly, SIRT3

has an essential role in enhancing the mitochondrial antioxidant

glutathione,which could contribute to reduce aging inmammals (Someya

et al., 2010). Recently, it is reported that SIRT3 acts as a pro-survival factor

in neurons exposed to NMDA-induced excitotoxic injury (Kim et al.,

2011). SIRT3 expression is elevated in animals subjected to calorie

restriction, suggesting that SIRT3 may play a role in lifespan prolongation.

There are no differences in the frequency of SIRT3 gene methylation in

young vs. old human subjects or in patients with AD (Silva et al., 2008).

p53, a tumor suppressor protein and a transcription factor, translo-

cates to the inner mitochondrial matrix under normal condition and in

response to DNA damage (Marchenko et al., 2000; Mahyar-Roemer

et al., 2004). Mitochondrial p53 forms an inhibitory complex with Bcl2

and Bcl-xL resulting in the release of cytochrome c from mitochondria to

the cytosol and activation of caspases (Mihara et al., 2003). The
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translocation of p53 to mitochondria alters mitochondrial membrane

potential (Zhao et al., 2005). Interestingly, amyloid beta 42 activates p53

transcriptional activity and upregulates p53 expression in AD, suggesting

involvement of the p53 pathway in AD (Ohyagi et al., 2005). Notably,

p53 deficiency significantly decreases oxidative stress and activates

neuroprotective pathways (Barone et al., 2012; Fiorini et al., 2012).

Although many reports show an association between p53 and AD, little

is known about how p53 participates in neuronal mitochondrial activity

and mitochondria-encoded gene regulation in AD.

In spite of the abundance of SIRT3 and p53 in the neuronal mitochon-

dria, their function in the brain remains to be investigated. The mitochon-

dria-associated senescencedomainofp53can interactwithSIRT3 resulting

in growth arrest (Li et al., 2010). Because p53 is elevated in AD brain and

SIRT3 inducesmitochondrial ROSaccumulation inAD, ithasbeenproposed

that impaired molecular interactions between SIRT3 and p53 may lead to

mitochondrial dysfunction inAD(Hooperet al., 2007;Weiret al., 2012). In

this context, we discovered that that SIRT3 deacetylates p53, thereby

reducing p53 occupancy of mitochondrial DNA. In AD, SIRT3 levels are

reduced in ADmitochondria leading to increased Ac-p53 K320 levels and

increased p53 occupancy of mitochondrial DNA in AD. Through this

mechanism, SIRT3 and p53 contribute to dysregulation of mitochondrial

DNA-encoded gene expression and increased ROS accumulation, and

mitochondrial oxygen consumption in AD.

Results

SIRT3 mRNA and protein levels are decreased in AD

In order to identify the SIRT familymember (SIRT1 to 7) affected in patients

with AD, we first analyzed gene SIRT family expression profiles in the

frontal cortex of patientswith AD compared to normal subjects. Heatmap

analysis showed that SIRT3 expression is decreased to a greater degree

than other sirtuins in AD (Fig. 1A). SIRT3 was also found to have the

second highest level of relative expression among sirtuin family members

in brain. Based on these findings, we focused our study on SIRT3 changes

associated with AD. Next, to verify the altered SIRT3 gene expression, we

examined mRNA expression in frontal cortex of AD and normal subjects

using quantitative PCR analysis and found that SIRT3mRNA is significantly

decreased in patients with AD (n = 13) compared to normal subjects

(n = 13) (P < 0.05) (Fig. 1B). SIRT3 immunoreactivity was confined to

punctate structures within the cytosolic compartment of neurons in the

frontal cortex of normal subjects but was markedly reduced and

amorphous in patients with AD (Fig. 1C and S6). Western blot analysis

confirmed that SIRT3 protein levels are significantly decreased in AD

compared to normal controls (P < 0.05) (Fig. 1D). Thus, four different

methodologies confirmed that SIRT3 mRNA and protein levels are

apparently decreased in AD. As it has been shown that p53 expression

was increased in AD brain (Hooper et al., 2007) and SIRT3 alteration is

linked to ROS accumulation in AD (Weir et al., 2012), we examined the

relationship betweenSIRT3andp53protein levels inADcortex. p53protein

levels were significantly increased in both nuclear and mitochondrial

fractions of patients with AD while SIRT3 protein levels were significantly

decreased in the mitochondrial fraction (P < 0.05) (Fig. 1E,F). Linear

regression analysis showed an inverse correlation between SIRT3 and p53

protein levels in the mitochondria fraction of patients with AD (Fig. 1G).

SIRT3 physically interacts with p53

To examine molecular interactions between SIRT3 and p53, we used

several constructs including as Flag-p53 full-length, Flag-p53 N-terminal,

Fig. 1 Levels of SIRT3mRNA and protein are altered in AD. (A) A heat map showing that basal levels of SIRT gene expression are differentially regulated in AD cerebral cortex

compared tonormal subjects (Nor). Changes in gene expressions are the average of six samples fromeachgroupanddisplayed as higher (red) or lower (purple) color bars. (B) qRT–
PCRanalysis verified that SIRT3mRNA is decreased inADcortex (n = 13) compared tonormal subjects (n = 13).GAPDHwasused for normalizing SIRT3 expression. Thebar graph

data represents the mean � SEM (*P < 0.05). (C) SIRT3 immunoreactivity was decreased in AD frontal cortex. Scale bar: 30 lm. (D) Western blot analysis showed that SIRT3

protein levels are decreased in AD (n = 6) compared to controls (n = 6). Actin was used as the loading control. Densitometry analysis of SIRT3 protein represented that SIRT3

proteinwas significantly decreased in AD (*P < 0.05). (E)Western blot analysis shows that levels of p53were increased in nuclear andmitochondrial fractions of AD compared to

normal subjects, whereas levels of SIRT3 protein were decreased in the mitochondrial fractions in patients with AD. ACTB and TOM20 were used as loading controls of the

protein. (F) Densitometry analysis showed a significantly decreased SIRT3 but increased p53 protein levels in patients with AD. The bar graph data represent the mean � SEM

(*P < 0.05). (G) The regression analysis showed an inverse correlation between SIRT3 and p53 in the mitochondria fractions of patients with AD (n = 7, R2=0.8438, *P < 0.05).
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Flag-p53 mid-terminal, Flag-p53-DBD, and Flag C-terminal in in vitro

associations assays (Fig. 2A). The above p53 constructs were

cotransfected with GFP-SIRT3 in 293T cells, and SIRT3 protein was

immunoprecipitated by anti-GFP antibody. As shown in Fig. 3B, p53

mid-terminal region strongly interacted with SIRT3. To further confirm

the region or domain of SIRT3 interacting with p53, we performed a GST

pull-down assay using wild-type GST-SIRT3 and three GST-SIRT3

truncated fragments (Fig. 2C). Our results showed that the N-terminal

of SIRT3 protein preferentially interacts with p53 (Fig. 2D).

SIRT3 prevents mitochondrially targeted p53 (mito-p53)-

induced neuronal damage and mitochondrial dysfunction by

deacetylating p53 at K320

To define the effects of SIRT3 on p53-dependent neuronal activity, we

cotransfected mito-p53 with WT SIRT3 or DSIRT3 in DIV7 primary cortical

neurons and determined neuronal DNA damage and mitochondrial

function (Onyango et al., 2002; Shi et al., 2005). As expected, ectopic

expression of mito-p53 induced significant (around 80%) neuronal DNA

damage (indicating DNA fragmentation by DAPI staining) compared to

control vector (DsRed)-transfected neurons (around 20%) (Fig. 3A,B).

WT SIRT3 overexpression significantly decreased mito-p53-induced DNA

damage to around 40%, whereas mutant DSirt3 did not significantly

prevent mito-p53-induced DNA damage (around 70%) (P < 0.05) (Fig.

3A,B). We assayed the cytochrome c levels using immunofluorescence

staining as a measure of mitochondrial dysfunction (Mihara et al., 2003).

Mito-p53-transfected neurons showed two times lower intensity than

control neurons (control vector-transfected cells). WT SIRT3 overexpres-

sion recovered more than 80% of the cytochrome c intensity to a level

similar to control neurons while mutant DSIRT3 did not restore

cytochrome c intensity (P < 0.05) (Fig. 3A,C). Together, our data

indicate that SIRT3 plays a protective role against mito-p53-induced

DNA damage and mitochondrial dysfunction in primary neurons.

Several studies have shown the apoptotic role of p53 acetylation at

the K320 residue (Sakaguchi et al., 1998; Terui et al., 2003; Roy et al.,

2005; Brandl et al., 2012). In order to determine whether SIRT3

modulates p53 acetylation, we performed Western blot analysis after

cotransfection of SIRT3 and p53 constructs in SH-SY5Y cells. SIRT3

overexpression reduced p53 acetylation at K320, but not at other lysine

residues including K373, K381, and K382 in SH-SY5Y cells (Fig. 4A, left

panel). To further verify the role of SIRT3 in p53 acetylation at K320, we

cotransfected CBP/p300 which is generally known to induce p53

acetylation (Ito et al., 2001; Koh et al., 2014) and ran Western blot

analysis. As shown in Fig. 4A (right panel), while CBP robustly increased

p53 acetylation at K320, SIRT3 effectively reduced p53 acetylation at

K320 by CBP. To further validate whether p53 acetylation at K320 is

associated with neuronal damage, primary neurons were transfected

with an acetylation site mutant p53 (K320R) and an acetylation mimetic

mutant p53 (K320Q) and stained with DAPI and MitoTracker (Fig. 4B,C).

MitoTracker intensity is a well-established surrogate for mitochondrial

Fig. 2 SIRT3 physically interacts with p53. (A) Schematic illustrating full-length WT p53 and p53 deletion constructs. (B) SIRT3 interacts with the several domains of

p53. Flag-p53 full-length, Flag-p53 N-terminal, Flag-p53 mid-terminal, Flag-p53 C-terminal, and Flag-p53 DBD constructs were cotransfected with GFP-SIRT3 in 293T

cells, and equal amounts of protein from cell lysates were immunoprecipitated with anti-FLAG M2 antibody followed by immunoblotting with anti-FLAG M2 antibody to

detect p53 and with anti-GFP antibody to detect SIRT3, respectively. A representative experiment is shown. (C) Schematic showing full-length GST-SIRT3 and truncated

forms of GST-SIRT3. (D) GST-SIRT3 pull-down assay confirmed that SIRT3 is physically associated with p53. In vitro GST-SIRT3 pull-down was performed with cell lysates

extracted from SH-SY5Y cells with p53 overexpression. GST fusion proteins were visualized by Coomassie blue staining (bottom panel).
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Fig. 3 SIRT3 prevents p53-induced

mitochondrial and DNA damage in primary

cortical neurons. (A) Photomicrographs

show that SIRT3 prevents mito-p53-

induced neuronal damage. DIV7 primary

mouse cortical neurons were transfected

with pDsRed control vector or pDsRed mito-

p53 with SIRT3 or DSIRT3 for 36 h. Primary

neurons were treated with 0.1% saponin (5

min on ice) to release cytosolic content

prior to fixation and were subjected to

immunostaining for cytochrome c staining

and nuclear counterstaining with DAPI.

Images were captured by confocal

microscopy. Representative images of four

separate experiments are shown. Scale bar

(white): 10 lm. (B) SIRT3 prevents mito-

p53-induced neuronal DNA damage. The

DNA fragmentation was analyzed from

transfected neurons and the bar graphs

represent the mean � SEM (n = 4;

*P < 0.05). (C) SIRT3 prevents mito-p53-

induced mitochondrial damage. The bar

graphs represent relative endogenous

cytochrome c (FITC) intensity that is

quantified using Nikon NIS-Elements AR

software. Error bars represent S.E.M (n = 4;

**P < 0.01, ***P < 0.001).

Fig. 4 SIRT3 regulates deacetylation of p53 at K320 and p53-induced neuronal damage. (A) SIRT3 deacetylates p53 at K320. H1299 p53 KO cells were cotransfected p53

with HA-CBP, or with GFP-SIRT3 for 24 h, respectively. ACTB was used as loading control. (B) Schematic structures show constructs of wild-type p53, K320R mutant, and

K320Q mutant. (C) p53 induces neuronal damage in an acetylation of K320-dependent pathway. DIV7 primary mouse cortical neurons were cotransfected EGFP with

vector, p53, K320R, K320Q, p53 and SIRT3, and K320Q and SIRT3 for 36 h. Neurons were stained with MitoTracker Red CMXRos for 30 min prior to fixation and were

subjected in DAPI staining. Scale bar (white): 10 lm. (D) SIRT3 modulates mitochondrial activity through the deacetylation of p53 K320. The graph data represent the

mean � SEM (n = 4; *P < 0.05, ***P < 0.001). (E) SIRT3 modulates p53-induced DNA damage through the deacetylation of p53 K320. The DNA fragmentation was

analyzed from transfected neurons and the bar graphs represent the mean � SEM (n = 4; *P < 0.05, **P < 0.01). (F) Western blot analysis shows that levels of acetylated

p53 at K320 were increased in both nucleus and mitochondria fractions of AD compared to control, whereas SIRT3 was decreased in mitochondria fractions of AD. ACTB

and COX4 were used as the loading control. (G) Immunoreactivity of acetylated p53 at K320 was increased in the nucleus and the mitochondria of AD. Arrows (white)

indicate cytoplasmic and mitochondrial localization of acetylated p53K320 signals. Scale bar (white): 20 lm. (H) Electron micrograph showed that immunogold-labeled

particles of acetylated p53 at K320 are found in the mitochondria of cortical neurons and its level is increased in patient with AD compared to normal (Nor) subject.

Arrowheads (red) indicate cytoplasmic and mitochondrial localization of acetylated p53K320 signals. M, mitochondria; N, nucleus. Scale bars: 500 nm.
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membrane potential (MMP) (Favret & Lynn, 2010). Our data showed that

MitoTracker intensity was significantly decreased in both WT p53-

transfected and mutant p53 K320Q-transfected neurons compared to

control or mutant p53 K320R-transfected neurons (P < 0.05) (Fig. 4B–

D). Notably, WT SIRT3 recovered WT p53- or mutant p53K320Q-induced

mitochondrial membrane permeability transition (MMPT) (P < 0.05)

(Fig. 4C,D). In addition, WT SIRT3 prevented WT p53- or mutant

p53K320Q-induced neuronal DNA fragmentation (P < 0.05) (Fig. 4C,E).

To confirm whether acetylated p53K320 level is altered in AD, we

measured acetylated p53 at K320 using Western blot analysis,

immunohistochemistry, and immunogold labeling and TEM analysis in

AD and control frontal cortex. The level of acetylated p53 at K320 was

significantly increased in patients with AD (n = 6) compared to normal

subjects (n = 6) (Fig. 4F,G). The gold particles for acetylated p53K320

were found in the mitochondria and p53K320-positive gold particles

were increased in patients with AD compared to normal subjects

(Fig. 4H). Accordingly, our results demonstrate that both the WT p53

and acetylated p53 at K320 are altered by AD pathology.

SIRT3 prevents mito-p53-induced cell death and

mitochondrial dysfunction

To gain more insight into the role of SIRT3 in mito-p53-induced cell death

and mitochondrial dysfunction, tetracycline-inducible mito-p53 SH-SY5Y

cell lines were developed. Figure 5A depicts the strategy we used to

generate inducible mito-p53 and SIRT3 cell lines. Doxycycline (DOXY) was

Fig. 5 SIRT3 prevents mito-p53-induced mitochondrial dysfunction and neuronal death. (A) A scheme shows SIRT3/mito-p53 double expression cell model. (B) SIRT3

improved mito-p53-induced cell viability. SIRT3/mito-p53 double or mito-p53 single inducible cell lines were treated with or without 2 lg mL�1 DOXY for 0, 12, 18, 24, 30,

and 42 h, respectively. Cell viability was analyzed by MTT assay. (C) Ectopic expression of SIRT3 prevented mito-p53-induced apoptosis. Apoptotic cells were analyzed by

flow cytometry after Annexin V/ PI staining in mito-p53-inducible cell with or without SIRT3 overexpression. The bar graph data (bottom panel) represents the mean � SEM

(n = 3; *P < 0.05, ***P < 0.001). (D) SIRT3 improved mito-p53-induced mitochondrial membrane potential (Ψ) loss. Mitochondrial membrane potential was detected by

flow cytometry after JC-1 staining in mito-p53-inducible cell with or without SIRT3 overexpression. The bar graph data represent the mean � SEM (n = 3; *P < 0.05,

**P < 0.01). (E) Ectopic expression of SIRT3 reduced mito-p53-induced ROS production. Reactive oxygen species (ROS) were analyzed by flow cytometry after DCF staining in

mito-p53-inducible cell with or without SIRT3 overexpression. The bar graph data represent the mean � SEM (n = 3; *P < 0.05).
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applied for the indicated time periods, and the cell viability was measured.

When mito-p53 was induced by DOXY treatment, cell viability was

markedly and progressively decreased over time. In contrast, induction of

SIRT3 togetherwithmito-p53 significantly prevented cell death (P < 0.05)

(Figs 5B and S1A,B, Supporting information). Previous reports have shown

that SIRT3 plays a protective role in diverse stress-induced cell death

(Hagen et al., 1995; Kim et al., 2007; Hirschey et al., 2010). To determine

whether SIRT3 prevents mito-p53-induced toxicity, mito-p53 cells were

transfected with a control vector, WT SIRT3, or mutant DSIRT3 and cells

were then stained with Annexin V and propidium iodide (PI). WT SIRT3

overexpression, but not mutantDSIRT3, significantly decreasedmito-p53-

induced early and late apoptosis (P < 0.05) (Figs 5C and S1C). Our data

strongly indicate that WT SIRT3 rescues mito-p53-dependent late apop-

tosis. Next, in order to detect MMP changes, we stained mito-p53 cells in

the presence ofWT SIRT3 ormutantDSIRT3with JC-1. JC-1monomerwas

significantly increased in DOXY-treated mito-p53 cells (R1 area of flow

cytometry scatter plot). WT SIRT3 overexpression significantly decreased

the formation of JC-1 monomer in mito-p53 cells (P < 0.05) (Fig. 5D).

MutantDSIRT3 did not rescueMMP levels reduced bymito-p53 (Fig. S1D).

Normal SH-SY5Y cells were transfected withWT p53, mutant p53K320Q,

ormutant p53K320R in thepresenceandabsenceofWTSIRT3 followedby

Annexin V/PI staining. We found that WT SIRT3 rescues WT p53- and

mutant p53K320Q-induced cell death (P < 0.05) (Fig. S2). We then

performed DCF-DA staining and flow cytometry analysis to determine

whether oxidative stress pathway is associated with mito-p53-dependent

mitochondrial dysfunction. ROS accumulation was robustly increased in

DOXY-treated mito-p53 cells (Fig. 5E). WT SIRT3 overexpression signifi-

cantly decreased ROS accumulation in DOXY-treated mito-p53 cells

(P < 0.05) (Fig. 5E). Our results demonstrate that SIRT3 plays a protective

role against mito-p53-induced ROS-mediated mitochondrial dysfunction

and cell death (Fig. S8).

SIRT3 regulates p53-dependent mitochondrial genome

expression and modulates mitochondrial ROS level and

oxygen consumption

To further investigate whether mitochondrially targeted p53 directly

regulates mitochondrial genome expression and SIRT3 modulates p53-

dependent mitochondrial gene expression, we performed a series of

experiments including ChIP and qRT–PCR. As shown in Fig. 6A,

induction of mito-p53 by DOXY treatment significantly decreased

expression of ND2, ND4, and 12S rRNA genes at 12 h (P < 0.05). Other

mitochondria genome-encoded genes were partially affected by mito-

p53 induction (Fig. S3). Consistent with the result of DOXY-inducible

mito-p53 cells, both ND2 and ND4 mRNA levels were significantly

decreased in the frontal cortex of patients with AD compared to normal

subjects while there was no significant change in the mRNA level of 12S

rRNA (P < 0.05) (Fig. 6B and S7). Next, we applied p53-chromatin

immunoprecipitation (ChIP) and qPCR assays to identify whether p53

occupies mitochondrial DNA (mtDNA) and whether its occupancy is

altered in AD. Interestingly, p53 occupancy of mtDNA was markedly

increased in patients with AD compared to normal subjects (P < 0.05)

(Fig. 6C). Additionally, DNA sequencing of p53-ChIP qPCR product

verified that p53 preferentially occupies the ND2 and 12S rRNA

mitochondrial genes (Fig. S4). To test whether putative mitochondrial

consensus p53-binding element (mito-p53 BE) is transcriptionally regu-

lated by p53 (Heyne et al., 2004), we generated mito-p53 BE-driven

reporter construct using pGL3E luciferase vector (Fig. S5A). p53 induced

mito-p53 BE-driven reporter activity in a dose-dependent manner,

indicating that p53 can directly participate in transcriptional regulation of

the mitochondrial genome (Fig. S5B,C). WT SIRT3 decreased mito-p53

BE-driven reporter activity (Fig. S5D). These data suggest that SIRT3

modulates p53-dependent mitochondrial transcriptional activity. Even

though the reporter assay was designed for testing participation of p53

in mitochondrial genome transcription via mito-p53 BEs, mito-p53 BE-

driven reporter activity did not exactly correlate with net levels of

mitochondrial gene expression in cell lines and human AD brains.

WT SIRT3 rescued ND2 and ND4 mRNA levels in mito-p53 cells,

indicating that WT SIRT3 modulates mitochondrial ND2 and ND4

expression that is negatively regulated by mito-p53. (P < 0.05) (Fig. 6D).

Because mito-p53 may affect intracellular ROS levels via repression of

mitochondria-encoded Complex I genes such as ND2 and ND4, we

measured alterations in ROS level and oxygen consumption rate (OCR) in

DOXY-treated mito-p53 cells. Mito-p53 induction increased ROS levels

and reduced oxygen consumption capacity in a time-dependent manner

(P < 0.05) (Fig. 6E–G). WT SIRT3 decreased ROS levels and increased

OCR in DOXY-treated mito-p53 cells (P < 0.05) (Fig. 6E,H,I). Mutant

DSIRT3, however, did not reduce ROS levels or increase OCR in DOXY-

treated mito-p53 cells (Fig. 6G,H). These data suggest that mito-p53-

induced Complex I-dependent mitochondrial dysfunction causes ROS

accumulation by reducing ND2 and ND4 mRNA levels. SIRT3 restores

mito-p53-reduced basal mitochondrial oxygen consumption and mito-

chondrial oxidative capacity by rescuing mito-p53-reduced ND2 and ND4

mRNA levels and reducing mito-p53-changed ROS levels. To further

verify whether ND2 and ND4 mediate a neuroprotective effect in

response to SIRT3 and mito-p53, loss of function of ND2 and ND4 was

analyzed using siRNAs as shown in Fig. S9 (Table S3). Knock down of

ND2 and ND4 by siRNAs significantly decreased SIRT3-dependent cell

viability in SH-SY5Y cells. On the other hand, knock down of ND2 and

ND4 by siRNAs increased levels of cleaved caspase-3 in SH-SY5Y cells.

Discussion

Alterations of SIRT3 and mitochondrial p53 levels are

associated with AD pathology

Mitochondrial dysfunction has been closely linked to the pathogenesis of

AD, but the relationship between mitochondrial pathology and neuronal

damage is poorly understood (Bonilla et al., 1999; Swerdlow, 2012). In

the present study, we found that reduced mitochondrial SIRT3 is

associated with altered mitochondrial respiratory activity and neuronal

damage in AD. SIRT3 mRNA and mitochondrial SIRT3 protein levels were

significantly decreased, and mitochondrial p53 protein was significantly

increased in AD cortex. Furthermore, levels of mitochondrial SIRT3 are

inversely correlated with mitochondrial p53 in AD cortex, suggesting

that mitochondrial SIRT3 and p53 alterations may contribute to AD

pathogenesis. A significant downregulation of SIRT3 among SIRT family

members indicates that SIRT3 expression may be regulated in a gene

context-dependent manner in the context of AD. We propose that the

disparity between SIRT3 mRNA and protein levels in AD may be due to a

differential sensitivity of assay methods between qPCR vs. Western blot.

Otherwise, it is possible that differential alteration of transcription vs.

translation may contribute to the different levels of SIRT3 mRNA and

protein through a yet unknown pathway.

SIRT3 deacetylates p53 at K320 and prevents p53

neurotoxicity

The immunoprecipitation data showed that SIRT3 interacts with middle

regions of the p53 protein (amino acids 44-360). GST pull-down
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experiments confirmed that the N-terminal of SIRT3 (amino acids 1-97)

interacts with several p53 domains including both activation and DNA

binding domains. Our data are consistent with a previous report that

SIRT3 interacts with the mitochondria-associated senescence domain

(MASD) between amino acids 64 and 209 of p53 (Li et al., 2010).

Interestingly, it has shown that SIRT3 rescues p53-induced growth arrest

and senescence and Bcl2-associated athanogene 2 (BAG-2), a chaperone

protein, inhibited the rescue function of SIRT3 (Li et al., 2010). The

coordinated interaction between p53, SIRT3, and BAG-2 is closely linked

to the regulation of cell fate through a transcription-independent

pathway (Li et al., 2010).

Most notably, for the first time, we identified that SIRT3 specifically

reduces the level of Ac-p53 K320 and further blocks CBP-induced p53

acetylation at K320. These data suggest a bona fide role for SIRT3 as a

deacetylase that catalyzes the deacetylation of p53 at K320. To further

determine how Ac-p53 K320 affects neuronal activity, we examined the

function of mutant p53 K320R (a mimic of non-acetyl lysine) and K320Q

(a mimic of acetyl lysine) in primary neurons. As expected, the

p53 K320Q mutant induced mitochondrial dysfunction and cell death,

while the p53 K320R mutant did not. In addition, SIRT3 overexpression

nullified the pathological changes induced by WT p53 and p53 K320Q,

supporting our hypothesis that SIRT3 prevents p53-induced mitochon-

drial dysfunction and neuronal cell death. Previous studies support our

finding that p53 acetylation at the K320 residue is linked to cell damage

(Sakaguchi et al., 1998; Terui et al., 2003; Roy et al., 2005; Brandl

et al., 2012). Importantly, we found that Ac-p53 K320 levels are

significantly increased in the mitochondria of AD in conjunction with

reduced SIRT3 levels. In this context, failure of deacetylation of

Fig. 6 SIRT3 involves in mito-p53-dependent mitochondrial genome expression, mitochondrial ROS level, and oxygen consumption. (A) Mito-p53 repressed mitochondria-

encoded gene expression. The bard graph data represent the mean � SEM (n = 3; *P < 0.05). (B) The mRNA levels of ND2 and ND4 were significantly reduced in the cortex

of patients with AD compared to normal subjects. The graph data represent the mean � SEM (n = 6; *P < 0.05). (C) Quantitative ChIP analysis confirmed that p53

occupancy to mitochondrial DNA was elevated in the cortex of patients with AD compared to normal subjects (n = 6; *P < 0.05). (D) SIRT3 rescued expression of

mitochondria-encoded genes that are repressed by mito-p53. The bar graph data represent the mean � SEM (n = 3; *P < 0.05, **P < 0.01). (E) SIRT3 reduced mito-p53-

induced oxidative stress (ROS accumulation). Cells were subjected to DCF-DA staining followed by flow cytometry. The line graph data represent the mean � SEM (n = 5;

**P < 0.01). (F) Mito-p53 reduced mitochondrial oxygen consumption and respiratory function. Cells were applied to oligomycin, FCCP, antimycin, and rotenone followed

by oxygen consumption rate (OCR) analysis. (G) The OCR level was significantly reduced by mito-p53. The bar graphs were originated from (E) panel (n = 5, **P < 0.01,

***P < 0.005). (H) SIRT3 rescues mitochondrial oxygen consumption and respiratory function affected by mito-p53. (I) SIRT3 significantly restores the OCR level decreased by

mito-p53. The bar graphs were originated from (H) panel (n = 5, *P < 0.05, **P < 0.01). (J) A flowchart illustrates that, in a condition of AD pathology, a reduction in SIRT3

levels leads to an increase in acetylated p53 (K320) levels in the mitochondria and impairs mito-p53-dependent mitochondrial genome expression, resulting in elevations of

ROS accumulation and neuronal damage.
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mitochondrial Ac-p53 at K320 due to the decreased SIRT3 activity may

initiate cascades of mitochondria-dependent neuronal damage pro-

cesses in AD.

SIRT3 modulates p53-dependent mitochondrial genome

expression and mitochondrial activity

We determined that SIRT3 modulates mito-p53-dependent mitochon-

drial gene expression and mitochondrial respiratory function. As a result,

SIRT3 prevented mito-p53-induced mitochondrial dysfunction and neu-

ronal damage in both primary neurons and SH-SY5Y cells. Mitochondrial

ND2 and ND4 genes encode core subunits of the mitochondrial

membrane respiratory chain NADH dehydrogenase (Complex I) (Mathie-

sen & Hagerhall, 2002; Brandt, 2006). Complex I functions in the

transfer of electrons from NADH to the respiratory chain (Hayashi &

Stuchebrukhov, 2010). Previous studies have shown that mRNA levels of

mitochondrial genome-encoded Complex I (ND4), COX I, COX II, and

COX III genes are significantly decreased in AD temporal cortex

(Chandrasekaran et al., 1996; Fukuyama et al., 1996). Our results

suggest that reduced SIRT3 in AD causes mito-p53-dependent repression

of ND2, ND4, and 12s rRNA gene expression.

The association between p53 and mtDNA had been hypothesized

because of its localization in the mitochondrial inner matrix (Fukuyama

et al., 1996). We identified that p53 binds to potential consensus binding

elements in the human mitochondrial genome and p53 binding to

mtDNA was elevated in AD. It seems likely that the higher p53 occupancy

to mtDNA is related to repression of ND2 and ND4 gene expression in

AD. In this context, SIRT3 may modulate p53 binding to mtDNA by

deacetylating p53 at K320 and thereby coordinate mitochondrial gene

expression. We previously reported that cAMP response element binding

protein (CREB) is localized to neuronal mitochondria and specifically

binds to CREB response elements in the mitochondrial genome that

regulate mitochondrial-encoded Complex I gene expression (Lee et al.,

2005; Ryu et al., 2005). In the current study, we provide another layer of

mechanism that increased mito-p53 level leads to ROS accumulation and

reduces the rate of mitochondrial oxygen consumption. In contrast, SIRT3

prevents ROS accumulation and restores mitochondrial oxygen con-

sumption by modulating mito-p53 activity. Collectively, our data indicate

that the deregulation of SIRT3 impairs mitochondrial gene expression via

mitochondrial p53 activation in AD. Previous studies have shown that

mitochondrial ROS are generated both via mitochondrial respiration and

by oxygen-independent processes under physiologic conditions in a cell

type-specific and metabolic rate-dependent manner (Kushnareva et al.,

2002; Barja, 2007). Based on previous findings, we expect that the

increased ROS levels and concomitant reduced oxygen consumption

capacity caused by mito-p53 may contribute to neuronal dysfunction.

How ROS generation is regulated independent of oxygen consumption

warrants further investigator in the future.

A novel role of p53 in the mitochondria of AD

Since their initial finding of mitochondrial p53 in 2000 (Marchenko

et al., 2000), Moll and colleagues have performed pioneering studies,

showing that p53 is specifically targeted to mitochondria and plays

transcription-independent pro-apoptotic functions (Mihara et al., 2003;

Erster & Moll, 2004; Moll et al., 2005). p53 directly interacts with

multidomain proteins of the Bcl-2 family at the mitochondrial outer

membrane and induces mitochondrial outer membrane permeabiliza-

tion, which is a prominent apoptotic checkpoint (Mihara et al., 2003;

Tomita et al., 2006; Follis et al., 2014). Several stresses such as hypoxia

and ischemia induce translocation of p53 protein to mitochondria

(Sansome et al., 2001; Erster & Moll, 2004; Vaseva et al., 2012).

Mitochondrially targeted p53 leads to cell death in solid tumor models

(Palacios et al., 2008). Intriguingly, p53 physically interacts with

cyclophilin D (CypD) and the p53-CypD complex results in mitochondrial

permeability transition pore opening and mediates cell death caused by

ischemic injury. Cyclosporine A pretreatment or reduction of p53

proteins prevents formation of the p53-CypD complex in an ischemic

injury mouse model (Vaseva et al., 2012). In the current study, we found

that SIRT3 rescues mito-p53-induced cytochrome c release in primary

neurons. Release of cytochrome c from mitochondria is a well-known

upstream event to trigger caspase-3-dependent neural cell damage.

Teng et al. (2004) have shown that spinal cord injury (SCI) increases

mitochondrial cytochrome c release and minocycline treatment provides

neuroprotective effect by reducing cytochrome c release in SCI. These

data suggest that therapeutic regulation of mitochondrial function may

be an effective approach to treat neurotrauma. Whether this therapeutic

approach modulates SIRT3 and mito-p53-dependent pathway remains

to be investigated.

The novel roles of p53 in the mitochondria have been well

documented (Park et al., 2016). p53 interacts with mtDNA-associated

proteins such as CHCHD4, OGG1, Parkin, POLG, and TFAM (Achanta &

Huang, 2004; Achanta et al., 2005; and Wong et al., 2009; Hoshino

et al., 2013; Zhuang et al., 2013). In conjunction with partner

molecules, p53 is involved in modulating mtDNA replication and

transcription, maintaining mtDNA stability, and repairing mtDNA.

Bergeaud et al. recently showed that mitochondrial p53 interacts with

oligomycin sensitivity-conferring protein, a component of F1F0-ATP

synthase complex, and promotes the assembly of F1F0-ATP synthase

complex (Bergeaud et al., 2013). These reports show that p53 is directly

involved in mitochondrial respiratory function through its interaction

with mitochondrial matrix proteins. Our novel findings show that

elevation of mitochondrial p53 activity contributes to the pathogenesis

of AD through its role as a mitochondrial transcription factor. The

mitochondrial p53 activity was modulated by SIRT3 in neurons. Based on

our current study, further work will be necessary to define what signals

and other factors are associated with p53-mediated mitochondrial

transcription normally and in neurodegenerative conditions such of AD.

In summary, we found reduced SIRT3 levels in neuronal mitochondria

in AD that inversely correlate with increased levels of mitochondrial p53.

In addition, levels of Ac-p53 K320 were elevated in neuronal mitochon-

dria of AD. Decreased SIRT3 levels lead to mitochondrial dysfunction via

p53-mediated reduction of mitochondria genome-encoded ND2 and

ND4 expression in AD. Consequently, altered activity of SIRT3 and p53

impaired mitochondrial oxygen consumption and enhanced neuronal

damage in AD. Taken together, alterations of SIRT3 and mitochondrial

p53 may be a marker for mitochondrial dysfunction in AD and

therapeutic modulation of SIRT3 activity may be a useful strategy to

ameliorate mitochondrial pathology in AD.

Experimental procedures

Cell culture

Mouse cortical primary neurons from P0 pups were cultured in

Neurobasal medium supplemented with 1XB-27 supplement and 1X

L-glutamine (Invitrogen, CA, USA) in a humidified atmosphere of 5%

CO2 at 37°C. 293T cells, SH-SY5Y cells, and doxycycline (DOXY)-

inducible mitochondrially targeting p53 (mito-p53) cells were cultured in

Dulbecco’s modified Eagle’s medium (DMEM; Thermo Scientific,
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Waltham, MA, USA) supplemented with 10% fetal bovine serum) and

1% penicillin/streptomycin (P/S) in a humidified atmosphere of 5% CO2

at 37°C.

Chemicals and antibodies

Anti-SIRT3, anti-COX4, anti-FLAG M2, and anti-ACTB antibodies were

obtained from Sigma (St. Louis, MO, USA). Rabbit anti-HA and mouse

anti-p53 (DO-1) antibodies were purchased from Santa Cruz (Dallas, TX,

USA). Rabbit anti-acetyl-p53 K373/382 and rabbit anti-acetyl-p53 K320

antibodies were purchased from Millipore (Billerica, MA, USA). Rabbit

acetyl-p53 K381 antibody was purchased from Abcam (Cambridge, MA,

USA). Mouse anti-cytochrome c antibody (Clone: 6H2.B4) was pur-

chased from BD Pharmingen (Franklin Lakes, NJ, USA). Secondary

antibodies including goat anti-mouse IgG and goat anti-rabbit IgG were

purchased from Jackson ImmunoResearch (West Grove, PA, USA).

Human brain samples

Neuropathological processing of control and AD human brain samples

was performed using procedures previously established by the Boston

University Alzheimer’s Disease Center (BUADC). All brains were donated

with consent of the next of kin after death. Institutional review board

approval was obtained through the BUADC. The study was performed in

accordance with institutional regulatory guidelines and principles of

human subject protection in the Declaration of Helsinki. Detailed

information of brain tissues is described in Table S1.

Quantitative real-time PCR (qPCR)

Total RNA was isolated from brain tissues using a commercial extraction

system (Qiagen). 1 lg total RNA has been used for cDNA preparation with

iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) according to the

manufacturer’s protocols. cDNA from each sample was amplified by real-

time PCR using iQ SYBR Green Supermix (Bio-Rad). RNA quantities were

normalizedusingGAPDHmRNAasa reference. PCRcycling conditionswere

asfollows:denaturationfor3 minat95°C;then40cyclesofamplificationfor

15 s at 95°C, 15 s at 60°C, 20 s at 70°C; followedby 30 s at 72°C. Formelt

curve, data collection has been used 33 cycles, 6 s each, with the tempera-

tureincreasedfrom60°Cto92°C(increasesetpointtemperatureaftercycle2

by 1°C). The PCRprimer for SIRT3was as follows: forward, 5’-CGGCTCTAC

ACGCAGAACATC-3’ and reverse, 5’-CAGCGGCTCCCCAAAGAACAC-3’;

the PCR primer for ND2was as follows: forward, 5’- GAGTAGATTAGGCGT

AGGTA-3’ and reverse, 5’-CGGCCTGCTTCTTCTCA-3’;ND4: forward,5’-C

TAGGCCATATGTGTTGGA-3’ and reverse, 5’- GTATATCGCCTCACACCT

CA-3’; and 12s rRNA: forward, 5’- CGGTATATAGGCTGAGCA-3’ and

reverse, 5’- GGAACAAGCATCAAGCA-3’ (Table S2).

Immunogold labeling and transmission electron microscopy

(TEM)

Immunogold labeling and TEM were performed with some modification

as previously described (Lee et al., 2005; Ryu et al., 2005). The tissues

were fixed with 2.5% glutaraldehyde dissolved in 0.1M cacodylate

buffer overnight at 4°C and with 2% osmium tetroxide for 1 h. The cells

were dehydrated with ethanol series, infiltrated with Spurr’s resin series,

and polymerized at 60°C for 8 h. The embedded cell was cut with a

diamond knife on ultramicrotome (Ultracut S, Leica). The sections were

mounted directly on 150-mesh nickel grids. The sections were treated

with 3% H2O2 for 30 min and incubated with the AURION Blocking

Agent for 30 min. Then, the sections were incubated with the anti-

acetylated-p53 (Ac-p53)-rabbit IgG. The sections were then rinsed with

0.2%-BSA-C (AURION, the Netherlands) in PBS and incubated with

30-nm gold-conjugated anti-rabbit antibody for 1 h. After washing

with 0.1% BSA-C in PBS, the sections were treated with 0.2%

glutaraldehyde and washed with distilled water. The sections were

stained with 2% uranyl acetate solution for 10 min. The grids were

examined with Tecnai F20 (FEI, the Netherlands) at 200 kV. Negative

control was incubated with secondary antibody only while primary

antibody was omitted.

Statistical analysis

The data are presented as the mean � SEM. Data analysis was

performed by Student’s t-test using StatView 4 (Abacus Concepts,

Berkeley, CA, USA). Differences were considered statistically significant

when P < 0.05.

Other detailedmethods are included in Supporting Information (Data S1).
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Fig. S1 SIRT3 prevents mito-p53-induced cell death.

Fig. S2 SIRT3 prevents both WT p53- and mutant p53 K320Q-induced cell

death.

Fig. S3Mitochondrial genome-encoded transcripts are regulated bymito-p53.

Fig. S4 Human mitochondrial p53-binding elements were determined by p53-

ChIP followed by DNA sequencing.

Fig. S5 Sirt3 modulates p53-dependent transcriptional activity of mitochon-

drial p53-binding element (Mito-p53BE)-driven reporter.

Fig. S6 SIRT3 is mainly expressed in neuronal cell types.

Fig. S7 (A) Doxycycline (DOXY) does not affect mitochondrial genome-

encoded gene expression in normal SH-SY5Y cells.

Fig. S8. (A) Western blot shows that SIRT3 reduces caspase-3 activation

induced by p53. Arrow (red) indicates the position of cleaved caspase-3. (B)

SIRT3 significantly reduces the level of cleaved caspase-3 induced by p53.

Fig. S9 Knock down of ND2 and ND4 decreases SIRT3-dependent neuropro-

tective effect against p53.

Table S1 Information on human normal and AD brain samples.

Table S2Primer sequences for qPCR analysis ofmitochondrial genes (F, forward;

R, reverse).

Table S3A list of siRNA sequences for humanmitochondria (MT)-encodedND2

and ND4 genes.

Data S1 Experimental Procedures.
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